1 Sampling Distributions

Size: px
Start display at page:

Download "1 Sampling Distributions"

Transcription

1 1 Sampling Distributions 1.1 Statistics and Sampling Distributions When a random sample is selected the numerical descriptive measures calculated from such a sample are called statistics. These statistics vary or change for each different random sample you select; that is they are random variables. Definition: Any quantity computed from values in a sample is called a statistic. The value of a statistic varies from sample to sample this effect is called sample variability. Since the sampling is done randomly, the value of an statistic is random. In conclusion: statistics are random variables. Since statistics are random variables, they have a distribution, that tells which values occur with which probability. Definition: The distribution of a statistic is called a sampling distribution. They provide this information: What are the values the statistic can assume? What is the probability of each value to occur? Remember: The population distribution describes the values of a variable in the population. It gives the possible values of all individuals and their likelihood to occur. The sampling distribution describes the values of a statistic in all possible samples from the population. It describes how a statistic varies in all possible samples of the same size. The population is this section of Stat 141. Let µ be the population mean of the random variable X = height, therefore µ is the average of the heights of all people in this class. Select a random sample of size 5 and observe x, the mean height in this sample. Is x = µ? For every random sample the sample mean x is different, this is called the sample variability. Also is it most unlikely that the sample mean is equal to the population mean µ. Even if we use a random sample and don t make any measuring mistakes the x will be most likely different from µ. This difference is then called the sampling error: sampling error = x µ Now we will study the distribution of. Suppose you look at every possible random sample of 5 students from this class and the 1

2 corresponding sample mean. From these numbers you can create the sampling distribution of. If this class has 50 students then there are 50 = 2, 118, different samples. You will find that 1. The value of x differs from one random sample to another (sampling variability). 2. Some samples produced x values larger than µ, whereas other produce x smaller than µ. ( x µ sampling error). 3. They can be fairly close to the mean µ, or also quite far off the population mean µ. The sampling distribution of provides important information about the behaviour of the statistic and how it relates to the population mean µ. Considering how many different samples of size five there are in this class this process is very cumbersome. Fortunately, there are mathematical theorems that help us to obtain information about the sampling distributions. 1.2 The Sampling Distribution of a Sample Mean x based on a large sample tends to be closer to µ than does x based on a small n. This can be explained by the following theoretical results. Lemma: Suppose x 1,..., x n are random variables with the same distribution with mean µ and population standard deviation σ. Now look at the random variable. 1. The population mean of, denoted µ, is equal to µ. 2. The population standard deviation of, denoted σ x, is σ = σ n This means that the sampling distribution of is always centered at µ and the second statement gives the rate the spread of the sampling distribution (sampling variability) decreases as n increases. This effect is called the law of large numbers, since it indicates that in average the sample mean will get closer to the population mean as the sample size increases. Beside finding the mean and the standard deviation, do we know anything about the shape of the density curve of the sampling distribution of the mean? 2

3 1.3 Central Limit Theorem This section explains why the normal distribution is so important in statistics. The result is surprising. It states, that under rather general conditions, means of random samples drawn from one population tend to follow an approximate normal distribution. It does not matter which kind of distribution we find in the population. It even can be discrete or extremely skewed. But if n is large enough the sampling distribution of the mean is approximately normal distributed. Central Limit Theorem If random samples of n observations are drawn from any population with finite mean µ and standard deviation σ, then, when n is large, the sampling distribution of the mean is approximate normal distributed, with mean µ and standard deviation σ/ n. Remark: If the population itself is normal x is normal distributed for all n, so that n does not have to be large. When the sampled population has a symmetric distribution, the sampling distribution of becomes quickly normal. Compare the example below for n = 3. If the distribution is skewed, usually for n = 30 the sampling distribution is already close to a normal distribution. Consider tossing n unbiased dice and recording the average number of the upper faces. The graphs display the sampling distribution for x for n = 1, 2, 3, 4. 3

4 Looking at only n = 4 dice leads to a distributions that is very close to a normal distribution. Summary: Assume that the measurements in a population follow all the same distribution with finite mean µ and standard deviation σ. Then The mean of the sampling distribution of the mean of n observations holds µ = µ The standard deviation of the sampling distribution of the mean x of n observations holds σ = σ n The sampling distribution of the mean x of n observations is approximately normal distributed, if n is large enough. In 2004 a water taxi in Baltimore capsized because it was overloaded. 5 people drowned. How could this have happened, was the accident predictable? At that time they permitted 20 passengers per load, and knew that the taxi is save up to a load of 3500 lb. Assuming that the mean weight of American men is about normally distributed with a mean µ = 172lb and a standard deviation of σ = 29lb, what was the risk? 1. What is the probability that a randomly chosen man is heavier than 175lb? 2. What is the probability that 20 randomly chosen American men weigh in total more than 3500lb? ad 1. P (X > 175) = P Z > = P (Z > 0.103) = = % of American men are heavier than 175 lb. 4

5 ad 2. If 20 men weigh in total more than 3500lb, it is the same as if they weigh in average more than 3500/20=175lb. Calculate the probability that the mean weight of 20 men,, exceeds 175lb. The mean of the sample mean,, is µ = µ = 172 and the standard deviation of the sample mean,, is σ = σ/ n = 29/ 20 = Then P ( > 175) = P Z > = P (Z > ) = = The probability that the total weight of 20 randomly chosen men exceeds the weight limit is The duration of Alzheimer s disease from the onset of symptoms until death ranges from 3 to 20 years. The mean is 8 years and the standard deviation is 4 years. Looking at the average duration for 30 randomly selected Alzheimer patients: what is the probability that the average duration of those 30 patients is less than 7 years? ( P ( µ < 7) = P < 7 µ ) σ σ ( = P Z < 7 8 ) 4/ 30 standardize = P (Z < 1.37) = TableA Example 1 Consider a bottle filling machine, that is supposed to fill 500mL in each bottle. This machine will be reset if a sample of 10 bottles shows an average filling amount of more than 505mL. Assume that the machine is in correct adjustment, that is µ = 500mL, but the filling amount varies with a standard deviation of 7mL. What is the probability that the machine will be reset, even though it is correctly adjusted? P ( µ > 505) = P 505 µ > σ σ ( ) = P Z > 7/ 10 = P (Z > 2.26) standardize = = TableA The machine would be reset in 1.2% of examinations, even if is correctly adjusted. 5

6 1.4 The Sampling Distribution of a Sample Proportion Suppose we are just interested if one characteristic occurred in the population of interest. For example: flip a coin and observe, if Tail was tossed. a persons IQ is above 120 a student is a nonresident a person survived at least five years, after a specific cancer treatment a clinical test is positive Then there exists a probability p that a randomly selected individual or object from the population possesses this characteristic. Traditionally, any individual or object that possesses the property of interest is labelled a Success (S), and one one that does not possess the property is called a Failure (F). Looking at a random sample of the size n, the probability p can be estimated by calculating the sample proportion (relative frequency) of S s, which is ˆp = number of S s in the sample. n Now rewrite the sample proportion in the following way. First let single observations be encoded in the following way. 0 if individual is labelled F x i = 1 if individual is labelled S Then is ˆp = x i /n = x. So that the Central Limit Theorem applies to ˆp. Result: µˆp, the mean of the sampling distribution of ˆp, is p the true probability. The standard deviation of the sampling distribution of ˆp is σˆp = p(1 p) (since the standard deviation for a single observation is n p(1 p).) The sampling proportion ˆp is for large n approximately normal distributed. (Central Limit Theorem) 6

7 A conservative rule of thumb states that the Central Limit Theorem can be applied if: np 5 and n(1 p) 5 A study showed, that the proportion of people in the 20 to 34 age group with an IQ (on the Wechsler Intelligence Scale) of over 120 is about Calculate the probability for the event that in a sample of 50 there are more than 30 people with an IQ of at least 120. First obtain µ p and σ p for the distribution of the sample proportion p. µˆp = p = 0.35 σˆp = p(1 p) = 0.35(1 0.35) = n 50 ˆp P (ˆp > 30) = P µˆp 0.6 µˆp > 50 σˆp σˆp ˆp = P > ˆp 0.35 = 1 P standardize use above results Rule for Compliments = CLT, np = 17.5 > 5, TableIV = We calculated that the probability that more than 30 out of 50 people (between 20 and 34) have an IQ greater than 120 is It is highly unlikely! Example 2 Assume 80% of Canadians are in favour of protecting the environment through more laws. Given that 1000 randomly selected Canadians are asked if they are in favour or against additional laws for protecting the environment, what is the probability that the poll results in a percentage less than 75 ˆp µˆp 0.75 µˆp P (ˆp < 0.75) = P < standardize ( σˆp σˆp ) ˆp = P > use above results????? ( ) ˆp 0.35 = 1 P Rule for Compliments = CLT, np = 17.5 > 5, TableIV =

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Section The Sampling Distribution of a Sample Mean

Section The Sampling Distribution of a Sample Mean Section 5.2 - The Sampling Distribution of a Sample Mean Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin The Sampling Distribution of a Sample Mean Example: Quality control check of light

More information

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS A random variable is the description of the outcome of an experiment in words. The verbal description of a random variable tells you how to find or calculate

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

work to get full credit.

work to get full credit. Chapter 18 Review Name Date Period Write complete answers, using complete sentences where necessary.show your work to get full credit. MULTIPLE CHOICE. Choose the one alternative that best completes the

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

Expected Value of a Random Variable

Expected Value of a Random Variable Knowledge Article: Probability and Statistics Expected Value of a Random Variable Expected Value of a Discrete Random Variable You're familiar with a simple mean, or average, of a set. The mean value of

More information

Sampling Distributions and the Central Limit Theorem

Sampling Distributions and the Central Limit Theorem Sampling Distributions and the Central Limit Theorem February 18 Data distributions and sampling distributions So far, we have discussed the distribution of data (i.e. of random variables in our sample,

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

BIOL The Normal Distribution and the Central Limit Theorem

BIOL The Normal Distribution and the Central Limit Theorem BIOL 300 - The Normal Distribution and the Central Limit Theorem In the first week of the course, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are

More information

Chapter 7 Study Guide: The Central Limit Theorem

Chapter 7 Study Guide: The Central Limit Theorem Chapter 7 Study Guide: The Central Limit Theorem Introduction Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy to calculate. In this

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

Chapter Four: Introduction To Inference 1/50

Chapter Four: Introduction To Inference 1/50 Chapter Four: Introduction To Inference 1/50 4.1 Introduction 2/50 4.1 Introduction In this chapter you will learn the rationale underlying inference. You will also learn to apply certain inferential techniques.

More information

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Summer 2014 1 / 26 Sampling Distributions!!!!!!

More information

Sampling Distributions

Sampling Distributions AP Statistics Ch. 7 Notes Sampling Distributions A major field of statistics is statistical inference, which is using information from a sample to draw conclusions about a wider population. Parameter:

More information

Distribution of the Sample Mean

Distribution of the Sample Mean Distribution of the Sample Mean MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Experiment (1 of 3) Suppose we have the following population : 4 8 1 2 3 4 9 1

More information

Stat 213: Intro to Statistics 9 Central Limit Theorem

Stat 213: Intro to Statistics 9 Central Limit Theorem 1 Stat 213: Intro to Statistics 9 Central Limit Theorem H. Kim Fall 2007 2 unknown parameters Example: A pollster is sure that the responses to his agree/disagree questions will follow a binomial distribution,

More information

Section 7-2 Estimating a Population Proportion

Section 7-2 Estimating a Population Proportion Section 7- Estimating a Population Proportion 1 Key Concept In this section we present methods for using a sample proportion to estimate the value of a population proportion. The sample proportion is the

More information

STAT Chapter 7: Central Limit Theorem

STAT Chapter 7: Central Limit Theorem STAT 251 - Chapter 7: Central Limit Theorem In this chapter we will introduce the most important theorem in statistics; the central limit theorem. What have we seen so far? First, we saw that for an i.i.d

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

CHAPTER 5 Sampling Distributions

CHAPTER 5 Sampling Distributions CHAPTER 5 Sampling Distributions 5.1 The possible values of p^ are 0, 1/3, 2/3, and 1. These correspond to getting 0 persons with lung cancer, 1 with lung cancer, 2 with lung cancer, and all 3 with lung

More information

STA 320 Fall Thursday, Dec 5. Sampling Distribution. STA Fall

STA 320 Fall Thursday, Dec 5. Sampling Distribution. STA Fall STA 320 Fall 2013 Thursday, Dec 5 Sampling Distribution STA 320 - Fall 2013-1 Review We cannot tell what will happen in any given individual sample (just as we can not predict a single coin flip in advance).

More information

Chapter 6 Probability

Chapter 6 Probability Chapter 6 Probability Learning Objectives 1. Simulate simple experiments and compute empirical probabilities. 2. Compute both theoretical and empirical probabilities. 3. Apply the rules of probability

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Section Sampling Distributions for Counts and Proportions

Section Sampling Distributions for Counts and Proportions Section 5.1 - Sampling Distributions for Counts and Proportions Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin Distributions When dealing with inference procedures, there are two different

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

1. State Sales Tax. 2. Baggage Check

1. State Sales Tax. 2. Baggage Check 1. State Sales Tax A survey asks a random sample of 1500 adults in Ohio if they support an increase in the state sales tax from 5% to 6% with the additional revenue going to education. If 40% of all adults

More information

AP * Statistics Review

AP * Statistics Review AP * Statistics Review Normal Models and Sampling Distributions Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

Statistics and Probability

Statistics and Probability Statistics and Probability Continuous RVs (Normal); Confidence Intervals Outline Continuous random variables Normal distribution CLT Point estimation Confidence intervals http://www.isrec.isb-sib.ch/~darlene/geneve/

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

Making Sense of Cents

Making Sense of Cents Name: Date: Making Sense of Cents Exploring the Central Limit Theorem Many of the variables that you have studied so far in this class have had a normal distribution. You have used a table of the normal

More information

STAT Chapter 6: Sampling Distributions

STAT Chapter 6: Sampling Distributions STAT 515 -- Chapter 6: Sampling Distributions Definition: Parameter = a number that characterizes a population (example: population mean ) it s typically unknown. Statistic = a number that characterizes

More information

University of California, Los Angeles Department of Statistics. Normal distribution

University of California, Los Angeles Department of Statistics. Normal distribution University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Normal distribution The normal distribution is the most important distribution. It describes

More information

*****CENTRAL LIMIT THEOREM (CLT)*****

*****CENTRAL LIMIT THEOREM (CLT)***** Sampling Distributions and CLT Day 5 *****CENTRAL LIMIT THEOREM (CLT)***** (One of the MOST important theorems in Statistics - KNOW AND UNDERSTAND THIS!!!!!!) Draw an SRS of size n from ANY population

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

MidTerm 1) Find the following (round off to one decimal place):

MidTerm 1) Find the following (round off to one decimal place): MidTerm 1) 68 49 21 55 57 61 70 42 59 50 66 99 Find the following (round off to one decimal place): Mean = 58:083, round off to 58.1 Median = 58 Range = max min = 99 21 = 78 St. Deviation = s = 8:535,

More information

FINAL REVIEW W/ANSWERS

FINAL REVIEW W/ANSWERS FINAL REVIEW W/ANSWERS ( 03/15/08 - Sharon Coates) Concepts to review before answering the questions: A population consists of the entire group of people or objects of interest to an investigator, while

More information

Chapter 9 & 10. Multiple Choice.

Chapter 9 & 10. Multiple Choice. Chapter 9 & 10 Review Name Multiple Choice. 1. An agricultural researcher plants 25 plots with a new variety of corn. The average yield for these plots is X = 150 bushels per acre. Assume that the yield

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

These Statistics NOTES Belong to:

These Statistics NOTES Belong to: These Statistics NOTES Belong to: Topic Notes Questions Date 1 2 3 4 5 6 REVIEW DO EVERY QUESTION IN YOUR PROVINCIAL EXAM BINDER Important Calculator Functions to know for this chapter Normal Distributions

More information

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Objectives: Students will: Define a sampling distribution. Contrast bias and variability. Describe the sampling distribution of a proportion (shape, center, and spread).

More information

STAT 241/251 - Chapter 7: Central Limit Theorem

STAT 241/251 - Chapter 7: Central Limit Theorem STAT 241/251 - Chapter 7: Central Limit Theorem In this chapter we will introduce the most important theorem in statistics; the central limit theorem. What have we seen so far? First, we saw that for an

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

AP STATISTICS Name: Period: Review Unit VI Probability Models and Sampling Distributions

AP STATISTICS Name: Period: Review Unit VI Probability Models and Sampling Distributions AP STATISTICS Name: Period: Review Unit VI Probability Models and Sampling Distributions Show all work and reasoning. 1. Professional football players in the NFL have a distribution of salaries that is

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Review of previous lecture: Why confidence intervals? Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Suppose you want to know the

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS 8.1 Distribution of Random Variables Random Variable Probability Distribution of Random Variables 8.2 Expected Value Mean Mean is the average value of

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size Confidence Intervals and Sample Size Chapter 6 shows us how we can use the Central Limit Theorem (CLT) to 1. estimate a population parameter (such as the mean or proportion) using a sample, and. determine

More information

= 0.35 (or ˆp = We have 20 independent trials, each with probability of success (heads) equal to 0.5, so X has a B(20, 0.5) distribution.

= 0.35 (or ˆp = We have 20 independent trials, each with probability of success (heads) equal to 0.5, so X has a B(20, 0.5) distribution. Chapter 5 Solutions 51 (a) n = 1500 (the sample size) (b) The Yes count seems like the most reasonable choice, but either count is defensible (c) X = 525 (or X = 975) (d) ˆp = 525 1500 = 035 (or ˆp = 975

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

Sampling. Marc H. Mehlman University of New Haven. Marc Mehlman (University of New Haven) Sampling 1 / 20.

Sampling. Marc H. Mehlman University of New Haven. Marc Mehlman (University of New Haven) Sampling 1 / 20. Sampling Marc H. Mehlman marcmehlman@yahoo.com University of New Haven (University of New Haven) Sampling 1 / 20 Table of Contents 1 Sampling Distributions 2 Central Limit Theorem 3 Binomial Distribution

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION In Inferential Statistic, ESTIMATION (i) (ii) is called the True Population Mean and is called the True Population Proportion. You must also remember that are not the only population parameters. There

More information

4: Probability. Notes: Range of possible probabilities: Probabilities can be no less than 0% and no more than 100% (of course).

4: Probability. Notes: Range of possible probabilities: Probabilities can be no less than 0% and no more than 100% (of course). 4: Probability What is probability? The probability of an event is its relative frequency (proportion) in the population. An event that happens half the time (such as a head showing up on the flip of a

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 6 The Normal Distribution And Other Continuous Distributions

Statistics for Managers Using Microsoft Excel/SPSS Chapter 6 The Normal Distribution And Other Continuous Distributions Statistics for Managers Using Microsoft Excel/SPSS Chapter 6 The Normal Distribution And Other Continuous Distributions 1999 Prentice-Hall, Inc. Chap. 6-1 Chapter Topics The Normal Distribution The Standard

More information

5/5/2014 یادگیري ماشین. (Machine Learning) ارزیابی فرضیه ها دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی. Evaluating Hypothesis (بخش دوم)

5/5/2014 یادگیري ماشین. (Machine Learning) ارزیابی فرضیه ها دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی. Evaluating Hypothesis (بخش دوم) یادگیري ماشین درس نوزدهم (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی ارزیابی فرضیه ها Evaluating Hypothesis (بخش دوم) 1 فهرست مطالب خطاي نمونه Error) (Sample خطاي واقعی Error) (True

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES

Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Random Variables CHAPTER 6.3 BINOMIAL AND GEOMETRIC RANDOM VARIABLES Essential Question How can I determine whether the conditions for using binomial random variables are met? Binomial Settings When the

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted Figure 1: Math 223 Lecture Notes 4/1/04 Section 4.10 The normal distribution Recall that a continuous random variable X with probability distribution function f(x) = 1 µ)2 (x e 2σ 2πσ is said to have a

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Standard Normal, Inverse Normal and Sampling Distributions

Standard Normal, Inverse Normal and Sampling Distributions Standard Normal, Inverse Normal and Sampling Distributions Section 5.5 & 6.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 2: Mean and Variance of a Discrete Random Variable Section 3.4 1 / 16 Discrete Random Variable - Expected Value In a random experiment,

More information

5.3 Statistics and Their Distributions

5.3 Statistics and Their Distributions Chapter 5 Joint Probability Distributions and Random Samples Instructor: Lingsong Zhang 1 Statistics and Their Distributions 5.3 Statistics and Their Distributions Statistics and Their Distributions Consider

More information

The topics in this section are related and necessary topics for both course objectives.

The topics in this section are related and necessary topics for both course objectives. 2.5 Probability Distributions The topics in this section are related and necessary topics for both course objectives. A probability distribution indicates how the probabilities are distributed for outcomes

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

FORMULA FOR STANDARD DEVIATION:

FORMULA FOR STANDARD DEVIATION: Chapter 5 Review: Statistics Textbook p.210-282 Summary: p.238-239, p.278-279 Practice Questions p.240, p.280-282 Z- Score Table p.592 Key Concepts: Central Tendency, Standard Deviation, Graphing, Normal

More information

11.5: Normal Distributions

11.5: Normal Distributions 11.5: Normal Distributions 11.5.1 Up to now, we ve dealt with discrete random variables, variables that take on only a finite (or countably infinite we didn t do these) number of values. A continuous random

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

Using the Central Limit

Using the Central Limit Using the Central Limit Theorem By: OpenStaxCollege It is important for you to understand when to use the central limit theorem. If you are being asked to find the probability of the mean, use the clt

More information

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS

Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Chapter 7: SAMPLING DISTRIBUTIONS & POINT ESTIMATION OF PARAMETERS Part 1: Introduction Sampling Distributions & the Central Limit Theorem Point Estimation & Estimators Sections 7-1 to 7-2 Sample data

More information

Sampling Distribution Models. Copyright 2009 Pearson Education, Inc.

Sampling Distribution Models. Copyright 2009 Pearson Education, Inc. Sampling Distribution Mols Copyright 2009 Pearson Education, Inc. Rather than showing real repeated samples, imagine what would happen if we were to actually draw many samples. The histogram we d get if

More information

Sampling Distributions

Sampling Distributions Sampling Distributions This is an important chapter; it is the bridge from probability and descriptive statistics that we studied in Chapters 3 through 7 to inferential statistics which forms the latter

More information

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative STAT:10 Statistical Methods and Computing Normal Distributions Lecture 4 Feb. 6, 17 Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu 1 2 Using density curves to describe the distribution of values of

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

PROBABILITY DISTRIBUTIONS

PROBABILITY DISTRIBUTIONS CHAPTER 3 PROBABILITY DISTRIBUTIONS Page Contents 3.1 Introduction to Probability Distributions 51 3.2 The Normal Distribution 56 3.3 The Binomial Distribution 60 3.4 The Poisson Distribution 64 Exercise

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with

More information

Sampling Distributions For Counts and Proportions

Sampling Distributions For Counts and Proportions Sampling Distributions For Counts and Proportions IPS Chapter 5.1 2009 W. H. Freeman and Company Objectives (IPS Chapter 5.1) Sampling distributions for counts and proportions Binomial distributions for

More information

Statistics, Their Distributions, and the Central Limit Theorem

Statistics, Their Distributions, and the Central Limit Theorem Statistics, Their Distributions, and the Central Limit Theorem MATH 3342 Sections 5.3 and 5.4 Sample Means Suppose you sample from a popula0on 10 0mes. You record the following sample means: 10.1 9.5 9.6

More information

Confidence Intervals. σ unknown, small samples The t-statistic /22

Confidence Intervals. σ unknown, small samples The t-statistic /22 Confidence Intervals σ unknown, small samples The t-statistic 1 /22 Homework Read Sec 7-3. Discussion Question pg 365 Do Ex 7-3 1-4, 6, 9, 12, 14, 15, 17 2/22 Objective find the confidence interval for

More information