Basics of Probability

Size: px
Start display at page:

Download "Basics of Probability"

Transcription

1 Basics of Probability By A.V. Vedpuriswar October 2, , 2016

2 Random variables and events A random variable is an uncertain quantity. A outcome is an observed value of a random variable. An event is a single outcome or a set of outcomes. Mutually exclusive events cannot happen at the same time. Exhaustive events include all possible outcomes. Independent events refer to events for which the occurrence of one has no influence on the occurrence of others. Events which are not independent, are called dependent.

3 Discrete and continuous random variables A discrete random variable is one for which the number of possible outcomes can be counted. For each possible outcome, there is a measurable and positive probability. A continuous random variable is one for which the number of possible outcomes is infinite. For a continuous random variable, probability is measurable for a range of data points but not for a specific point.

4 Binomial and Uniform random variables A binomial random variable can be defined as the number of successes in a given number of trials where the outcome can be a success or failure. The probability of success is constant for each trial and the trials are independent. If there are n trials, with probability of success in each trial is p, he probability of getting r successes = ncr (p)^r (1-p)^(n-r) r A discrete uniform random variable is one for which the probabilities for all possible outcomes for a discrete random variable are equal. The continuous uniform distribution is defined over a range (a, b) such that p (x 1 x 2 ) = (x 2 - x 1 ) / (b-a)

5 Types of probability Type of probability Empirical A priori Subjective Unconditional Conditional Joint Description Based on data Based on reasoning/inspection Based on personal assessment Probability of an event regardless of the occurrence of other events Probability of an event influenced by the occurrence of other events Probability that both events will occur. 4

6 Univariate and multivariate distributions A univariate distribution is the distribution of a single random variable. A multivariate distribution specifies the probabilities associated with a group of random variables.

7 What is the probability of drawing an Ace or a Spade from a deck of cards? Solution No. of Aces = 4 No. of Spades = 13 Total no of Aces and Spades = 17 Less: Ace of Spades = 1 = 16 Probability = 16C 1 / 52C 1 =16 52 = 4 13

8 In a selection process, 30 candidates will qualify finally. 600 appear in the written test and 100 will be called for interview. What is the probability that a person writing the test will be called for interview? Determine the possibility of a person being selected if he has been called for interview. Solution Probability of being called for interview = =1 6 Probability of being selected if called for interview = = 3 10 Probability of a person appearing in the test being finally selected = 1 6 x 3 10 = 1 20

9 80% of all tourists who come to India visit Delhi, 70% of them visit Mumbai and 60% visit both. What is the probability that the tourists will visit Mumbai or Delhi or both? Solution Mumbai Delhi Probability of visiting Delhi or Mumbai or both = = 90%

10 When two six sided dice are tossed, what is the expected value of the sum of the faces? Outcome Sum No. of ways (1,1) 2 1 (1,2), (2,1) 3 2 (1,3), (2,2), (3,1) 4 3 (1,4), (2,3), (3,2), (4,1) 5 4 (1,5), (2,4), (3,3), (4,2) (5,1) 6 5 (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 7 6 (2,6), (3,5), (4,4), (5,3), (6,2) 8 5 (3,6), (4,5), (5,4), (6,3) 9 4 (4,6), (5,5), (6,4) 10 3 (5,6), (6,5) 11 2 (6,6) Expected value of sum =(1)(2)+(2)(3)+(3)(4)+(4)(5)+(5)(6)+(6)(7)+(5)(8) + (4)(9) + (3)10) + (2)(11) + (1)(12) 36 = ( ) / 36 = 7

11 A fair coin is tossed 5 times. What is the probability that it lands up tail at least once? Solution Probability of landing a head each time = 1 2 Probability of getting a head all 5 times = (1 2) 5 =1 32 Probability of getting at least one tail = = 31 32

12 There are ten sprinters in the Olympic finals. How many different ways can the gold, silver, bronze medals be awarded? Assume dead heat is not possible. Solution Gold can be won in 10 ways Silver can be won in 9 ways Bronze can be won in 8 ways So total no. of ways = 10 x 9 x 8 = 720 ways

13 From a group of 6 men and 4 women, a committee of 4 is to be chosen. What is the probability that the committee consists exactly of two men and two women? Solution Four people can be chosen in 10C 4 ways If we want exactly two men and two women, we can choose in 6C 2 x 4C 2 ways probability = [6C 2 x 4C 2 ] /10C 4 = (15 X 6) 210 = 3 7

14 25% of all households in a town have broadband Internet access. In a random sample of 15 houses, what is the probability that exactly 5 have Internet access? Solution Probability of having internet access =.25 Probability of not having access =.75 Required probability = 15C 5 X (0.25) 5 X (0.75) 10

15 There are 10 bonds in a portfolio. The probability of default for each of the bonds over the coming year is 5%. These probabilities are independent of each other. What is the probability that exactly one bond defaults? Required probability = 10C 1 (.05)(.95) 9 =.3151 = 31.51% 14

16 A CDS portfolio consists of 5 bonds with zero default correlation. One year default probabilities are : 1%, 2%, 5%,10% and 15% respectively. What is the probability that that the protection seller will not have to pay compensation? Probability of no default = (.99)(.98)(.95)(.90)(.85) =.7051 = 70.51% 15

17 The 5 year cumulative probability of default for a bond is 15%. The marginal probability of default for the sixth year is 10%. What is the six year cumulative probability of default? Probability of no default = (.85)(.9) Required probability = 1- (.85)(.90) = = 23.5% 16

18 There is a 60% probability that the economy will outperform. If it does, there is a 70% chance a stock will be up and 30% chance it will go down. There is a 40% probability that the economy will underperform and if it does, there is a 20% chance that the stock will increase in value and 80% chance that it will not. Given that the stock has gained, what is the probability that the economy has outperformed? Probability that the stock will gain and the economy will outperform = (.6) (.7) =..42 Probability that the stock will gain and the economy will underperform = (.4) (.2) =.08 Probability that the economy has outperformed given the stock has gained =.42 /( ) =.42/.50 = 0.84 = 84%

19 Expected value, covariance, correlation Expected value is the weighted average of the possible outcomes of a random variable, the weights being the probabilities associated with different outcomes. Covariance is a measure of how two assets move together. Correlation indicates the strength of a linear relationship between a pair of random variables. Correlation coefficient is the covariance divided by the product of standard deviations of the two variables. Correlation coefficient, = Cov (x,y) / σ x σ y Coefficient of variation = Standard deviation / Mean

20 What is the expected value of a stock given the following information? Price Probability Solution Expected value = (60) (.2) + (65) (.3) + 70) (.3) + 75) (.2) = = 67.5

21 x p (x) What is the variance? Solution Expected value = 2.5 x p (x) (x-x) 2 p (x) (-1.5) 2 (0.2) = (-0.5) 2 (0.3) = ( 0.5) 2 (0.3) = (1.5) 2 (0.2) =.45 = 1.05

22 The correlation of returns between stocks A & B is The covariance between the two securities is and the standard deviation of B is What is the variance of A? Solution Correlation = Cov(A,B) / σ A σ B or.50 = (.0043) / [(σ A ) (.26)] or σ A =.0043 /[0.26 x.5] =.0043 /.130 =.0331 or σ 2 A =.0011

23 You are building a portfolio of three stocks as follows: Stock Weight in portfolio Expected return Standard deviation A B C The correlation coefficients are : P A, B =0.85; P A, C = 0.30; P B, C = What is the expected return and standard deviation of the portfolio?

24 Solution Expected return = (.55) (.08) + (.25) (.04) + (.20) (.03) = =.06 Variance =.55 2 x x x (2) (.55) (.25) (.85) (.24) (.18) + (2) (.25) (.20) (-.15) (.18) (.15) + (2) (.55) (.20) (.30) (.24) (.15) =

25 Given a risk free return of 4%, which portfolio gives the best risk adjusted return? Portfolio A B C D Return 5% 11% 14% 18% Standard deviation 8% 21% 34% 40% We subtract risk free return from the actual return and divide by the standard deviation. Portfolio A : (5-4) / 8 =.125 Portfolio B : (11-4) / 21 =.333 Portfolio C : (14-4) / 34 =.294 Portfolio D : (18-4) / 40 =.35 So D is the best portfolio.

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes MDM 4U Probability Review Properties of Probability Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes Theoretical

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

GOALS. Discrete Probability Distributions. A Distribution. What is a Probability Distribution? Probability for Dice Toss. A Probability Distribution

GOALS. Discrete Probability Distributions. A Distribution. What is a Probability Distribution? Probability for Dice Toss. A Probability Distribution GOALS Discrete Probability Distributions Chapter 6 Dr. Richard Jerz Define the terms probability distribution and random variable. Distinguish between discrete and continuous probability distributions.

More information

Discrete Probability Distributions Chapter 6 Dr. Richard Jerz

Discrete Probability Distributions Chapter 6 Dr. Richard Jerz Discrete Probability Distributions Chapter 6 Dr. Richard Jerz 1 GOALS Define the terms probability distribution and random variable. Distinguish between discrete and continuous probability distributions.

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 6 McGraw-Hill/Irwin Copyright 2012 by The McGraw-Hill Companies, Inc. All rights reserved. Learning Objectives LO1 Identify the characteristics of a probability

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 5 Discrete Probability Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap 5-1 Learning

More information

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable 1. A number between 0 and 1 that is use to measure uncertainty is called: (a) Random variable (b) Trial (c) Simple event (d) Probability 2. Probability can be expressed as: (a) Rational (b) Fraction (c)

More information

AP Statistics Ch 8 The Binomial and Geometric Distributions

AP Statistics Ch 8 The Binomial and Geometric Distributions Ch 8.1 The Binomial Distributions The Binomial Setting A situation where these four conditions are satisfied is called a binomial setting. 1. Each observation falls into one of just two categories, which

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations II - Probability Counting Techniques three rules of counting 1multiplication rules 2permutations 3combinations Section 2 - Probability (1) II - Probability Counting Techniques 1multiplication rules In

More information

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables STA 220H1F LEC0201 Week 7: More Probability: Discrete Random Variables Recall: A sample space for a random experiment is the set of all possible outcomes of the experiment. Random Variables A random variable

More information

Binomial and multinomial distribution

Binomial and multinomial distribution 1-Binomial distribution Binomial and multinomial distribution The binomial probability refers to the probability that a binomial experiment results in exactly "x" successes. The probability of an event

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 6 Learning Objectives Define terms random variable and probability distribution. Distinguish between discrete and continuous probability distributions. Calculate

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Chapter 2: Probability

Chapter 2: Probability Slide 2.1 Chapter 2: Probability Probability underlies statistical inference - the drawing of conclusions from a sample of data. If samples are drawn at random, their characteristics (such as the sample

More information

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling Econ 250 Fall 2010 Due at November 16 Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling 1. Suppose a firm wishes to raise funds and there are a large number of independent financial

More information

TABLE OF CONTENTS - VOLUME 2

TABLE OF CONTENTS - VOLUME 2 TABLE OF CONTENTS - VOLUME 2 CREDIBILITY SECTION 1 - LIMITED FLUCTUATION CREDIBILITY PROBLEM SET 1 SECTION 2 - BAYESIAN ESTIMATION, DISCRETE PRIOR PROBLEM SET 2 SECTION 3 - BAYESIAN CREDIBILITY, DISCRETE

More information

30 Wyner Statistics Fall 2013

30 Wyner Statistics Fall 2013 30 Wyner Statistics Fall 2013 CHAPTER FIVE: DISCRETE PROBABILITY DISTRIBUTIONS Summary, Terms, and Objectives A probability distribution shows the likelihood of each possible outcome. This chapter deals

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 6 Copyright 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Learning

More information

6. THE BINOMIAL DISTRIBUTION

6. THE BINOMIAL DISTRIBUTION 6. THE BINOMIAL DISTRIBUTION Eg: For 1000 borrowers in the lowest risk category (FICO score between 800 and 850), what is the probability that at least 250 of them will default on their loan (thereby rendering

More information

CHAPTER 7 RANDOM VARIABLES AND DISCRETE PROBABILTY DISTRIBUTIONS MULTIPLE CHOICE QUESTIONS

CHAPTER 7 RANDOM VARIABLES AND DISCRETE PROBABILTY DISTRIBUTIONS MULTIPLE CHOICE QUESTIONS CHAPTER 7 RANDOM VARIABLES AND DISCRETE PROBABILTY DISTRIBUTIONS MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, please circle the correct answer.. The weighted average of the possible

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Chapter 15 - The Binomial Formula PART

Chapter 15 - The Binomial Formula PART Chapter 15 - The Binomial Formula PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 15 - The Binomial Formula 1 / 19 Pascal s Triangle In this chapter we explore

More information

KARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI

KARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI 88 P a g e B S ( B B A ) S y l l a b u s KARACHI UNIVERSITY BUSINESS SCHOOL UNIVERSITY OF KARACHI BS (BBA) VI Course Title : STATISTICS Course Number : BA(BS) 532 Credit Hours : 03 Course 1. Statistical

More information

Probability (10A) Young Won Lim 5/29/17

Probability (10A) Young Won Lim 5/29/17 Probability (10A) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 3: Special Discrete Random Variable Distributions Section 3.5 Discrete Uniform Section 3.6 Bernoulli and Binomial Others sections

More information

Chapter 7: Random Variables

Chapter 7: Random Variables Chapter 7: Random Variables 7.1 Discrete and Continuous Random Variables 7.2 Means and Variances of Random Variables 1 Introduction A random variable is a function that associates a unique numerical value

More information

1. The data in the following table represent the number of miles per gallon achieved on the highway for compact cars for the model year 2005.

1. The data in the following table represent the number of miles per gallon achieved on the highway for compact cars for the model year 2005. Millersville University Name Answer Key Department of Mathematics MATH 130, Elements of Statistics I, Test 2 March 5, 2010, 10:00AM-10:50AM Please answer the following questions. Your answers will be evaluated

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

FV N = PV (1+ r) N. FV N = PVe rs * N 2011 ELAN GUIDES 3. The Future Value of a Single Cash Flow. The Present Value of a Single Cash Flow

FV N = PV (1+ r) N. FV N = PVe rs * N 2011 ELAN GUIDES 3. The Future Value of a Single Cash Flow. The Present Value of a Single Cash Flow QUANTITATIVE METHODS The Future Value of a Single Cash Flow FV N = PV (1+ r) N The Present Value of a Single Cash Flow PV = FV (1+ r) N PV Annuity Due = PVOrdinary Annuity (1 + r) FV Annuity Due = FVOrdinary

More information

Learning Objec0ves. Statistics for Business and Economics. Discrete Probability Distribu0ons

Learning Objec0ves. Statistics for Business and Economics. Discrete Probability Distribu0ons Statistics for Business and Economics Discrete Probability Distribu0ons Learning Objec0ves In this lecture, you learn: The proper0es of a probability distribu0on To compute the expected value and variance

More information

VIDEO 1. A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled.

VIDEO 1. A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled. Part 1: Probability Distributions VIDEO 1 Name: 11-10 Probability and Binomial Distributions A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled.

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

PROBABILITY ODDS LAWS OF CHANCE DEGREES OF BELIEF:

PROBABILITY ODDS LAWS OF CHANCE DEGREES OF BELIEF: CHAPTER 6 PROBABILITY Probability is the number of ways a particular outcome can occur divided by the number of possible outcomes. It is a measure of how often we expect an event to occur in the long run.

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43 chapter 13: Binomial Distribution ch13-links binom-tossing-4-coins binom-coin-example ch13 image Exercises (binomial)13.6, 13.12, 13.22, 13.43 CHAPTER 13: Binomial Distributions The Basic Practice of Statistics

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Chapter 7: Random Variables and Discrete Probability Distributions

Chapter 7: Random Variables and Discrete Probability Distributions Chapter 7: Random Variables and Discrete Probability Distributions 7. Random Variables and Probability Distributions This section introduced the concept of a random variable, which assigns a numerical

More information

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning, Lecture 3, 1.9

INF FALL NATURAL LANGUAGE PROCESSING. Jan Tore Lønning, Lecture 3, 1.9 INF5830 015 FALL NATURAL LANGUAGE PROCESSING Jan Tore Lønning, Lecture 3, 1.9 Today: More statistics Binomial distribution Continuous random variables/distributions Normal distribution Sampling and sampling

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Mean of a Discrete Random variable. Suppose that X is a discrete random variable whose distribution is : :

Mean of a Discrete Random variable. Suppose that X is a discrete random variable whose distribution is : : Dr. Kim s Note (December 17 th ) The values taken on by the random variable X are random, but the values follow the pattern given in the random variable table. What is a typical value of a random variable

More information

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations.

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations. Chapter 8 Notes Binomial and Geometric Distribution Often times we are interested in an event that has only two outcomes. For example, we may wish to know the outcome of a free throw shot (good or missed),

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.3 Binomial and Geometric Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Binomial and Geometric Random

More information

Chapter 3 Class Notes Intro to Probability

Chapter 3 Class Notes Intro to Probability Chapter 3 Class Notes Intro to Probability Concept: role a fair die, then: what is the probability of getting a 3? Getting a 3 in one roll of a fair die is called an Event and denoted E. In general, Number

More information

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic.

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic. A Statistics Section 6.1 Day 1 ultiple Choice ractice Name: 1. A variable whose value is a numerical outcome of a random phenomenon is called a) a random variable. b) a parameter. c) biased. d) a random

More information

Chapter 5 Basic Probability

Chapter 5 Basic Probability Chapter 5 Basic Probability Probability is determining the probability that a particular event will occur. Probability of occurrence = / T where = the number of ways in which a particular event occurs

More information

Binomial Distributions

Binomial Distributions Binomial Distributions Binomial Experiment The experiment is repeated for a fixed number of trials, where each trial is independent of the other trials There are only two possible outcomes of interest

More information

Chapter 8 Additional Probability Topics

Chapter 8 Additional Probability Topics Chapter 8 Additional Probability Topics 8.6 The Binomial Probability Model Sometimes experiments are simulated using a random number function instead of actually performing the experiment. In Problems

More information

Discrete Random Variables and Probability Distributions

Discrete Random Variables and Probability Distributions Chapter 4 Discrete Random Variables and Probability Distributions 4.1 Random Variables A quantity resulting from an experiment that, by chance, can assume different values. A random variable is a variable

More information

Probability distributions

Probability distributions Probability distributions Introduction What is a probability? If I perform n eperiments and a particular event occurs on r occasions, the relative frequency of this event is simply r n. his is an eperimental

More information

ECO220Y Sampling Distributions of Sample Statistics: Sample Proportion Readings: Chapter 10, section

ECO220Y Sampling Distributions of Sample Statistics: Sample Proportion Readings: Chapter 10, section ECO220Y Sampling Distributions of Sample Statistics: Sample Proportion Readings: Chapter 10, section 10.1-10.3 Fall 2011 Lecture 9 (Fall 2011) Sampling Distributions Lecture 9 1 / 15 Sampling Distributions

More information

A useful modeling tricks.

A useful modeling tricks. .7 Joint models for more than two outcomes We saw that we could write joint models for a pair of variables by specifying the joint probabilities over all pairs of outcomes. In principal, we could do this

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

Chapter 3. Discrete Probability Distributions

Chapter 3. Discrete Probability Distributions Chapter 3 Discrete Probability Distributions 1 Chapter 3 Overview Introduction 3-1 The Binomial Distribution 3-2 Other Types of Distributions 2 Chapter 3 Objectives Find the exact probability for X successes

More information

Binomial Random Variable - The count X of successes in a binomial setting

Binomial Random Variable - The count X of successes in a binomial setting 6.3.1 Binomial Settings and Binomial Random Variables What do the following scenarios have in common? Toss a coin 5 times. Count the number of heads. Spin a roulette wheel 8 times. Record how many times

More information

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Essential Question How can I determine whether the conditions for using binomial random variables are met? Binomial Settings When the

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

Probability Models.S2 Discrete Random Variables

Probability Models.S2 Discrete Random Variables Probability Models.S2 Discrete Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Results of an experiment involving uncertainty are described by one or more random

More information

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance Chapter 5 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance.40.30.20.10 0 1 2 3 4 Random Variables A random variable is a numerical description

More information

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen 5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen Review From Yesterday Bernoulli Trials have 3 properties: 1. 2. 3. Binomial Probability Distribution In a binomial experiment with

More information

Lecture 7 Random Variables

Lecture 7 Random Variables Lecture 7 Random Variables Definition: A random variable is a variable whose value is a numerical outcome of a random phenomenon, so its values are determined by chance. We shall use letters such as X

More information

The binomial distribution

The binomial distribution The binomial distribution The coin toss - three coins The coin toss - four coins The binomial probability distribution Rolling dice Using the TI nspire Graph of binomial distribution Mean & standard deviation

More information

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers Diploma Part 2 Quantitative Methods Examiner s Suggested Answers Question 1 (a) The binomial distribution may be used in an experiment in which there are only two defined outcomes in any particular trial

More information

2017 Fall QMS102 Tip Sheet 2

2017 Fall QMS102 Tip Sheet 2 Chapter 5: Basic Probability 2017 Fall QMS102 Tip Sheet 2 (Covering Chapters 5 to 8) EVENTS -- Each possible outcome of a variable is an event, including 3 types. 1. Simple event = Described by a single

More information

ASSIGNMENT 14 section 10 in the probability and statistics module

ASSIGNMENT 14 section 10 in the probability and statistics module McMaster University Math 1LT3 ASSIGNMENT 14 section 10 in the probability and statistics module 1. (a) A shipment of 2,000 containers has arrived at the port of Vancouver. As part of the customs inspection,

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 131-03 Practice Questions for Exam# 2 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) What is the effective rate that corresponds to a nominal

More information

Random Variables and Applications OPRE 6301

Random Variables and Applications OPRE 6301 Random Variables and Applications OPRE 6301 Random Variables... As noted earlier, variability is omnipresent in the business world. To model variability probabilistically, we need the concept of a random

More information

Mathematics of Randomness

Mathematics of Randomness Ch 5 Probability: The Mathematics of Randomness 5.1.1 Random Variables and Their Distributions A random variable is a quantity that (prior to observation) can be thought of as dependent on chance phenomena.

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Ramesh Yapalparvi Week 3 Chapter 5 Probability Chapter 7 Normal Distribution Chapter 8 Advanced Graphs Chapter 9 Sampling Distributions ß today s lecture Sampling distributions

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Random variables. Discrete random variables. Continuous random variables.

Random variables. Discrete random variables. Continuous random variables. Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Examples:

More information

Probability Distributions

Probability Distributions Chapter 6 Discrete Probability Distributions Section 6-2 Probability Distributions Definitions Let S be the sample space of a probability experiment. A random variable X is a function from the set S into

More information

6.1 Binomial Theorem

6.1 Binomial Theorem Unit 6 Probability AFM Valentine 6.1 Binomial Theorem Objective: I will be able to read and evaluate binomial coefficients. I will be able to expand binomials using binomial theorem. Vocabulary Binomial

More information

List of Online Quizzes: Quiz7: Basic Probability Quiz 8: Expectation and sigma. Quiz 9: Binomial Introduction Quiz 10: Binomial Probability

List of Online Quizzes: Quiz7: Basic Probability Quiz 8: Expectation and sigma. Quiz 9: Binomial Introduction Quiz 10: Binomial Probability List of Online Homework: Homework 6: Random Variables and Discrete Variables Homework7: Expected Value and Standard Dev of a Variable Homework8: The Binomial Distribution List of Online Quizzes: Quiz7:

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Physical Principles in Biology Biology 3550 Fall 2018 Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Monday, 10 September 2018 c David P. Goldenberg University

More information

Some Discrete Distribution Families

Some Discrete Distribution Families Some Discrete Distribution Families ST 370 Many families of discrete distributions have been studied; we shall discuss the ones that are most commonly found in applications. In each family, we need a formula

More information

Section Random Variables

Section Random Variables Section 6.2 - Random Variables According to the Bureau of the Census, the latest family data pertaining to family size for a small midwestern town, Nomore, is shown in Table 6.. If a family from this town

More information

Prof. Thistleton MAT 505 Introduction to Probability Lecture 3

Prof. Thistleton MAT 505 Introduction to Probability Lecture 3 Sections from Text and MIT Video Lecture: Sections 2.1 through 2.5 http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systemsanalysis-and-applied-probability-fall-2010/video-lectures/lecture-1-probability-models-and-axioms/

More information

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE AP STATISTICS Name: FALL SEMESTSER FINAL EXAM STUDY GUIDE Period: *Go over Vocabulary Notecards! *This is not a comprehensive review you still should look over your past notes, homework/practice, Quizzes,

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

Lecture 3: Probability Distributions (cont d)

Lecture 3: Probability Distributions (cont d) EAS31116/B9036: Statistics in Earth & Atmospheric Sciences Lecture 3: Probability Distributions (cont d) Instructor: Prof. Johnny Luo www.sci.ccny.cuny.edu/~luo Dates Topic Reading (Based on the 2 nd Edition

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 6 McGraw-Hill/Irwin Copyright 2010 by The McGraw-Hill Companies, Inc. All rights reserved. GOALS 6-2 1. Define the terms probability distribution and random variable.

More information