Section Random Variables

Size: px
Start display at page:

Download "Section Random Variables"

Transcription

1 Section Random Variables According to the Bureau of the Census, the latest family data pertaining to family size for a small midwestern town, Nomore, is shown in Table 6.. If a family from this town is selected at random, then what is the probability of selecting a 6-person family? Because the family is being selected at random, and the size of the family can vary from 2 to 7, then family size is said to be a random variable. The proportion or percentage which is associated with each family size is interpreted as the probability of each value of family size. So the probability of choosing a family of size 3 is equal to the percentage of families of size 3. Which is? A random variable is a variable that takes on different numerical values which are determined by chance. In the previous example, family size is the random variable. Size varies among families, and the experiment involves a family being chosen randomly. Example 6. pg. 279 For each random experiment, define a random variable and identify the possible values of the variable. a. It is assumed that the largest number of children is 6, count the number of children within a family. b. Select a radial tire from the production line and determine the life of the tire, assuming no tire has ever lasted less than 20,000 miles or more than 85,000 miles. c. Count the number of heads in two tossed of a fair coin.

2 A random variable can be classified as either a discrete or continuous random variable depending upon the numerical values that it can assume. The number of children in a family is an example of a discrete random variable because the values of this variable: 0,, 2, 3, 4, 5, and 6 are finite or can be counted. The life of the tire is an example of a continuous random variable because the values of this variable: 20,000 to 85,000 miles can assume any value or an uncountable number of values between any two possible values of the variable. A discrete random variable is a random variable that can take on a finite or countable number of values. A continuous random variable is continuous if the value of the random variable can assume any value or an uncountable number of values between any two possible values of the variable. Review Example 6.2 pg Probability Distribution of a Discrete Random Variable A probability distribution is a distribution which displays the probabilities associated with all the possible values of a random variable. Characteristics of a Probability Distribution of a Discrete Random Variable. The probability associated with a particular value of a discrete random variable of a probability distribution is always a number between 0 and inclusive. 2. The sum of all the probabilities of a probability distribution must always be equal to one. 6.4 Mean and Standard Deviation of a Discrete Random Variable The mean value of a probability distribution is the balance point which takes into account the weights or the probability for each value of the random variable. Thus, we will refer to the mean value for a discrete random variable as a weighted mean. The mean value signifies the average number that can be expected in the long-run. 2

3 Example 6.7 on pg. 295 in the Text The probability distribution given in table below (Table 6.2) represents the number of computer systems a salesman named Hal expects to sell during a particular month. Probability Distribution of Number of Computer System Sold What is the random variable? Number of Computer Systems Sold X What are the possible values of the variable? What is the sum of the probabilities of this random variable? Probability P(X) Now find: a. The most likely number of computer systems that Hal will sell during the month. b. The average monthly number of computer systems that Hal expects to sell. How would you interpret this result? c. The standard deviation of this probability distribution. d. The probability that the number of computer systems that Hal sells will be within one standard deviation from the mean. We will use the calculator to calculate the mean and standard deviation for a probability distribution as follows: Enter all values of the random variable, X in List Enter the probabilities, P(X) in List 2 Go to STAT and choose -Var Stats then ENTER Then type in L, L 2 (like this: -Var Stats L, L 2) See pg in the textbook too! 3

4 6.5 Binomial Probability Distribution A binomial experiment satisfies the following four conditions:. There are n identical trials. A binomial distribution is the result of a probability experiment that has been repeated a predetermined number of n times, and each repetition (trial) of the experiment is identical - Such as tossing a coin twenty times 2. The n identical trials are independent. Each outcome (trial) is independent and mutually exclusive o For example: In the experiment of tossing a coin n times, the outcome of each toss (trial) is independent of any other toss 3. The outcome for each trial can be classified as either a success or a failure. Each outcome is classified in one of two possibilities, success or fail o The determination as to whether an outcome is a success or failure is a function on how the question is asked o Success generally means a positive response to the question the toss of a coin is either a head or a tail the selection of a possible answer for a question on a multiple choice test is either correct or incorrect the toss of a die results in an outcome which is either a 5 or not a 5 a new drug will either be effective or not effective 4. The probability of a success is the same for each trial. The probability of success is the same for each trial o Meaning, in a coin tossing experiment, the probability of landing on Heads is the same for each toss (trial) of the coin Binomial Probability Formula For a binomial experiment, the probability of getting s successes in n trials is computed using the binomial probability formula. This formula is written as: s ( n s) P ( s successes in n trials) = ncs p q where: n= number of independent trials s = number of successes (n s) = number of failures nc s = the number of ways s successes can occur in n trials p = the probability of a success for one trial q = the probability of a failure for one trial = p *WE WILL USE the built-in functions of your TI83/84 calculator: binompdf or binomcdf 2 nd DISTR binompdf ENTER OR 2 nd DISTR binomcdf ENTER 4

5 Calculator Instructions for the BINOMIAL Distribution Summary: binompdf vs. binomcdf commands Here are some useful applications of the binomcdf and binomcdf commands: To find P(x = s), use binompdf(n, p, s) To find P(x s), use binomcdf(n, p, s) To find P(x < s), use binomcdf(n, p, s-) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To find P(x > s), use -binomcdf(n, p, s) To find P(x s), use -binomcdf(n, p, s-) Note: s refers to the number of successes between 0 and n. If we consider the numbers from 0 to 0, what numbers do the following statements represent and write the statement as an inequality? More than 4 Less than 4 At most 4 At least 4 5

6 Example (NOT in text) A fair coin is tossed 0 times. Calculate the probability of: a. Getting three tails b. Getting at most one tail First state what is a success for this question (in words) Now decide what is the probability for a single success (this is the p) How many times/people are we doing it for (this is the n) For each part of a question, the number of successes (the values for s) changes n = number of independent trials = p = the probability of a success for one trial = Different for each part: s = number of successes a. Probability of getting three tails means exactly 3 tails s = 3 binompdf 0,, 3 = 0.72 binompdf ( n, p, s ) = 2 b. Probability of getting at most one tail means getting tail or less means 0 tails and tail or x 0,, 0 binompdf 0,, = binompdf : binompdf binomcdf: binompdf n, p, s = 0, 0.5, binompdf Example 6.5 pg. 304 Each year the FBI reports the probability of a car being stolen. In a recent report, the FBI states that the probability a new car will be stolen during the year is out of 75. If you and your three friends own new cars, what is the probability that none of these cars will be stolen this year? Example 6.6 pg.304 A student is going to guess at the answers to all questions on a five question multiple choice test where there are four choices for each question. Calculate the probability of: a. Guessing three correct answers b. Guessing five correct answers c. Guessing at most two correct answers d. Guessing at least four correct answers Review Examples 6.0 and 6. on pg. 30 and Example 6.7 pg

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables Chapter 5 Probability Distributions Section 5-2 Random Variables 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation for the Binomial Distribution Random

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

Probability Distributions. Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution

Probability Distributions. Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution Probability Distributions Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution Definitions Random Variable: a variable that has a single numerical value

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information

Discrete Random Variables and Their Probability Distributions

Discrete Random Variables and Their Probability Distributions Chapter 5 Discrete Random Variables and Their Probability Distributions Mean and Standard Deviation of a Discrete Random Variable Computing the mean and standard deviation of a discrete random variable

More information

Section 8.4 The Binomial Distribution

Section 8.4 The Binomial Distribution Section 8.4 The Binomial Distribution Binomial Experiment A binomial experiment has the following properties: 1. The number of trials in the experiment is fixed. 2. There are two outcomes of each trial:

More information

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain.

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain. Binomial and Normal Distributions Objective 1: Determining if an Experiment is a Binomial Experiment For an experiment to be considered a binomial experiment, four things must hold: 1. The experiment is

More information

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Essential Question How can I determine whether the conditions for using binomial random variables are met? Binomial Settings When the

More information

Probability Distributions

Probability Distributions 4.1 Probability Distributions Random Variables A random variable x represents a numerical value associated with each outcome of a probability distribution. A random variable is discrete if it has a finite

More information

Chapter 8. Binomial and Geometric Distributions

Chapter 8. Binomial and Geometric Distributions Chapter 8 Binomial and Geometric Distributions Lesson 8-1, Part 1 Binomial Distribution What is a Binomial Distribution? Specific type of discrete probability distribution The outcomes belong to two categories

More information

1 / * / * / * / * / * The mean winnings are $1.80

1 / * / * / * / * / * The mean winnings are $1.80 DISCRETE vs. CONTINUOUS BASIC DEFINITION Continuous = things you measure Discrete = things you count OFFICIAL DEFINITION Continuous data can take on any value including fractions and decimals You can zoom

More information

Section 8.4 The Binomial Distribution

Section 8.4 The Binomial Distribution Section 84 The Binomial Distribution Binomial Experiment A binomial experiment has the following properties: 1 The number of trials in the experiment is fixed 2 There are two outcomes of each trial: success

More information

STT315 Chapter 4 Random Variables & Probability Distributions AM KM

STT315 Chapter 4 Random Variables & Probability Distributions AM KM Before starting new chapter: brief Review from Algebra Combinations In how many ways can we select x objects out of n objects? In how many ways you can select 5 numbers out of 45 numbers ballot to win

More information

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 5-5 The Poisson Distribution

More information

Chpt The Binomial Distribution

Chpt The Binomial Distribution Chpt 5 5-4 The Binomial Distribution 1 /36 Chpt 5-4 Chpt 5 Homework p262 Applying the Concepts Exercises p263 1-11, 14-18, 23, 24, 26 2 /36 Objective Chpt 5 Find the exact probability for x successes in

More information

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin 3 times where P(H) = / (b) THUS, find the probability

More information

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI 08-0- Lesson 9 - Binomial Distributions IBHL - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin times where P(H) = / (b) THUS, find the probability

More information

Chapter Five. The Binomial Distribution and Related Topics

Chapter Five. The Binomial Distribution and Related Topics Chapter Five The Binomial Distribution and Related Topics Section 2 Binomial Probabilities Essential Question What are the three methods for solving binomial probability questions? Explain each of the

More information

30 Wyner Statistics Fall 2013

30 Wyner Statistics Fall 2013 30 Wyner Statistics Fall 2013 CHAPTER FIVE: DISCRETE PROBABILITY DISTRIBUTIONS Summary, Terms, and Objectives A probability distribution shows the likelihood of each possible outcome. This chapter deals

More information

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen

5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen 5.4 Normal Approximation of the Binomial Distribution Lesson MDM4U Jensen Review From Yesterday Bernoulli Trials have 3 properties: 1. 2. 3. Binomial Probability Distribution In a binomial experiment with

More information

Probability & Statistics Chapter 5: Binomial Distribution

Probability & Statistics Chapter 5: Binomial Distribution Probability & Statistics Chapter 5: Binomial Distribution Notes and Examples Binomial Distribution When a variable can be viewed as having only two outcomes, call them success and failure, it may be considered

More information

5.4 Normal Approximation of the Binomial Distribution

5.4 Normal Approximation of the Binomial Distribution 5.4 Normal Approximation of the Binomial Distribution Bernoulli Trials have 3 properties: 1. Only two outcomes - PASS or FAIL 2. n identical trials Review from yesterday. 3. Trials are independent - probability

More information

Binomial and multinomial distribution

Binomial and multinomial distribution 1-Binomial distribution Binomial and multinomial distribution The binomial probability refers to the probability that a binomial experiment results in exactly "x" successes. The probability of an event

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.3 Binomial and Geometric Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Binomial and Geometric Random

More information

Section 6.3 Binomial and Geometric Random Variables

Section 6.3 Binomial and Geometric Random Variables Section 6.3 Binomial and Geometric Random Variables Mrs. Daniel AP Stats Binomial Settings A binomial setting arises when we perform several independent trials of the same chance process and record the

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

AP Statistics Ch 8 The Binomial and Geometric Distributions

AP Statistics Ch 8 The Binomial and Geometric Distributions Ch 8.1 The Binomial Distributions The Binomial Setting A situation where these four conditions are satisfied is called a binomial setting. 1. Each observation falls into one of just two categories, which

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.3 Binomial and Geometric Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers 6.3 Reading Quiz (T or F) 1.

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.3 Binomial and Geometric Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Binomial and Geometric Random

More information

Discrete Probability Distributions

Discrete Probability Distributions Page 1 of 6 Discrete Probability Distributions In order to study inferential statistics, we need to combine the concepts from descriptive statistics and probability. This combination makes up the basics

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

Binomial Distributions

Binomial Distributions Binomial Distributions Conditions for a Binomial Distribution: [Memorize this!] There are n trials or repetitions There are 2 outcomes for each trial, S or F The P(Success), P, for each trial is constant.

More information

Math 14 Lecture Notes Ch. 4.3

Math 14 Lecture Notes Ch. 4.3 4.3 The Binomial Distribution Example 1: The former Sacramento King's DeMarcus Cousins makes 77% of his free throws. If he shoots 3 times, what is the probability that he will make exactly 0, 1, 2, or

More information

Assignment 3 - Statistics. n n! (n r)!r! n = 1,2,3,...

Assignment 3 - Statistics. n n! (n r)!r! n = 1,2,3,... Assignment 3 - Statistics Name: Permutation: Combination: n n! P r = (n r)! n n! C r = (n r)!r! n = 1,2,3,... n = 1,2,3,... The Fundamental Counting Principle: If two indepndent events A and B can happen

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Chapter 8: The Binomial and Geometric Distributions 8.1 Binomial Distributions 8.2 Geometric Distributions 1 Let me begin with an example My best friends from Kent School had three daughters. What is the

More information

VIDEO 1. A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled.

VIDEO 1. A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled. Part 1: Probability Distributions VIDEO 1 Name: 11-10 Probability and Binomial Distributions A random variable is a quantity whose value depends on chance, for example, the outcome when a die is rolled.

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

3.2 Binomial and Hypergeometric Probabilities

3.2 Binomial and Hypergeometric Probabilities 3.2 Binomial and Hypergeometric Probabilities Ulrich Hoensch Wednesday, January 23, 2013 Example An urn contains ten balls, exactly seven of which are red. Suppose five balls are drawn at random and with

More information

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS A random variable is the description of the outcome of an experiment in words. The verbal description of a random variable tells you how to find or calculate

More information

Binomial Distributions

Binomial Distributions Binomial Distributions A binomial experiment is a probability experiment that satisfies these conditions. 1. The experiment has a fixed number of trials, where each trial is independent of the other trials.

More information

The Binomial Distribution

The Binomial Distribution MATH 382 The Binomial Distribution Dr. Neal, WKU Suppose there is a fixed probability p of having an occurrence (or success ) on any single attempt, and a sequence of n independent attempts is made. Then

More information

Chapter 6: Discrete Probability Distributions

Chapter 6: Discrete Probability Distributions 120C-Choi-Spring-2019 1 Chapter 6: Discrete Probability Distributions Section 6.1: Discrete Random Variables... p. 2 Section 6.2: The Binomial Probability Distribution... p. 10 The notes are based on Statistics:

More information

Binomial Distributions

Binomial Distributions Binomial Distributions (aka Bernouli s Trials) Chapter 8 Binomial Distribution an important class of probability distributions, which occur under the following Binomial Setting (1) There is a number n

More information

Section 8.4 The Binomial Distribution. (a) Rolling a fair die 20 times and observing how many heads appear. s

Section 8.4 The Binomial Distribution. (a) Rolling a fair die 20 times and observing how many heads appear. s Section 8.4 The Binomial Distribution Binomial Experiment A binomial experiment has the following properties: 1. The number of trials in the experiment is fixed. 2. There are two outcomes of each trial:

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

8.4: The Binomial Distribution

8.4: The Binomial Distribution c Dr Oksana Shatalov, Spring 2012 1 8.4: The Binomial Distribution Binomial Experiments have the following properties: 1. The number of trials in the experiment is fixed. 2. There are 2 possible outcomes

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Binomial Probabilities The actual probability that P ( X k ) the formula n P X k p p. = for any k in the range {0, 1, 2,, n} is given by. n n!

Binomial Probabilities The actual probability that P ( X k ) the formula n P X k p p. = for any k in the range {0, 1, 2,, n} is given by. n n! Introduction We are often more interested in experiments in which there are two outcomes of interest (success/failure, make/miss, yes/no, etc.). In this chapter we study two types of probability distributions

More information

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43

chapter 13: Binomial Distribution Exercises (binomial)13.6, 13.12, 13.22, 13.43 chapter 13: Binomial Distribution ch13-links binom-tossing-4-coins binom-coin-example ch13 image Exercises (binomial)13.6, 13.12, 13.22, 13.43 CHAPTER 13: Binomial Distributions The Basic Practice of Statistics

More information

Example 1: Identify the following random variables as discrete or continuous: a) Weight of a package. b) Number of students in a first-grade classroom

Example 1: Identify the following random variables as discrete or continuous: a) Weight of a package. b) Number of students in a first-grade classroom Section 5-1 Probability Distributions I. Random Variables A variable x is a if the value that it assumes, corresponding to the of an experiment, is a or event. A random variable is if it potentially can

More information

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables You are dealt a hand of 5 cards. Find the probability distribution table for the number of hearts. Graph

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

Stat511 Additional Materials

Stat511 Additional Materials Binomial Random Variable Stat511 Additional Materials The first discrete RV that we will discuss is the binomial random variable. The binomial random variable is a result of observing the outcomes from

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Binomial Random Variable - The count X of successes in a binomial setting

Binomial Random Variable - The count X of successes in a binomial setting 6.3.1 Binomial Settings and Binomial Random Variables What do the following scenarios have in common? Toss a coin 5 times. Count the number of heads. Spin a roulette wheel 8 times. Record how many times

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous Random Variables 6.2 Transforming and

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

Fixed number of n trials Independence

Fixed number of n trials Independence The Binomial Setting Binomial Distributions IB Math SL - Santowski Fixed number of n trials Independence Two possible outcomes: success or failure Same probability of a success for each observation If

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

the number of correct answers on question i. (Note that the only possible values of X i

the number of correct answers on question i. (Note that the only possible values of X i 6851_ch08_137_153 16/9/02 19:48 Page 137 8 8.1 (a) No: There is no fixed n (i.e., there is no definite upper limit on the number of defects). (b) Yes: It is reasonable to believe that all responses are

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

If X = the different scores you could get on the quiz, what values could X be?

If X = the different scores you could get on the quiz, what values could X be? Example 1: Quiz? Take it. o, there are no questions m giving you. You just are giving me answers and m telling you if you got the answer correct. Good luck: hope you studied! Circle the correct answers

More information

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations.

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations. Chapter 8 Notes Binomial and Geometric Distribution Often times we are interested in an event that has only two outcomes. For example, we may wish to know the outcome of a free throw shot (good or missed),

More information

When the observations of a quantitative random variable can take on only a finite number of values, or a countable number of values.

When the observations of a quantitative random variable can take on only a finite number of values, or a countable number of values. 5.1 Introduction to Random Variables and Probability Distributions Statistical Experiment - any process by which an observation (or measurement) is obtained. Examples: 1) Counting the number of eggs in

More information

5.1 Sampling Distributions for Counts and Proportions. Ulrich Hoensch MAT210 Rocky Mountain College Billings, MT 59102

5.1 Sampling Distributions for Counts and Proportions. Ulrich Hoensch MAT210 Rocky Mountain College Billings, MT 59102 5.1 Sampling Distributions for Counts and Proportions Ulrich Hoensch MAT210 Rocky Mountain College Billings, MT 59102 Sampling and Population Distributions Example: Count of People with Bachelor s Degrees

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 13: Binomial Formula Tessa L. Childers-Day UC Berkeley 14 July 2014 By the end of this lecture... You will be able to: Calculate the ways an event can

More information

Please have out... - notebook - calculator

Please have out... - notebook - calculator Please have out... - notebook - calculator May 6 8:36 PM 6.3 How can we find probabilities when each observation has two possible outcomes? 1 What are we learning today? John Doe claims to possess ESP.

More information

Binomal and Geometric Distributions

Binomal and Geometric Distributions Binomal and Geometric Distributions Sections 3.2 & 3.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 7-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Chapter 6 Section 3: Binomial and Geometric Random Variables

Chapter 6 Section 3: Binomial and Geometric Random Variables Name: Date: Period: Chapter 6 Section 3: Binomial and Geometric Random Variables When the same chance process is repeated several times, we are often interested whether a particular outcome does or does

More information

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes MDM 4U Probability Review Properties of Probability Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes Theoretical

More information

Chapter 8: Binomial and Geometric Distributions

Chapter 8: Binomial and Geometric Distributions Chapter 8: Binomial and Geometric Distributions Section 8.1 Binomial Distributions The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Section 8.1 Binomial Distribution Learning Objectives

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables Chapter 6: Random Variables Section 6.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Random Variables 6.1 6.2 6.3 Discrete and Continuous Random Variables Transforming and Combining

More information

Probability Models. Grab a copy of the notes on the table by the door

Probability Models. Grab a copy of the notes on the table by the door Grab a copy of the notes on the table by the door Bernoulli Trials Suppose a cereal manufacturer puts pictures of famous athletes in boxes of cereal, in the hope of increasing sales. The manufacturer announces

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon.

A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Chapter 14: random variables p394 A random variable (r. v.) is a variable whose value is a numerical outcome of a random phenomenon. Consider the experiment of tossing a coin. Define a random variable

More information

Homework Problems In each of the following situations, X is a count. Does X have a binomial distribution? Explain. 1. You observe the gender of the next 40 children born in a hospital. X is the number

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 6 Learning Objectives Define terms random variable and probability distribution. Distinguish between discrete and continuous probability distributions. Calculate

More information

12 Math Chapter Review April 16 th, Multiple Choice Identify the choice that best completes the statement or answers the question.

12 Math Chapter Review April 16 th, Multiple Choice Identify the choice that best completes the statement or answers the question. Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which situation does not describe a discrete random variable? A The number of cell phones per household.

More information

The binomial distribution p314

The binomial distribution p314 The binomial distribution p314 Example: A biased coin (P(H) = p = 0.6) ) is tossed 5 times. Let X be the number of H s. Fine P(X = 2). This X is a binomial r. v. The binomial setting p314 1. There are

More information

Chapter 7: Random Variables

Chapter 7: Random Variables Chapter 7: Random Variables 7.1 Discrete and Continuous Random Variables 7.2 Means and Variances of Random Variables 1 Introduction A random variable is a function that associates a unique numerical value

More information

(c) The probability that a randomly selected driver having a California drivers license

(c) The probability that a randomly selected driver having a California drivers license Statistics Test 2 Name: KEY 1 Classify each statement as an example of classical probability, empirical probability, or subjective probability (a An executive for the Krusty-O cereal factory makes an educated

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Math 361. Day 8 Binomial Random Variables pages 27 and 28 Inv Do you have ESP? Inv. 1.3 Tim or Bob?

Math 361. Day 8 Binomial Random Variables pages 27 and 28 Inv Do you have ESP? Inv. 1.3 Tim or Bob? Math 361 Day 8 Binomial Random Variables pages 27 and 28 Inv. 1.2 - Do you have ESP? Inv. 1.3 Tim or Bob? Inv. 1.1: Friend or Foe Review Is a particular study result consistent with the null model? Learning

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Chapter 6 Probability

Chapter 6 Probability Chapter 6 Probability Learning Objectives 1. Simulate simple experiments and compute empirical probabilities. 2. Compute both theoretical and empirical probabilities. 3. Apply the rules of probability

More information

guessing Bluman, Chapter 5 2

guessing Bluman, Chapter 5 2 Bluman, Chapter 5 1 guessing Suppose there is multiple choice quiz on a subject you don t know anything about. 15 th Century Russian Literature; Nuclear physics etc. You have to guess on every question.

More information

Determine whether the given procedure results in a binomial distribution. If not, state the reason why.

Determine whether the given procedure results in a binomial distribution. If not, state the reason why. Math 5.3 Binomial Probability Distributions Name 1) Binomial Distrbution: Determine whether the given procedure results in a binomial distribution. If not, state the reason why. 2) Rolling a single die

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Math 160 Professor Busken Chapter 5 Worksheets

Math 160 Professor Busken Chapter 5 Worksheets Math 160 Professor Busken Chapter 5 Worksheets Name: 1. Find the expected value. Suppose you play a Pick 4 Lotto where you pay 50 to select a sequence of four digits, such as 2118. If you select the same

More information

Stats SB Notes 4.2 Completed.notebook February 22, Feb 21 11:39 AM. Chapter Outline

Stats SB Notes 4.2 Completed.notebook February 22, Feb 21 11:39 AM. Chapter Outline Stats SB Notes 42 Completednotebook February 22, 2017 Chapter 4 Discrete Probability Distributions Chapter Outline 41 Probability Distributions 42 Binomial Distributions 43 More Discrete Probability Distributions

More information

Binomial Distributions

Binomial Distributions Binomial Distributions Binomial Experiment The experiment is repeated for a fixed number of trials, where each trial is independent of the other trials There are only two possible outcomes of interest

More information

Unit 2: Statistics Probability

Unit 2: Statistics Probability Applied Math 30 3-1: Distributions Probability Distribution: - a table or a graph that displays the theoretical probability for each outcome of an experiment. - P (any particular outcome) is between 0

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information