work to get full credit.

Size: px
Start display at page:

Download "work to get full credit."

Transcription

1 Chapter 18 Review Name Date Period Write complete answers, using complete sentences where necessary.show your work to get full credit. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the Normal model may be used to describe the distribution of the sample proportions. If the Normal model may be used, list the conditions and explain why each is satisfied. If Normal model may not be used, explain which condition is not satisfied. 1) In a large statistics class, the professor has each student toss a coin 12 times and calculate the 1) proportion of tosses that come up tails. The students then report their results, and the professor plots a histogram of these several proportions. May a Normal model be used here? A) A Normal model may not be used because the population distribution is not Normal. B) A Normal model may be used: Coin flips are independent of each other - no need to check the 10% condition Success/Failure condition is satisfied: np = nq = 6 which are both less than 10 C) A Normal model may be used: Coin flips are independent of each other - no need to check the 10% condition Success/Failure condition is satisfied: np = nq = 12 which are both greater than 10 D) A Normal model should not be used because the sample size is not large enough to satisfy the success/failure condition. For this sample size, np = 6 = nq = 6 which are both less than 10. E) A Normal model should not be used because the 10% condition is not satisfied: the sample size, 12, is larger than 10% of the population of all coins flips. 2) A candy company claims that 25% of the jelly beans in its spring mix are pink. Suppose that the candies are packaged at random in small bags containing about 300 jelly beans. A class of students opens several bags, counts the various colors of jelly beans, and calculates the proportion that are pink in each bag. Is it appropriate to use a Normal model to describe the distribution of the proportion of pink jelly beans? A) A Normal model is not appropriate because the 10% condition is not satisfied: the sample size, 300, is larger than 10% of the population of all jelly beans. B) A Normal model is not appropriate because the success/failure condition is not satisfied: np = 75 and nq = 225 neither of which is less than 10 C) A Normal model is appropriate: Randomization condition is satisfied: the 300 jelly beans in the bag are selected at random and can be considered representative of all jelly beans 10% condition is satisfied: the sample size, 300, is less than 10% of the population of all jelly beans. success/failure condition is satisfied: np = 75 and nq = 225 are both greater than 10 D) A Normal model is not appropriate because the population distribution is not Normal. E) A Normal model is not appropriate because the randomization condition is not satisfied: the 300 jelly beans in the bag are not a simple random sample and cannot be considered representative of all jelly beans. 2) 1

2 Find the mean of the sample proportion. 3) Assume that 25% of students at a university wear contact lenses. We randomly pick 200 students. What is the mean of the proportion of students in this group who may wear contact lenses? A) µ = 7.07% B) µ = 12.5% C) µ = 50% D) µ = 3.06% E) µ = 25% 3) Find the standard deviation of the sample proportion. 4) Based on past experience, a bank believes that 5% of the people who receive loans will not make payments on time. The bank has recently approved 300 loans. What is the standard deviation of the proportion of clients in this group who may not make timely payments? A) = 3.87% B) = 1.26% C) = 3.77% D) = 1.58% E) = 1.29% 4) 5) Assume that 15% of students at a university wear contact lenses. We randomly pick 200 students. What is the standard deviation of the proportion of students in this group who may wear contact lenses? A) = 2.74% B) = 5.05% C) = 2.52% D) = 5.48% E) = 6.38% 5) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. In a large class, the professor has each person toss a coin several times and calculate the proportion of his or her tosses that come up heads. The students then report their results, and the professor plots a histogram of these proportions. Use the Rule to provide the appropriate response. 6) If each student tosses the coin 50 times, about 68% of the sample proportions should be 6) between what two numbers? 7) The Atilla Barbell Company makes bars for weight lifting. The weights of the bars are independent and are normally distributed with a mean of 720 ounces (45 pounds) and a standard deviation of 4 ounces. The bars are shipped 10 in a box to the retailers. The weights of the empty boxes are normally distributed with a mean of 320 ounces and a standard deviation of 8 ounces. The weights of the boxes filled with 10 bars are expected to be normally distributed with a mean of 7,520 ounces and a standard deviation of 7) Find the specified probability, from a table of Normal probabilities. Assume that the necessary conditions and assumptions are met. 8) Based on past experience, a bank believes that 7% of the people who receive loans will not 8) make payments on time. The bank has recently approved 300 loans. What is the probability that over 8% of these clients will not make timely payments? 2

3 9) Researchers believe that 7% of children have a gene that may be linked to a certain childhood disease. In an effort to track 50 of these children, researchers test 950 newborns for the presence of this gene. What is the probability that they find enough subjects for their study? 9) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. 10) In a large class, the professor has each person toss a coin 200 times and calculate the proportion of his or her tosses that were tails. The students then report their results, and the professor records the proportions. One student claims to have tossed her coin 200 times and found 58% tails. What do you think of this claim? Explain your response. A) This is a typical result. Her proportion is only 1.60 standard deviations above the mean. B) This is an extremely unlikely result. Her proportion is about 5.2 standard deviations above the mean. C) This is an unusual result. Her proportion is about 2.26 standard deviations above the mean. D) This is a typical result. Her proportion is only 2.26 standard deviations above the mean. E) This is a fairly unusual result. Her proportion is about 1.60 standard deviations above the mean. 10) Determine whether the Normal model may be used to describe the distribution of the sample means. If the Normal model may be used, list the conditions and explain why each is satisfied. If Normal model may not be used, explain which condition is not satisfied. 11) A researcher believes that scores on an IQ test for students at a certain college are skewed to the 11) left with a mean of 72 and a standard deviation of 15. The college has a total of 850 students. The researcher selects 200 students at random and determines the mean test score, x, for the students in the sample. May the Normal model be used to describe the sampling distribution of the mean, x? A) No, Normal model may not be used. Large enough sample condition is not satisfied: since the original population is skewed to the left, 200 is not a large enough sample B) No, Normal model may not be used. 10% condition is not satisfied : the 200 students in the sample represent more than 10% of students at the college. This means that the independence assumption will not be satisfied. C) No, Normal model may not be used since scores for students at the college are not normally distributed D) No, Normal model may not be used. Randomization condition is not satisfied since the 200 students in the sample may not be representative of all students at the college. E) Yes, Normal model may be used. Randomization condition: The students were selected at random Independence assumption: It is reasonable to think that scores of randomly selected students are mutually independent. Large enough sample condition: a sample of 200 is certainly large enough, whatever the distribution of the scores in the original population 10% condition is satisfied since the 200 students represent more than 10% of students at the college. 3

4 12) The weights of men in a certain city are normally distributed with a mean of 153 lb and a standard deviation of 22 lb. Suppose a sample of 3 men is selected at random from the city and the mean weight, x is determined for the men in the sample. May the Normal model be used to describe the sampling distribution of the mean, x? A) Yes, Normal model may be used. Randomization condition: The men were selected at random Independence assumption: It is reasonable to think that weights of randomly selected men are mutually independent. Large enough sample condition: Since the original population is normally distributed, a sample of 3 is large enough, in fact any sample would be large enough. 10% condition: the 3 men in the sample certainly represent less than 10% of men in the city. B) No, Normal model may not be used: Large enough sample condition is not satisfied: since the sample size is only 3 C) Randomization condition is not satisfied: The men in the sample do not represent a simple random sample and may not be representative of all men in the city D) No, Normal model may not be used: 10% condition: is not satisfied since the 3 men in the sample represent less than 10% of men in the city. E) Independence assumption is not satisfied: Since the men may be related, the chance of selecting a heavy man depends on who has already been selected. 12) Describe the indicated sampling distribution. 13) The weights of people in a certain population are normally distributed with a mean of 158 lb and a standard deviation of 25 lb. Describe the sampling distribution of the mean for samples of size 9. In particular, state whether the distribution of the sample mean is normal or approximately normal and give its mean and standard deviation. A) Normal, mean = 158 lb, standard deviation = 8.33 lb B) Approximately normal, mean = 158 lb, standard deviation = 2.78 lb C) Normal, mean = 158 lb, standard deviation = 2.78 lb D) Approximately normal, mean = 158 lb, standard deviation = 8.33 lb E) Normal, mean = 158 lb, standard deviation = 25 lb 13) 14) Let x represent the number which shows up when a balanced die is rolled. Then x is a random variable with a mean of 3.5 and a standard deviation of Let x denote the mean of the numbers obtained when the die is rolled 36 times. Determine the sampling distribution of x. In particular, state whether the distribution of the sample mean is normal or approximately normal and give its mean and standard deviation. A) Normal, mean = 3.5, standard deviation = 0.29 B) Normal, mean = 3.5, standard deviation = 0.05 C) Approximately normal, mean = 3.5, standard deviation = 0.05 D) Approximately normal, mean = 3.5, standard deviation = 0.29 E) Approximately normal, mean = 3.5, standard deviation = ) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. At a large university, students have an average credit card debt of $2500, with a standard deviation of $1200. A random sample of students is selected and interviewed about their credit card debt. Use the Rule to answer the question about the mean credit card debt for the students in this sample. 15) If we imagine all the possible random samples of 250 students at this university, 68% of 15) the samples should have means between what two numbers? 4

5 Find the specified probability, from a table of Normal probabilities. Assume that the necessary conditions and assumptions are met. 16) The number of hours per week that high school seniors spend on computers is normally 16) distributed, with a mean of 6 hours and a standard deviation of 2 hours. 80 students are chosen at random. Let y represent the mean number of hours spent on the computer for this group. Find the probability that y is between 6.2 and ) The weight of crackers in a box is stated to be 16 ounces. The amount that the packaging machine puts in the boxes is believed to have a Normal model with mean ounces and standard deviation 0.3 ounces. What is the probability that the mean weight of a 10-box case of crackers is below 16 ounces? 17) 18) The amount of snowfall falling in a certain mountain range is normally distributed with a mean of 91 inches, and a standard deviation of 12 inches. What is the probability that the mean annual snowfall during 36 randomly picked years will exceed 93.8 inches? 18) 19) A restaurant's receipts show that the cost of customers' dinners has a skewed distribution with a mean of $54 and a standard deviation of $18. What is the probability that the next 100 customers will spend a total of at least $5800 on dinner? 19) 5

6 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 20) At a shoe factory, the time taken to polish a finished shoe has a mean of 3.7 minutes and a standard deviation of 0.48 minutes. If 44 shoes are polished, there is a 5% chance that the mean time to polish the shoes is below what value? A) 3.51 minutes B) 3.89 minutes C) 3.58 minutes D) 3.82 minutes E) 3.53 minutes 20) Provide an appropriate response. 21) A researcher selects samples of size n from a population and determines the mean test score for each sample. The mean and standard deviation of the sampling distribution are 60 and 12 respectively. If the sample size is multiplied by a factor of 4, what will the mean and standard deviation of the new sampling distribution be? A) mean will be 60, standard deviation will be 3 B) mean will be 60, standard deviation will be 6 C) mean will be 30, standard deviation will be 3 D) mean will be 30, standard deviation will be 6 E) mean will be 60, standard deviation will be 24 21) 22) In which of the following situations does the Central Limit Theorem allow use of a Normal model for the sampling distribution model: A: Weights of students are normally distributed. We wish to determine the probability that the mean weight for a random sample of 4 students is greater than 150 pounds. B: The distribution of test scores of students is slightly skewed to the right. We wish to determine the probability that the mean score for a random sample of 8 students is greater than 80. C: The distribution of incomes of students is strongly skewed to the right. We wish to determine the probability that the mean income for a random sample of 100 students is greater than $25,000. A) A and C B) A only C) C only D) A, B, and C E) A and B 22) 23) A sample is chosen randomly from a population that was strongly skewed to the right. Describe the sampling distribution model for the sample mean if the sample size is small. A) Skewed right, center at µ, standard deviation /n B) Normal, center at µ, standard deviation / n C) There is not enough information to describe the sampling distribution model. D) Normal, center at µ, standard deviation /n E) Skewed right, center at µ, standard deviation / n 23) 6

7 24) A certain population is bimodal. We want to estimate its mean, so we will collect a sample. Which should be true if we use a large sample rather than a small one? I. The distribution of our sample data will be more clearly bimodal. II. The sampling distribution of the sample means will be approximately normal. III. The variability of the sample means will be smaller. A) I, II, and III B) III only C) I only D) II and III E) II only 24) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 25) A can of pumpkin pie mix contains a mean of 30 ounces and a standard deviation of 2 ounces. The contents of the cans are normally distributed. What is the probability that four randomly selected cans of pumpkin pie mix contain a total of more than 126 ounces? 25) 7

AP Stats. Ch.7 Competition MULTUPLE CHIUCE. Choose the one alternative that best completes the statement or answers the question.

AP Stats. Ch.7 Competition MULTUPLE CHIUCE. Choose the one alternative that best completes the statement or answers the question. AP Stats. Ch.7 Competition MULTUPLE CHIUCE. Choose the one alternative that best completes the statement or answers the question. Determine whether the Normal model may be used to describe the distribution

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Use the Central Limit Theorem to find the indicated probability. The sample size is n,

More information

1 Sampling Distributions

1 Sampling Distributions 1 Sampling Distributions 1.1 Statistics and Sampling Distributions When a random sample is selected the numerical descriptive measures calculated from such a sample are called statistics. These statistics

More information

Sec$on 6.1: Discrete and Con.nuous Random Variables. Tuesday, November 14 th, 2017

Sec$on 6.1: Discrete and Con.nuous Random Variables. Tuesday, November 14 th, 2017 Sec$on 6.1: Discrete and Con.nuous Random Variables Tuesday, November 14 th, 2017 Discrete and Continuous Random Variables Learning Objectives After this section, you should be able to: ü COMPUTE probabilities

More information

Problem Set 08 Sampling Distribution of Sample Mean

Problem Set 08 Sampling Distribution of Sample Mean Problem Set 08 Sampling Distribution of Sample Mean MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the requested probability. 1) The table reports

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

*****CENTRAL LIMIT THEOREM (CLT)*****

*****CENTRAL LIMIT THEOREM (CLT)***** Sampling Distributions and CLT Day 5 *****CENTRAL LIMIT THEOREM (CLT)***** (One of the MOST important theorems in Statistics - KNOW AND UNDERSTAND THIS!!!!!!) Draw an SRS of size n from ANY population

More information

University of California, Los Angeles Department of Statistics. Normal distribution

University of California, Los Angeles Department of Statistics. Normal distribution University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Normal distribution The normal distribution is the most important distribution. It describes

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 8 Sampling Distributions 8.1 Distribution of the Sample Mean 1 Describe the distribution of the sample mean: normal population. MULTIPLE CHOICE. Choose the one alternative that best completes the statement

More information

CH 6 Review Normal Probability Distributions College Statistics

CH 6 Review Normal Probability Distributions College Statistics CH 6 Review Normal Probability Distributions College Statistics Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Using the following uniform density

More information

Record on a ScanTron, your choosen response for each question. You may write on this form. One page of notes and a calculator are allowed.

Record on a ScanTron, your choosen response for each question. You may write on this form. One page of notes and a calculator are allowed. Ch 16, 17 Math 240 Exam 4 v1 Good SAMPLE No Book, Yes 1 Page Notes, Yes Calculator, 120 Minutes Dressler Record on a ScanTron, your choosen response for each question. You may write on this form. One page

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

I. Standard Error II. Standard Error III. Standard Error 2.54

I. Standard Error II. Standard Error III. Standard Error 2.54 1) Original Population: Match the standard error (I, II, or III) with the correct sampling distribution (A, B, or C) and the correct sample size (1, 5, or 10) I. Standard Error 1.03 II. Standard Error

More information

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables You are dealt a hand of 5 cards. Find the probability distribution table for the number of hearts. Graph

More information

Math 227 (Statistics) Chapter 6 Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 227 (Statistics) Chapter 6 Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 227 (Statistics) Chapter 6 Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Using the following uniform density curve, answer the

More information

Top Incorrect Problems

Top Incorrect Problems What is the z-score for scores in the bottom 5%? a) -1.645 b) 1.645 c).4801 d) The score is not listed in the table. A professor grades 120 research papers and reports that the average score was an 80%.

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

Chapter 9 & 10. Multiple Choice.

Chapter 9 & 10. Multiple Choice. Chapter 9 & 10 Review Name Multiple Choice. 1. An agricultural researcher plants 25 plots with a new variety of corn. The average yield for these plots is X = 150 bushels per acre. Assume that the yield

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Chapter 8. Binomial and Geometric Distributions

Chapter 8. Binomial and Geometric Distributions Chapter 8 Binomial and Geometric Distributions Lesson 8-1, Part 1 Binomial Distribution What is a Binomial Distribution? Specific type of discrete probability distribution The outcomes belong to two categories

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name The bar graph shows the number of tickets sold each week by the garden club for their annual flower show. ) During which week was the most number of tickets sold? ) A) Week B) Week C) Week 5

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1 6.1 Discrete and Continuous Random Variables Random Variables A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Chapter 18 Sampling Distribution Models

Chapter 18 Sampling Distribution Models 282 Part V From the Data at Hand to the World at Large 1. Send mone. Chapter 18 Sampling Distribution Models All of the histograms are centered around p = 005.. As n gets larger, the shape of the histograms

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1324 Review for Test 4 November 2016 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Prepare a probability distribution for the experiment. Let x

More information

Exam 1 Review. 1) Identify the population being studied. The heights of 14 out of the 31 cucumber plants at Mr. Lonardo's greenhouse.

Exam 1 Review. 1) Identify the population being studied. The heights of 14 out of the 31 cucumber plants at Mr. Lonardo's greenhouse. Exam 1 Review 1) Identify the population being studied. The heights of 14 out of the 31 cucumber plants at Mr. Lonardo's greenhouse. 2) Identify the population being studied and the sample chosen. The

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

BIOL The Normal Distribution and the Central Limit Theorem

BIOL The Normal Distribution and the Central Limit Theorem BIOL 300 - The Normal Distribution and the Central Limit Theorem In the first week of the course, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

AP STATISTICS Name: Period: Review Unit VI Probability Models and Sampling Distributions

AP STATISTICS Name: Period: Review Unit VI Probability Models and Sampling Distributions AP STATISTICS Name: Period: Review Unit VI Probability Models and Sampling Distributions Show all work and reasoning. 1. Professional football players in the NFL have a distribution of salaries that is

More information

What percent of people make less than $25000?

What percent of people make less than $25000? ` Problem of the Day The mean income for a 23 33 year old in the State of Illinois is around $39000 with a standard deviation $4670. (Assume incomes are normally distributed) What percent of people make

More information

(j) Find the first quartile for a standard normal distribution.

(j) Find the first quartile for a standard normal distribution. Examples for Chapter 5 Normal Probability Distributions Math 1040 1 Section 5.1 1. Heights of males at a certain university are approximately normal with a mean of 70.9 inches and a standard deviation

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Using the Central Limit

Using the Central Limit Using the Central Limit Theorem By: OpenStaxCollege It is important for you to understand when to use the central limit theorem. If you are being asked to find the probability of the mean, use the clt

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

Sampling Distributions For Counts and Proportions

Sampling Distributions For Counts and Proportions Sampling Distributions For Counts and Proportions IPS Chapter 5.1 2009 W. H. Freeman and Company Objectives (IPS Chapter 5.1) Sampling distributions for counts and proportions Binomial distributions for

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

4.2 Bernoulli Trials and Binomial Distributions

4.2 Bernoulli Trials and Binomial Distributions Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 4.2 Bernoulli Trials and Binomial Distributions A Bernoulli trial 1 is an experiment with exactly two outcomes: Success and

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

The Central Limit Theorem: Homework

The Central Limit Theorem: Homework The Central Limit Theorem: Homework EXERCISE 1 X N(60, 9). Suppose that you form random samples of 25 from this distribution. Let X be the random variable of averages. Let X be the random variable of sums.

More information

Name PID Section # (enrolled)

Name PID Section # (enrolled) STT 315 - Lecture 3 Instructor: Aylin ALIN 04/02/2014 Midterm # 2 A Name PID Section # (enrolled) * The exam is closed book and 80 minutes. * You may use a calculator and the formula sheet that you brought

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Chapter 6: Random Variables and Probability Distributions

Chapter 6: Random Variables and Probability Distributions Chapter 6: Random Variables and Distributions These notes reflect material from our text, Statistics, Learning from Data, First Edition, by Roxy Pec, published by CENGAGE Learning, 2015. Random variables

More information

Chapter 15: Sampling distributions

Chapter 15: Sampling distributions =true true Chapter 15: Sampling distributions Objective (1) Get "big picture" view on drawing inferences from statistical studies. (2) Understand the concept of sampling distributions & sampling variability.

More information

CHAPTER 5 SAMPLING DISTRIBUTIONS

CHAPTER 5 SAMPLING DISTRIBUTIONS CHAPTER 5 SAMPLING DISTRIBUTIONS Sampling Variability. We will visualize our data as a random sample from the population with unknown parameter μ. Our sample mean Ȳ is intended to estimate population mean

More information

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives

6.1 Discrete & Continuous Random Variables. Nov 4 6:53 PM. Objectives 6.1 Discrete & Continuous Random Variables examples vocab Objectives Today we will... - Compute probabilities using the probability distribution of a discrete random variable. - Calculate and interpret

More information

and µ Asian male > " men

and µ Asian male >  men A.P. Statistics Sampling Distributions and the Central Limit Theorem Definitions A parameter is a number that describes the population. A parameter always exists but in practice we rarely know its value

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or Solve the problem. 1. Find forα=0.01. A. 1.96 B. 2.575 C. 1.645 D. 2.33 2.Whatistheconfidencelevelofthefolowingconfidenceintervalforμ?

More information

LECTURE 6 DISTRIBUTIONS

LECTURE 6 DISTRIBUTIONS LECTURE 6 DISTRIBUTIONS OVERVIEW Uniform Distribution Normal Distribution Random Variables Continuous Distributions MOST OF THE SLIDES ADOPTED FROM OPENINTRO STATS BOOK. NORMAL DISTRIBUTION Unimodal and

More information

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution!

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution! Section 5 3 The Mean and Standard Deviation of a Binomial Distribution! Previous sections required that you to find the Mean and Standard Deviation of a Binomial Distribution by using the values from a

More information

STAT Chapter 7: Central Limit Theorem

STAT Chapter 7: Central Limit Theorem STAT 251 - Chapter 7: Central Limit Theorem In this chapter we will introduce the most important theorem in statistics; the central limit theorem. What have we seen so far? First, we saw that for an i.i.d

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Please have out... - notebook - calculator

Please have out... - notebook - calculator Please have out... - notebook - calculator May 6 8:36 PM 6.3 How can we find probabilities when each observation has two possible outcomes? 1 What are we learning today? John Doe claims to possess ESP.

More information

Exercise Set 1 The normal distribution and sampling distributions

Exercise Set 1 The normal distribution and sampling distributions Eercise Set 1 The normal distribution and sampling distributions 1). An orange juice producer buys all his oranges from a large orange grove. The amount of juice squeezed from each of these oranges is

More information

MA131 Lecture 8.2. The normal distribution curve can be considered as a probability distribution curve for normally distributed variables.

MA131 Lecture 8.2. The normal distribution curve can be considered as a probability distribution curve for normally distributed variables. Normal distribution curve as probability distribution curve The normal distribution curve can be considered as a probability distribution curve for normally distributed variables. The area under the normal

More information

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted

Figure 1: 2πσ is said to have a normal distribution with mean µ and standard deviation σ. This is also denoted Figure 1: Math 223 Lecture Notes 4/1/04 Section 4.10 The normal distribution Recall that a continuous random variable X with probability distribution function f(x) = 1 µ)2 (x e 2σ 2πσ is said to have a

More information

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 4 DISCRETE PROBABILITY DISTRIBUTIONS A random variable is the description of the outcome of an experiment in words. The verbal description of a random variable tells you how to find or calculate

More information

AP Statistics Ch 8 The Binomial and Geometric Distributions

AP Statistics Ch 8 The Binomial and Geometric Distributions Ch 8.1 The Binomial Distributions The Binomial Setting A situation where these four conditions are satisfied is called a binomial setting. 1. Each observation falls into one of just two categories, which

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

FINAL REVIEW 14! (14 2)!2!

FINAL REVIEW 14! (14 2)!2! Discrete Mathematics FINAL REVIEW Name Per. Evaluate and simplify the following completely, Show all your work. 1. 5! 2. 7! 42 3. 9!4! 3!10! 4. 24!19! 22!21! 5. 4! (7 5)! 6. 46! 45!23 7. 9 5!3! 18 2!4!

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

The binomial distribution p314

The binomial distribution p314 The binomial distribution p314 Example: A biased coin (P(H) = p = 0.6) ) is tossed 5 times. Let X be the number of H s. Fine P(X = 2). This X is a binomial r. v. The binomial setting p314 1. There are

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Contents. The Binomial Distribution. The Binomial Distribution The Normal Approximation to the Binomial Left hander example

Contents. The Binomial Distribution. The Binomial Distribution The Normal Approximation to the Binomial Left hander example Contents The Binomial Distribution The Normal Approximation to the Binomial Left hander example The Binomial Distribution When you flip a coin there are only two possible outcomes - heads or tails. This

More information

Determine whether the given procedure results in a binomial distribution. If not, state the reason why.

Determine whether the given procedure results in a binomial distribution. If not, state the reason why. Math 5.3 Binomial Probability Distributions Name 1) Binomial Distrbution: Determine whether the given procedure results in a binomial distribution. If not, state the reason why. 2) Rolling a single die

More information

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic.

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic. A Statistics Section 6.1 Day 1 ultiple Choice ractice Name: 1. A variable whose value is a numerical outcome of a random phenomenon is called a) a random variable. b) a parameter. c) biased. d) a random

More information

The "bell-shaped" curve, or normal curve, is a probability distribution that describes many real-life situations.

The bell-shaped curve, or normal curve, is a probability distribution that describes many real-life situations. 6.1 6.2 The Standard Normal Curve The "bell-shaped" curve, or normal curve, is a probability distribution that describes many real-life situations. Basic Properties 1. The total area under the curve is.

More information

Chapter 3: Probability Distributions and Statistics

Chapter 3: Probability Distributions and Statistics Chapter 3: Probability Distributions and Statistics Section 3.-3.3 3. Random Variables and Histograms A is a rule that assigns precisely one real number to each outcome of an experiment. We usually denote

More information

Sampling Distributions and the Central Limit Theorem

Sampling Distributions and the Central Limit Theorem Sampling Distributions and the Central Limit Theorem February 18 Data distributions and sampling distributions So far, we have discussed the distribution of data (i.e. of random variables in our sample,

More information

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions

Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Chapter 7: Sampling Distributions Objectives: Students will: Define a sampling distribution. Contrast bias and variability. Describe the sampling distribution of a proportion (shape, center, and spread).

More information

The Central Limit Theorem: Homework

The Central Limit Theorem: Homework The Central Limit Theorem: Homework EXERCISE 1 X N(60, 9). Suppose that you form random samples of 25 from this distribution. Let X be the random variable of averages. Let X be the random variable of sums.

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

STAT 241/251 - Chapter 7: Central Limit Theorem

STAT 241/251 - Chapter 7: Central Limit Theorem STAT 241/251 - Chapter 7: Central Limit Theorem In this chapter we will introduce the most important theorem in statistics; the central limit theorem. What have we seen so far? First, we saw that for an

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

Sampling Distributions Chapter 18

Sampling Distributions Chapter 18 Sampling Distributions Chapter 18 Parameter vs Statistic Example: Identify the population, the parameter, the sample, and the statistic in the given settings. a) The Gallup Poll asked a random sample of

More information

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - SUMMER DR. DAVID BRIDGE

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - SUMMER DR. DAVID BRIDGE MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - SUMMER 2007 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the

More information

1. State Sales Tax. 2. Baggage Check

1. State Sales Tax. 2. Baggage Check 1. State Sales Tax A survey asks a random sample of 1500 adults in Ohio if they support an increase in the state sales tax from 5% to 6% with the additional revenue going to education. If 40% of all adults

More information

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x)

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x) N. Name: MATH: Mathematical Thinking Sec. 08 Spring 0 Worksheet 9: Solution Problem Compute the expected value of this probability distribution: x 3 8 0 3 P(x) 0. 0.0 0.3 0. Clearly, a value is missing

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Module 5 Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculate the specified probability ) Suppose that T is a random variable. Given

More information

MidTerm 1) Find the following (round off to one decimal place):

MidTerm 1) Find the following (round off to one decimal place): MidTerm 1) 68 49 21 55 57 61 70 42 59 50 66 99 Find the following (round off to one decimal place): Mean = 58:083, round off to 58.1 Median = 58 Range = max min = 99 21 = 78 St. Deviation = s = 8:535,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Midterm Review Name 1) As part of an economics class project, students were asked to randomly select 500 New York Stock Exchange (NYSE) stocks from the Wall Street Journal. As part of the project, students

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

HHH HHT HTH THH HTT THT TTH TTT

HHH HHT HTH THH HTT THT TTH TTT AP Statistics Name Unit 04 Probability Period Day 05 Notes Discrete & Continuous Random Variables Random Variable: Probability Distribution: Example: A probability model describes the possible outcomes

More information

Chapter Six Probability Distributions

Chapter Six Probability Distributions 6.1 Probability Distributions Discrete Random Variable Chapter Six Probability Distributions x P(x) 2 0.08 4 0.13 6 0.25 8 0.31 10 0.16 12 0.01 Practice. Construct a probability distribution for the number

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

Introduction to Business Statistics QM 120 Chapter 6

Introduction to Business Statistics QM 120 Chapter 6 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Chapter 6: Continuous Probability Distribution 2 When a RV x is discrete, we can

More information

Chapter 7 Study Guide: The Central Limit Theorem

Chapter 7 Study Guide: The Central Limit Theorem Chapter 7 Study Guide: The Central Limit Theorem Introduction Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy to calculate. In this

More information

Binomial Random Variables

Binomial Random Variables Models for Counts Solutions COR1-GB.1305 Statistics and Data Analysis Binomial Random Variables 1. A certain coin has a 25% of landing heads, and a 75% chance of landing tails. (a) If you flip the coin

More information

Normal Cumulative Distribution Function (CDF)

Normal Cumulative Distribution Function (CDF) The Normal Model 2 Solutions COR1-GB.1305 Statistics and Data Analysis Normal Cumulative Distribution Function (CDF 1. Suppose that an automobile muffler is designed so that its lifetime (in months is

More information

1. Find the area under the standard normal distribution curve for each. (a) Between z = 0.19 and z = 1.23.

1. Find the area under the standard normal distribution curve for each. (a) Between z = 0.19 and z = 1.23. Statistics Test 3 Name: KEY 1 Find the area under the standard normal distribution curve for each a Between = 019 and = 123 normalcdf 019, 123 = 04660 b To the left of = 156 normalcdf 100, 156 = 00594

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information