Data Analysis and Statistical Methods Statistics 651

Size: px
Start display at page:

Download "Data Analysis and Statistical Methods Statistics 651"

Transcription

1 Data Analysis and Statistical Methods Statistics Suhasini Subba Rao Review of previous lecture The main idea in the previous lecture is that the sample average has a distribution, and when the sample size is large, the sample average (obtained from this sample) is close to being normally distributed We first note if in general an estimator is close to the population mean, then the variance of the estimator will be small To understand this look at the density plots (look again at variance explanation lecture4pdf in Lecture 4, and large variance small variancepdf) Remember that the population variance is defined as 1 N N (x i µ) 2 i=1 When this is small the outcomes are in general close to the mean µ When it is large then the outcomes are spread about 1 Reasoning that the sample average is random and has a distribution Suppose a population contains 10 individuals (a very small population) You can make a histogram of the height of these individuals Call this Histogram A You can also evaluate the population mean and the population variance The probability that a randomly selected person s height lies in a certain interval is determined by Histogram A Suppose you collect all samples of size two from this 10 individual population (that is all subsets of containg 2 people from these 10) There are 45 such subsets For each subset (sample) you calculate the average (this is the sample average) There will be 45 averages This 45 averages can also be treated as a population We can make a histogram of these averages Call this Histogram B The mean of this population is the same as the mean of the population with 10 people, but the variance of this population will be different Suppose you randomly select a subset of size two and take the average of these two individuals The average will be one of the 45 values The probability the sample average will lie in any given interval is determined by Historgam B You collect all samples (subsets) of size 3 out of 10 There are 120 such subsets For each subset you calculate the average (the sample average) These 120 averages can also be considered as a population You can make a histogram of these averages Call this Histogram C The average of any random sample of size 3 must belong to one of these 120 numbers The probability the average lies in any given interval is determined by Histogram C Reasoning that the variance of the sample mean gets smaller as the sample size gets larger Suppose you draw one individual from a population of people and 2 3

2 measure their height Their height could be close to the mean height but it could also be extremely small or extremely large Suppose you draw three individuals from a population of people and measure all of three heights One height may be an extreme value (extremely far from the mean), but it is highly unlikely that all three heights will be extreme (the probability of this happening will be very small) Therefore the average of the three heights will smooth out the extreme behaviour and is likely to be closer to the mean height than an individual height Taking this argument to the extreme Suppose that I have a population of 1000 people I take as my sample 999 people This sample is random The average of these 999 people will be very close to the average of the 1000 people (the height of the poor excluded individual hardly counts) Since sample average is likely to be close to the population mean, then the variance of the sample average will be small Therefore the variance of these averages involving a 999 individuals will be very, very small But note, that the variance is not small because the sample is large relative to the size of the population - it is small because of the sample is large, regardless of the size of the population I often get the comment If the population size is a billion and the sample size is 500, then the sample mean based is bad But if the population size is 100 and the sample size is 500, then the sample mean is good This is not correct The sampling is always done under the replacement (you can draw that individual again), the relative proportion of the sample size to population does not matter What matters is the sample size and the population variance The variance of the sample mean σ 2 /n only depends on these two factors, not on the population size (to statisticians the population is usually infinite!) In summary the average of three is likely to be closer to the mean than just one height on its own This means the variance of an average 4 5 involving three individuals will be smaller than the variance of just one individual The variance of the sample mean is σ 2 /n Suppose the variance of one person is σ 2 The variance of the average of three will be σ 2 /3 Notice that σ 2 is still there This is because the variance of the population will also ways effect the variance of the average But the sample size also has an effect In the above we have reasoned that the sample average does have a distribution and the variance of this distribution decreases as the sample size grows It can be shown that not only does the variance of the distribution decrease with sample size, but it becomes more bell shaped It becomes a normal distribution The larger the population variance σ 2, the larger the the variance of the average σ 2 /n The larger the sample size n, the smaller the population variance σ 2 /n The average is approximately normal with mean µ and variance σ 2 /n 6 7

3 A game We choose 5 people in the class This is our population (it is fixed) Suppose their ages are 22, 24, 23, 25, 27 The mean of this population is 242 and the variance is 296 Since these 5 students form our population, neither the mean or variance is random They are fixed and cannot be changed (unless we change the population) Sample Sample Average Sample Sample Average 1 22, , , , , , , , , , , , , , , , , , , , , , , , , Suppose we take a sample of size two The sample can be anyone of the following possibilities: Associated to each sample is the sample average We see that this 8 9 can also be considered as the population of all averages of size two It also has a mean which is 242 (same as the mean of the population 22, 24,23,25,27) and a variance which is 148 The population mean and variance of the sample average population are fixed, even though the sample average is random and can be anyone of the possibilities given in the table above Exercise: calculate the population mean and variance of this population yourself What do you notice? The sample average is random, it can be anyone of the 25 possibilities given above The mean of the population sample average is the same as the mean of the original population 22,24,23,25, 27 The variance of the population of the sample averages is 148, which is half the variance of the orginal population which is 296 In other words the variance of the sample average is σ 2 /2 = 296/2 (since σ 2 = 296 and n = 2) 10 11

4 How these results help us We have shown that the sample mean has a distribution which is close to normal with mean µ and variance σ 2 /n (σ 2 is the variance of the population - variance of one randomly chosen person) In the game above you see how the variance of the average is σ 2 /n when the sample size is n The sample average can always be used as an estimator of the mean We want to construct confidence intervals for the mean Inside the CI is where the true mean is most likely to be You recall from Lecture 11 these intervals are constructed under the assumption of normality Constructing confidence intervals for the mean Suppose X i has mean µ and variance σ 2 We know that the average X = 1 n n i=1 X i is close to normal and is approximately N(µ, σ 2 /n) we can construct a confidence interval for the mean We shall assume (for now) that the variance is σ 2 is known (is this reasonable?) If n is sufficiently large (the case n = 2 is not enough), the we can assume that the distribution of the average is approximately normal We can use this information to construct CIs By the CLT we have X N(µ, σ2 n ) Therefore ( P X 196 σ µ X σ ) = 095 n n Given the sample mean X, the 95% CI is [ X 196 σ n, X σ n This means that for every 100 intervals constructed about 95 would contain the mean µ Example 1 A forester wishes to estimate the average number of trees per acre over a 2000-acre plantation She can use this information to determine the total timber volume in the plantation The standard deviation for the distribution of the number of trees in an acre in 121 A random sample of n = 50 1-acre plots are selected and examined It is found that average number of trees per acre (based on this sample) is 273 Use this information to construct a 95% CI for the mean number of trees per acre 14 15

5 Solution 1 The sample average X = k=1 X i The variance for one acre is known to be 121 2, hence the variance for the sample mean is /50 The sample size n = 50, which is large enough to assume normality Therefore the 95% CI is: [ , The length of interval is The 99% CI is [ , The length of interval is Question Construct the CI when the sample mean is again 273, but the sample size is now 150 A summary X 1,, X n is a random sample (say heights/weights of n randomly selected invididuals) The distribution of this (ie height or weight) has mean µ and variance σ 2 The original distribution does not have to be normal (ie the histogram of heights can differ from the normal curve) The sample average X is random too, and has a distribution But if n is large enough, regardless of the original distribution, the distribution of the heights will be close to normal, with mean µ and variance σ 2 /n However, the closer the original distribution is to normal (we may know this from previous experiments etc) the smaller n needs to be for the approximation to be good In other words, if the original distribution is far from normal we will need a large sample size (say at least n = 40) for the normality result to be true Example 2 A social worker is interested in estimating the average time outside prison a first time offender spends outside prison before the re-offend A random sample of n = 150 first time offenders are considered Based on this data it is found that the average time they spend 32 years away from prison The sample standard deviation is 11 years Stating all assumptions construct a 99% CI for the true average µ Solution 2 The sample mean is X = 32 The sample standard deviation is 11 The sample size is large n = 150, hence we can assume normality of the sample mean X Moreover, since we have estimated the standard deviation s = 11 using 150 observations (relatively large sample), we can assume it is a good estimator of the true sample standard deviation σ Hence in our calculations we will use s = 11 in place of the true standard deviation σ Therefore the sample variance of the sample mean X is 11 2 /150 The 99% CI is [ , The length is

6 Sample size and the confidence interval Example: X = 1038, σ 2 = We compare the 95% confidence intervals for n = 9 and n = 25 We see n=9 [ X 196 σ 9, X σ 9 n=25 [ X 196 σ 25, X σ 25 What are the lengths of the above intervals? For n=9 it is σ 9 For n=25 it is σ 25 Observe that the length does not depend on X, it s the same length regardless of the values of X n=9 [ , = [663, n=25 [ , = [812, We see that the second interval is smaller than the first interval When the sample size is large we have more information about the population The larger the sample size the smaller the length of the confidence intervals Because the estimator is in general better The population variance σ 2 and the confidence interval We see that the variance σ 2 of one observation also has an effect on the length of the confidence interval Example: Suppose X = 1038, n = 9 σ 2 = [ , = [663, σ 2 = 100 [ , = [338, The larger the variance of the random variable X i, the more variability in the sample mean, hence it is unlikely a small interval will capture the true mean Choosing the sample size for estimating µ How can one determine the number of observations to be included in a sample? To have a very large sample size would be nice, but often it can be too costly A sample size which is too small, can contain inadequate information We need to developed a compromise between desired accuracy and cost to obtain this accuracy How to choose the sample size n? This can be a complex issue that often depends on knowledge of the researcher 22 23

7 Tolerable error Often a researcher will choose the sample size n based on the length of the confidence interval This means she is able to accept the length of the CI interval having some preset length 2E (this is called the tolerable error) Hence the following interval should have the length 2E: Choosing n The length of the interval is ( X ) ( X ) = n n n [ X 196 σ n, X σ n For example, if we know that σ 2 = 3 and 2E = 05 Then [ X 3 196, X n n should have length 05 Hence we need to choose n such that this is satisfied This should have length 3, therefore we solve 05 = n This gives the sample size: n = ( ) 2 = Hence, the smallest value of n we can use such that the tolerable error (or, equivalently, the length of the confidence interval) is 05 is In general: Length of a confidence interval Since at the 95% level [ X 196 σ n, X σ n The length of the confidence interval is X σ n }{{} confidence factor ( X 196 σ nconfidence factor ) = 2196 σ n }{{} 2 confidence factor = 2E Therefore we need to choose n such that 2E = σ n that is n = (196)2 σ 2 E 2 The above was for 95% CI General CIs and tolerable error What is the length of a 99% CI, how should we choose n in this case? In general we if go for the (1 α) 100% CI, where α is pre-selected (so that we know z α/2 = 196,256 etc) Then we need to solve σ 2E = 2z α/2 n We need to pre-select the value of E The smaller E, the larger our sample size E will have to be The researcher must decide how much precision s/he requires 26 27

8 Some more practice on CIs sample X 1, X 2, X 3, X 4, X 5 X [ X 196 σ 5, X σ 5 The sample mean X is known as a point estimator The interval [ X 196 σ n, X σ n is known as a 95% confidence interval Like the sample mean the confidence interval is also random See Figure 54 in Ott and Longnecker (page 197) for a good illustration Below we construct 95% CIs for the mean using the average in each sample [5350, [9684, [ [ [4239, [5086, [5340, [8764, [6068, [7596, The population variance var(x i ) = σ 2 =, hence σ 5 = p /5 The true mean is 10, how many intervals cotain it? An illustration For each sample average we plot the interval: Aside: Confidence intervals in the general case Up until now we have looked at 95% (99% or 90%) CIs But is easy to construct any 100(1 α)% CIs If we want a 100(1 α)% confidence interval, find the z α, such that P(Z z α ) = α/2 (recall plot) For example if want a 95% interval, then P(Z 196) = 0025 Using the arguments in Lecture 11, this implies ( ) σ P X z α n µ X σ + z α n = 1 α The green line is where the population mean is In reality it is unknown If we did this plot for 100 different samples about 95 would intersect with the population mean and leads to the 100(1 α)% confidence interval [ X z α σ n, X + z α σ n 30 31

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Review of previous lecture: Why confidence intervals? Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Suppose you want to know the

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 13 (MWF) Designing the experiment: Margin of Error Suhasini Subba Rao Terminology: The population

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao The binomial: mean and variance Recall that the number of successes out of n, denoted

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 14 (MWF) The t-distribution Suhasini Subba Rao Review of previous lecture Often the precision

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Chapter 7 Study Guide: The Central Limit Theorem

Chapter 7 Study Guide: The Central Limit Theorem Chapter 7 Study Guide: The Central Limit Theorem Introduction Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy to calculate. In this

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 10 (MWF) Checking for normality of the data using the QQplot Suhasini Subba Rao Review of previous

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 14 (MWF) The t-distribution Suhasini Subba Rao Review of previous lecture Often the precision

More information

Chapter Seven: Confidence Intervals and Sample Size

Chapter Seven: Confidence Intervals and Sample Size Chapter Seven: Confidence Intervals and Sample Size A point estimate is: The best point estimate of the population mean µ is the sample mean X. Three Properties of a Good Estimator 1. Unbiased 2. Consistent

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 Fall 2011 Lecture 8 Part 2 (Fall 2011) Probability Distributions Lecture 8 Part 2 1 / 23 Normal Density Function f

More information

1. Variability in estimates and CLT

1. Variability in estimates and CLT Unit3: Foundationsforinference 1. Variability in estimates and CLT Sta 101 - Fall 2015 Duke University, Department of Statistical Science Dr. Çetinkaya-Rundel Slides posted at http://bit.ly/sta101_f15

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 10 (MWF) Checking for normality of the data using the QQplot Suhasini Subba Rao Checking for

More information

Statistics 511 Supplemental Materials

Statistics 511 Supplemental Materials Gaussian (or Normal) Random Variable In this section we introduce the Gaussian Random Variable, which is more commonly referred to as the Normal Random Variable. This is a random variable that has a bellshaped

More information

Lecture 9 - Sampling Distributions and the CLT

Lecture 9 - Sampling Distributions and the CLT Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel September 23, 2015 1 Variability of Estimates Activity Sampling distributions - via simulation Sampling distributions - via CLT

More information

1 Inferential Statistic

1 Inferential Statistic 1 Inferential Statistic Population versus Sample, parameter versus statistic A population is the set of all individuals the researcher intends to learn about. A sample is a subset of the population and

More information

AP Statistics Chapter 6 - Random Variables

AP Statistics Chapter 6 - Random Variables AP Statistics Chapter 6 - Random 6.1 Discrete and Continuous Random Objective: Recognize and define discrete random variables, and construct a probability distribution table and a probability histogram

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Introduction to Business Statistics QM 120 Chapter 6

Introduction to Business Statistics QM 120 Chapter 6 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Chapter 6: Continuous Probability Distribution 2 When a RV x is discrete, we can

More information

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) Section 6-2 I. Continuous Probability Distributions A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) to represent a probability density

More information

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw MAS1403 Quantitative Methods for Business Management Semester 1, 2018 2019 Module leader: Dr. David Walshaw Additional lecturers: Dr. James Waldren and Dr. Stuart Hall Announcements: Written assignment

More information

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Summer 2014 1 / 26 Sampling Distributions!!!!!!

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

What was in the last lecture?

What was in the last lecture? What was in the last lecture? Normal distribution A continuous rv with bell-shaped density curve The pdf is given by f(x) = 1 2πσ e (x µ)2 2σ 2, < x < If X N(µ, σ 2 ), E(X) = µ and V (X) = σ 2 Standard

More information

STAT Chapter 7: Confidence Intervals

STAT Chapter 7: Confidence Intervals STAT 515 -- Chapter 7: Confidence Intervals With a point estimate, we used a single number to estimate a parameter. We can also use a set of numbers to serve as reasonable estimates for the parameter.

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Descriptive Statistics (Devore Chapter One)

Descriptive Statistics (Devore Chapter One) Descriptive Statistics (Devore Chapter One) 1016-345-01 Probability and Statistics for Engineers Winter 2010-2011 Contents 0 Perspective 1 1 Pictorial and Tabular Descriptions of Data 2 1.1 Stem-and-Leaf

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

The Normal Distribution

The Normal Distribution 5.1 Introduction to Normal Distributions and the Standard Normal Distribution Section Learning objectives: 1. How to interpret graphs of normal probability distributions 2. How to find areas under the

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

FEEG6017 lecture: The normal distribution, estimation, confidence intervals. Markus Brede,

FEEG6017 lecture: The normal distribution, estimation, confidence intervals. Markus Brede, FEEG6017 lecture: The normal distribution, estimation, confidence intervals. Markus Brede, mb8@ecs.soton.ac.uk The normal distribution The normal distribution is the classic "bell curve". We've seen that

More information

Section The Sampling Distribution of a Sample Mean

Section The Sampling Distribution of a Sample Mean Section 5.2 - The Sampling Distribution of a Sample Mean Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin The Sampling Distribution of a Sample Mean Example: Quality control check of light

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size Confidence Intervals and Sample Size Chapter 6 shows us how we can use the Central Limit Theorem (CLT) to 1. estimate a population parameter (such as the mean or proportion) using a sample, and. determine

More information

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel February 6, 2015 http:// pewresearch.org/ pubs/ 2191/ young-adults-workers-labor-market-pay-careers-advancement-recession Sta102/BME102

More information

Statistics and Probability

Statistics and Probability Statistics and Probability Continuous RVs (Normal); Confidence Intervals Outline Continuous random variables Normal distribution CLT Point estimation Confidence intervals http://www.isrec.isb-sib.ch/~darlene/geneve/

More information

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative STAT:10 Statistical Methods and Computing Normal Distributions Lecture 4 Feb. 6, 17 Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu 1 2 Using density curves to describe the distribution of values of

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1 Stat 226 Introduction to Business Statistics I Spring 2009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:30-10:50 a.m. Chapter 6, Section 6.1 Confidence Intervals Confidence Intervals

More information

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 16 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 7. - 7.3 Lecture Chapter 8.1-8. Review Chapter 6. Problem Solving

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

Continuous Probability Distributions & Normal Distribution

Continuous Probability Distributions & Normal Distribution Mathematical Methods Units 3/4 Student Learning Plan Continuous Probability Distributions & Normal Distribution 7 lessons Notes: Students need practice in recognising whether a problem involves a discrete

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Chapter ! Bell Shaped

Chapter ! Bell Shaped Chapter 6 6-1 Business Statistics: A First Course 5 th Edition Chapter 7 Continuous Probability Distributions Learning Objectives In this chapter, you learn:! To compute probabilities from the normal distribution!

More information

Making Sense of Cents

Making Sense of Cents Name: Date: Making Sense of Cents Exploring the Central Limit Theorem Many of the variables that you have studied so far in this class have had a normal distribution. You have used a table of the normal

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

Estimation and Confidence Intervals

Estimation and Confidence Intervals Estimation and Confidence Intervals Chapter 9-1/2 McGraw-Hill/Irwin Copyright 2011 by the McGraw-Hill Companies, Inc. All rights reserved. LEARNING OBJECTIVES LO1. Define a point estimate. LO2. Define

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

The topics in this section are related and necessary topics for both course objectives.

The topics in this section are related and necessary topics for both course objectives. 2.5 Probability Distributions The topics in this section are related and necessary topics for both course objectives. A probability distribution indicates how the probabilities are distributed for outcomes

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 7 (MWF) Analyzing the sums of binary outcomes Suhasini Subba Rao Introduction Lecture 7 (MWF)

More information

Standard Normal Calculations

Standard Normal Calculations Standard Normal Calculations Section 4.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 10-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions Topic 6 - Continuous Distributions I Discrete RVs Recall the discrete distributions STAT 511 Professor Bruce Craig Binomial - X= number of successes (x =, 1,...,n) Geometric - X= number of trials (x =,...)

More information

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19)

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Standard Normal, Inverse Normal and Sampling Distributions

Standard Normal, Inverse Normal and Sampling Distributions Standard Normal, Inverse Normal and Sampling Distributions Section 5.5 & 6.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

1 Small Sample CI for a Population Mean µ

1 Small Sample CI for a Population Mean µ Lecture 7: Small Sample Confidence Intervals Based on a Normal Population Distribution Readings: Sections 7.4-7.5 1 Small Sample CI for a Population Mean µ The large sample CI x ± z α/2 s n was constructed

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

Review of commonly missed questions on the online quiz. Lecture 7: Random variables] Expected value and standard deviation. Let s bet...

Review of commonly missed questions on the online quiz. Lecture 7: Random variables] Expected value and standard deviation. Let s bet... Recap Review of commonly missed questions on the online quiz Lecture 7: ] Statistics 101 Mine Çetinkaya-Rundel OpenIntro quiz 2: questions 4 and 5 September 20, 2011 Statistics 101 (Mine Çetinkaya-Rundel)

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Value (x) probability Example A-2: Construct a histogram for population Ψ.

Value (x) probability Example A-2: Construct a histogram for population Ψ. Calculus 111, section 08.x The Central Limit Theorem notes by Tim Pilachowski If you haven t done it yet, go to the Math 111 page and download the handout: Central Limit Theorem supplement. Today s lecture

More information

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean.

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean. Lecture 3 Sampling distributions. Counts, Proportions, and sample mean. Statistical Inference: Uses data and summary statistics (mean, variances, proportions, slopes) to draw conclusions about a population

More information

A.REPRESENTATION OF DATA

A.REPRESENTATION OF DATA A.REPRESENTATION OF DATA (a) GRAPHS : PART I Q: Why do we need a graph paper? Ans: You need graph paper to draw: (i) Histogram (ii) Cumulative Frequency Curve (iii) Frequency Polygon (iv) Box-and-Whisker

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

6 Central Limit Theorem. (Chs 6.4, 6.5)

6 Central Limit Theorem. (Chs 6.4, 6.5) 6 Central Limit Theorem (Chs 6.4, 6.5) Motivating Example In the next few weeks, we will be focusing on making statistical inference about the true mean of a population by using sample datasets. Examples?

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with

More information

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1 6.1 Discrete and Continuous Random Variables Random Variables A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types

More information