The Evaluation of American Compound Option Prices under Stochastic Volatility. Carl Chiarella and Boda Kang

Size: px
Start display at page:

Download "The Evaluation of American Compound Option Prices under Stochastic Volatility. Carl Chiarella and Boda Kang"

Transcription

1 The Evaluation of American Compound Option Prices under Stochastic Volatility Carl Chiarella and Boda Kang School of Finance and Economics University of Technology, Sydney CNR-IMATI Finance Day Wednesday, 8th April, 9

2 Plan of Talk Compound options A two pass PDE free BVP Sparse grid implementation Monte Carlo simulation implementation Numerical examples Conclusions Chiarella and Kang CNR-IMATI 9

3 Compound Option Compound option is an option on an option. Allow for large leverage. Often used in currency and fixed-income markets. Problem: the tender for a contract that needs 4 years of financing. If company wins tender, could be exposed to an interest rate rise by the time the contract starts (say months). Solution: purchase a -month call option on a 4 year cap. Properties: easily leverage a position; with very little upfront premium but possible to take a substantial position. Chiarella and Kang CNR-IMATI 9

4 $ Price of the underlying asset K D Price of the daughter option K M T M T D time Figure : The components of a compound option Chiarella and Kang CNR-IMATI 9

5 Literature on the Evaluation of Compound Options Geske (979)-the first closed-form solution for the price of a vanilla European call on a European call. Han in his thesis () and Fouque and Han (5): derive a fast, efficient and robust approximation to compute the prices of compound options within the context of multiscale stochastic volatility models; they only consider the case of European option on European option; their method relies on certain expansions so its range of validity is not entirely clear. Buchen (8): Exotic compound options in BS-world. Chiarella and Kang CNR-IMATI 9 4

6 Compound Options - Evaluation under Stochastic Volatility We follow Heston assuming the dynamics for S under RN measure governed by ds = (r q)sdt + vsdz, () dv = (κ v θ v (κ v + λ)v)dt + σ vdz. () Here S and v are correlated with E(dZ dz ) = ρdt. Assumes market price of vol. risk = λ v. Chiarella and Kang CNR-IMATI 9 5

7 The price of an American compound option under SV can be formulated as the solution to a two-pass Free-BVP with the following Kolmogorov operator: K = vs + ρσvs S S v + σ v v + (r q) S S + (κ v(θ v v) λv) v. () Chiarella and Kang CNR-IMATI 9 6

8 First the PDE for the value of the daughter option D(S, v, t) with the Kolmogorov operator K: KD rd + D t =. (4) Solve on t T D s.t. D(S, v, T D ) = (S K D ) +, and free (early exercise) boundary and smooth pasting conditions: D(d(v, t), v, t) = d(v, t) K D ; (5) lim S d(v,t) D S =, lim S d(v,t) D v =. (6) Here S = d(v, t) is the early exercise boundary for the daughter option at time t and variance v. Chiarella and Kang CNR-IMATI 9 7

9 Next, the PDE for the mother option M(S, v, t): KM rm + M t =. (7) Solve on t T M with terminal condition M(S, v, T M ) = (D(S, v, T M ) K M ) +, (8) and free (early exercise) boundary and smooth pasting conditions: M(m(v, t), v, t) = D(m(v, t), v, t) K M, (9) lim S m(v,t) M S = D S, lim S m(v,t) M v = D v. () Here S = m(v, t) is the early exercise boundary for the mother option at time t and variance v. Chiarella and Kang CNR-IMATI 9 8

10 Sparse Grid Implementation It is computationally demanding to solve the two nested PDEs (4) and (7). Hence we apply the sparse grid approach. We implement the sparse grid combination technique of Reisinger and Wittum (7) to solve these PDEs. The technique relies on a combination technique requiring solution of the original equation only on several specific grids and a subsequent extrapolation step. In Figure, those grids are dense in one direction but sparse in the other direction. Solve the two PDEs on each of the grids in parallel and combine the results from different grids. Chiarella and Kang CNR-IMATI 9 9

11 Figure : A typical S (vertical) v (horizontal) axes. A sparse grid with a level 6 with respect to the combinations (from left to right), (6,), (5,), (4,), (,), (,4), (,5), (,6). The (6, ) grid has 6 subintervals in the S direction and subintervals in the v direction, and so forth. Chiarella and Kang CNR-IMATI 9

12 Figure : A typical S (vertical) v (horizontal) axes. A sparse grid with a level 5 with respect to the combinations (from left to right), (5,), (4,), (,), (,), (,4), (,5). The (, ) grid has subintervals in the S direction and subintervals in the v direction, and so forth. Chiarella and Kang CNR-IMATI 9

13 Following the combination technique, the solution c l (l sparse grid level) of the PDE is c l = l C(l n, n) l C(l n, n). () n= n= The combination gives a more accurate solution of the PDE. There are (l + ) PDE solvers running in parallel at the same time on each of the sparse grids for level l and level (l ) respectively. Because of different scale characteristics in S and v direction and also some bad behavior along the boundary we need to use a modified sparse grid. (see Figure 4) Chiarella and Kang CNR-IMATI 9

14 Figure 4: A modified sparse grid with a initial level and total level 6 with respect to each combination. From left to right we see the combinations (,4), (,), (4,). Chiarella and Kang CNR-IMATI 9

15 Monte Carlo simulation implementation We need an alternative method to check the solution. Use the Method of Lines (MOL) to solve the PDE for the Daughter option and obtain the option prices with a range of maturities, and store the results. Implement Monte Carlo Simulation scheme of Ibanez & Zapatero (4) to find the price of the American mother option with suitable terminal condition (8) and free boundary condition (9). The data of the underlying daughter option are available from the previous results from MOL. Chiarella and Kang CNR-IMATI 9 4

16 S S max S * = d ( v τ ) m, n Early ex. condn. satisfied. τ n T τ v m v Figure 5: Solving for the free boundary point of the Daughter option along a (v m, τ n ) line using MOL. Chiarella and Kang CNR-IMATI 9 5

17 c Solve daughter option using MOL Early exercise along this line Solve mother option using MC v S Figure 6: Illustrating the MOL-MC scheme along one (S, v) line Chiarella and Kang CNR-IMATI 9 6

18 Monte Carlo Simulation for the Mother option. A finite number of exercise opportunities = t < t, < t N = T M are considered. The optimal exercise strategy at every point at time t n is characterized by a region in a two dimensional-space (v, t n ). Going backward in time, we solve the following equation for each n = N,..., at different variance levels v i : M(S, v i, t n ) = D(S, v i, t n ) K M ; for S using Newton s method to find the optimal exercise frontier S t n (v i ); Chiarella and Kang CNR-IMATI 9 7

19 S Χ Χ S * t N ( v) Χ S S * t N ( v) K M t N t N t N = T M t Figure 7: Monte Carlo Simulation for the Mother option for some fixed v Chiarella and Kang CNR-IMATI 9 8

20 Continuing to work backwards, we can find all optimal strategies at times t < t,, < t N for a certain number of variance levels. Finally implementing another MC simulation to generate paths for both the underlying prices and the variance forward in time starting from t to find the price of the mother option M(S, v, t ) based on all known optimal exercise strategies. Chiarella and Kang CNR-IMATI 9 9

21 Numerical Examples Parameter Value SV Parameter Value r. θ.4 q.5 κ v. T D. σ. K D λ v. T M.6 ρ ±.5 K M 7 Table : Parameter values used for the American call daughter option. The stochastic volatility (SV) parameters correspond to the Heston model. Chiarella and Kang CNR-IMATI 9

22 ρ =.5, v =.4 S Runtime Method 8 9 (sec) SG (4,6) MOL + MC (5,) std err Lower Bound Upper Bound Table : Compound prices (American call on American call) computed using sparse grid (SG), Monte Carlo simulation (MC) together with method of lines (MOL). Parameter values are given in Table, with ρ =.5 and v =.4. Chiarella and Kang CNR-IMATI 9

23 ρ =.5, v =.4 S Runtime Method 8 9 (sec) SG (4,6) MOL + MC (5,) std err Lower Bound Upper Bound Table : Compound prices (American call on American call) computed using sparse grid (SG), Monte Carlo simulation (MC) together with method of lines (MOL). Parameter values are given in Table, with ρ =.5 and v =.4. Chiarella and Kang CNR-IMATI 9

24 Free surface of daughter option d(v,τ) v τ Free surface of mother option (MC Simulation) m(v,τ) v Free surface of mother option (PSOR) τ m(v,τ) v τ Figure 8: Free surfaces of both daughter option and mother option, with the parameters in Table and ρ =.5. Chiarella and Kang CNR-IMATI 9

25 Free surface of daughter option d(v,τ) v τ Free surface of mother option (MC Simulation) m(v,τ) v Free surface of mother option (PSOR) τ m(v,τ) v τ Figure 9: Free surfaces of both daughter option and mother option, with the parameters in Table and ρ =.5. Chiarella and Kang CNR-IMATI 9 4

26 5 Free surfaces of daughter option, ρ=.5 d(v,τ) τ=. 5 τ=.4 τ=.6 τ= v 5 Free surfaces of daughter option, ρ=.5 d(v,τ) τ=. 5 τ=.4 τ=.6 τ= v Figure : Free surfaces of daughter option with different ρ, the time to maturity τ and parameters in Table. Chiarella and Kang CNR-IMATI 9 5

27 5 Free surfaces of mother option, ρ=.5 m(v,τ) τ=. 5 τ=.4 τ=.6 τ= v 5 Free surfaces of mother option, ρ=.5 m(v,τ) τ=. 5 τ=.4 τ=.6 τ= v Figure : Free surfaces of mother option with different ρ, the time to maturity τ and parameters in Table. Chiarella and Kang CNR-IMATI 9 6

28 6 Free surfaces of daughter option, ρ= d(v,τ) τ v =.4 v =. 5 Free surfaces of daughter option, ρ=.5 4 d(v,τ) τ v =.4 v =. Figure : Free surfaces of daughter option with different ρ, the variance v and parameters in Table. Chiarella and Kang CNR-IMATI 9 7

29 6 Free surfaces of mother option, ρ= m(v,τ) τ v =.4 v =. 5 Free surfaces of mother option, ρ=.5 m(v,τ) τ v =.4 v =. Figure : Free surfaces of mother option with different ρ, the variance v and parameters in Table. Chiarella and Kang CNR-IMATI 9 8

30 .4 Compound Option Price Differences, ρ=.5. %Price Differences (=%) zero price difference θ v =.4 θ v =.9 θ v = Share Price (S) Figure 4: Percentage price differences between constant and stochastic volatility ρ <. Chiarella and Kang CNR-IMATI 9 9

31 %Price Differences (=%) Compound Option Price Differences, ρ=.5 zero price difference θ v =.4 θ v =.9 θ v = Share Price (S) Figure 5: Percentage price differences between constant and stochastic volatility ρ >. Chiarella and Kang CNR-IMATI 9

32 Conclusions Compound Options under Stochastic Volatility Allow for early exercise feature Set up as two pass PDE FBVP Solve using the sparse grid technique Benchmark against MOL/MC The sparse grid approach can be speeded up by using better PDE solvers, e.g. MOL, operator splitting Future work; apply to specific examples e.g. real options applications such as multi-stage investment projects Chiarella and Kang CNR-IMATI 9

The Evaluation Of Barrier Option Prices Under Stochastic Volatility

The Evaluation Of Barrier Option Prices Under Stochastic Volatility QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 266 January 21 The Evaluation Of Barrier Option Prices Under Stochastic Volatility

More information

Numerical Evaluation of American Options Written on Two Underlying Assets using the Fourier Transform Approach

Numerical Evaluation of American Options Written on Two Underlying Assets using the Fourier Transform Approach 1 / 26 Numerical Evaluation of American Options Written on Two Underlying Assets using the Fourier Transform Approach Jonathan Ziveyi Joint work with Prof. Carl Chiarella School of Finance and Economics,

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24 Lecture outline

More information

Heston Stochastic Local Volatility Model

Heston Stochastic Local Volatility Model Heston Stochastic Local Volatility Model Klaus Spanderen 1 R/Finance 2016 University of Illinois, Chicago May 20-21, 2016 1 Joint work with Johannes Göttker-Schnetmann Klaus Spanderen Heston Stochastic

More information

Approximation Methods in Derivatives Pricing

Approximation Methods in Derivatives Pricing Approximation Methods in Derivatives Pricing Minqiang Li Bloomberg LP September 24, 2013 1 / 27 Outline of the talk A brief overview of approximation methods Timer option price approximation Perpetual

More information

Numerical Methods in Option Pricing (Part III)

Numerical Methods in Option Pricing (Part III) Numerical Methods in Option Pricing (Part III) E. Explicit Finite Differences. Use of the Forward, Central, and Symmetric Central a. In order to obtain an explicit solution for the price of the derivative,

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Simple Robust Hedging with Nearby Contracts

Simple Robust Hedging with Nearby Contracts Simple Robust Hedging with Nearby Contracts Liuren Wu and Jingyi Zhu Baruch College and University of Utah April 29, 211 Fourth Annual Triple Crown Conference Liuren Wu (Baruch) Robust Hedging with Nearby

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Calibration Lecture 4: LSV and Model Uncertainty

Calibration Lecture 4: LSV and Model Uncertainty Calibration Lecture 4: LSV and Model Uncertainty March 2017 Recap: Heston model Recall the Heston stochastic volatility model ds t = rs t dt + Y t S t dw 1 t, dy t = κ(θ Y t ) dt + ξ Y t dw 2 t, where

More information

Extrapolation analytics for Dupire s local volatility

Extrapolation analytics for Dupire s local volatility Extrapolation analytics for Dupire s local volatility Stefan Gerhold (joint work with P. Friz and S. De Marco) Vienna University of Technology, Austria 6ECM, July 2012 Implied vol and local vol Implied

More information

Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case

Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case Guang-Hua Lian Collaboration with Robert Elliott University of Adelaide Feb. 2, 2011 Robert Elliott,

More information

Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models

Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models Scott Robertson Carnegie Mellon University scottrob@andrew.cmu.edu http://www.math.cmu.edu/users/scottrob June

More information

Implementing Models in Quantitative Finance: Methods and Cases

Implementing Models in Quantitative Finance: Methods and Cases Gianluca Fusai Andrea Roncoroni Implementing Models in Quantitative Finance: Methods and Cases vl Springer Contents Introduction xv Parti Methods 1 Static Monte Carlo 3 1.1 Motivation and Issues 3 1.1.1

More information

Simple Robust Hedging with Nearby Contracts

Simple Robust Hedging with Nearby Contracts Simple Robust Hedging with Nearby Contracts Liuren Wu and Jingyi Zhu Baruch College and University of Utah October 22, 2 at Worcester Polytechnic Institute Wu & Zhu (Baruch & Utah) Robust Hedging with

More information

Multi-period mean variance asset allocation: Is it bad to win the lottery?

Multi-period mean variance asset allocation: Is it bad to win the lottery? Multi-period mean variance asset allocation: Is it bad to win the lottery? Peter Forsyth 1 D.M. Dang 1 1 Cheriton School of Computer Science University of Waterloo Guangzhou, July 28, 2014 1 / 29 The Basic

More information

Distributed Computing in Finance: Case Model Calibration

Distributed Computing in Finance: Case Model Calibration Distributed Computing in Finance: Case Model Calibration Global Derivatives Trading & Risk Management 19 May 2010 Techila Technologies, Tampere University of Technology juho.kanniainen@techila.fi juho.kanniainen@tut.fi

More information

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying Sensitivity analysis Simulating the Greeks Meet the Greeks he value of a derivative on a single underlying asset depends upon the current asset price S and its volatility Σ, the risk-free interest rate

More information

(RP13) Efficient numerical methods on high-performance computing platforms for the underlying financial models: Series Solution and Option Pricing

(RP13) Efficient numerical methods on high-performance computing platforms for the underlying financial models: Series Solution and Option Pricing (RP13) Efficient numerical methods on high-performance computing platforms for the underlying financial models: Series Solution and Option Pricing Jun Hu Tampere University of Technology Final conference

More information

Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14

Leverage Effect, Volatility Feedback, and Self-Exciting MarketAFA, Disruptions 1/7/ / 14 Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions Liuren Wu, Baruch College Joint work with Peter Carr, New York University The American Finance Association meetings January 7,

More information

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print):

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print): MATH4143 Page 1 of 17 Winter 2007 MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, 2007 Student Name (print): Student Signature: Student ID: Question

More information

Finite Difference Approximation of Hedging Quantities in the Heston model

Finite Difference Approximation of Hedging Quantities in the Heston model Finite Difference Approximation of Hedging Quantities in the Heston model Karel in t Hout Department of Mathematics and Computer cience, University of Antwerp, Middelheimlaan, 22 Antwerp, Belgium Abstract.

More information

European option pricing under parameter uncertainty

European option pricing under parameter uncertainty European option pricing under parameter uncertainty Martin Jönsson (joint work with Samuel Cohen) University of Oxford Workshop on BSDEs, SPDEs and their Applications July 4, 2017 Introduction 2/29 Introduction

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Near Real-Time Risk Simulation of Complex Portfolios on Heterogeneous Computing Systems with OpenCL

Near Real-Time Risk Simulation of Complex Portfolios on Heterogeneous Computing Systems with OpenCL Near Real-Time Risk Simulation of Complex Portfolios on Heterogeneous Computing Systems with OpenCL Javier Alejandro Varela, Norbert Wehn Microelectronic Systems Design Research Group University of Kaiserslautern,

More information

Multiscale Stochastic Volatility Models

Multiscale Stochastic Volatility Models Multiscale Stochastic Volatility Models Jean-Pierre Fouque University of California Santa Barbara 6th World Congress of the Bachelier Finance Society Toronto, June 25, 2010 Multiscale Stochastic Volatility

More information

Economic Scenario Generator: Applications in Enterprise Risk Management. Ping Sun Executive Director, Financial Engineering Numerix LLC

Economic Scenario Generator: Applications in Enterprise Risk Management. Ping Sun Executive Director, Financial Engineering Numerix LLC Economic Scenario Generator: Applications in Enterprise Risk Management Ping Sun Executive Director, Financial Engineering Numerix LLC Numerix makes no representation or warranties in relation to information

More information

Modern Methods of Option Pricing

Modern Methods of Option Pricing Modern Methods of Option Pricing Denis Belomestny Weierstraß Institute Berlin Motzen, 14 June 2007 Denis Belomestny (WIAS) Modern Methods of Option Pricing Motzen, 14 June 2007 1 / 30 Overview 1 Introduction

More information

Multilevel Monte Carlo Simulation

Multilevel Monte Carlo Simulation Multilevel Monte Carlo p. 1/48 Multilevel Monte Carlo Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance Workshop on Computational

More information

Pricing of a European Call Option Under a Local Volatility Interbank Offered Rate Model

Pricing of a European Call Option Under a Local Volatility Interbank Offered Rate Model American Journal of Theoretical and Applied Statistics 2018; 7(2): 80-84 http://www.sciencepublishinggroup.com/j/ajtas doi: 10.11648/j.ajtas.20180702.14 ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)

More information

CS476/676 Mar 6, Today s Topics. American Option: early exercise curve. PDE overview. Discretizations. Finite difference approximations

CS476/676 Mar 6, Today s Topics. American Option: early exercise curve. PDE overview. Discretizations. Finite difference approximations CS476/676 Mar 6, 2019 1 Today s Topics American Option: early exercise curve PDE overview Discretizations Finite difference approximations CS476/676 Mar 6, 2019 2 American Option American Option: PDE Complementarity

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

A Two Factor Forward Curve Model with Stochastic Volatility for Commodity Prices arxiv: v2 [q-fin.pr] 8 Aug 2017

A Two Factor Forward Curve Model with Stochastic Volatility for Commodity Prices arxiv: v2 [q-fin.pr] 8 Aug 2017 A Two Factor Forward Curve Model with Stochastic Volatility for Commodity Prices arxiv:1708.01665v2 [q-fin.pr] 8 Aug 2017 Mark Higgins, PhD - Beacon Platform Incorporated August 10, 2017 Abstract We describe

More information

Continuous Time Mean Variance Asset Allocation: A Time-consistent Strategy

Continuous Time Mean Variance Asset Allocation: A Time-consistent Strategy Continuous Time Mean Variance Asset Allocation: A Time-consistent Strategy J. Wang, P.A. Forsyth October 24, 2009 Abstract We develop a numerical scheme for determining the optimal asset allocation strategy

More information

Empirical Approach to the Heston Model Parameters on the Exchange Rate USD / COP

Empirical Approach to the Heston Model Parameters on the Exchange Rate USD / COP Empirical Approach to the Heston Model Parameters on the Exchange Rate USD / COP ICASQF 2016, Cartagena - Colombia C. Alexander Grajales 1 Santiago Medina 2 1 University of Antioquia, Colombia 2 Nacional

More information

Contents Critique 26. portfolio optimization 32

Contents Critique 26. portfolio optimization 32 Contents Preface vii 1 Financial problems and numerical methods 3 1.1 MATLAB environment 4 1.1.1 Why MATLAB? 5 1.2 Fixed-income securities: analysis and portfolio immunization 6 1.2.1 Basic valuation of

More information

The Impact of Stochastic Volatility and Policyholder Behaviour on Guaranteed Lifetime Withdrawal Benefits

The Impact of Stochastic Volatility and Policyholder Behaviour on Guaranteed Lifetime Withdrawal Benefits and Policyholder Guaranteed Lifetime 8th Conference in Actuarial Science & Finance on Samos 2014 Frankfurt School of Finance and Management June 1, 2014 1. Lifetime withdrawal guarantees in PLIs 2. policyholder

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

Richardson Extrapolation Techniques for the Pricing of American-style Options

Richardson Extrapolation Techniques for the Pricing of American-style Options Richardson Extrapolation Techniques for the Pricing of American-style Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of American-style Options In this paper we re-examine

More information

Multiname and Multiscale Default Modeling

Multiname and Multiscale Default Modeling Multiname and Multiscale Default Modeling Jean-Pierre Fouque University of California Santa Barbara Joint work with R. Sircar (Princeton) and K. Sølna (UC Irvine) Special Semester on Stochastics with Emphasis

More information

An Accelerated Approach to Static Hedging Barrier Options: Richardson Extrapolation Techniques

An Accelerated Approach to Static Hedging Barrier Options: Richardson Extrapolation Techniques An Accelerated Approach to Static Hedging Barrier Options: Richardson Extrapolation Techniques Jia-Hau Guo *, Lung-Fu Chang ** January, 2018 ABSTRACT We propose an accelerated static replication approach

More information

MODELLING VOLATILITY SURFACES WITH GARCH

MODELLING VOLATILITY SURFACES WITH GARCH MODELLING VOLATILITY SURFACES WITH GARCH Robert G. Trevor Centre for Applied Finance Macquarie University robt@mafc.mq.edu.au October 2000 MODELLING VOLATILITY SURFACES WITH GARCH WHY GARCH? stylised facts

More information

Multiscale Stochastic Volatility Models Heston 1.5

Multiscale Stochastic Volatility Models Heston 1.5 Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University of California Santa Barbara Modeling and Managing Financial Risks Paris,

More information

The Pennsylvania State University. The Graduate School. Department of Industrial Engineering AMERICAN-ASIAN OPTION PRICING BASED ON MONTE CARLO

The Pennsylvania State University. The Graduate School. Department of Industrial Engineering AMERICAN-ASIAN OPTION PRICING BASED ON MONTE CARLO The Pennsylvania State University The Graduate School Department of Industrial Engineering AMERICAN-ASIAN OPTION PRICING BASED ON MONTE CARLO SIMULATION METHOD A Thesis in Industrial Engineering and Operations

More information

APPROXIMATING FREE EXERCISE BOUNDARIES FOR AMERICAN-STYLE OPTIONS USING SIMULATION AND OPTIMIZATION. Barry R. Cobb John M. Charnes

APPROXIMATING FREE EXERCISE BOUNDARIES FOR AMERICAN-STYLE OPTIONS USING SIMULATION AND OPTIMIZATION. Barry R. Cobb John M. Charnes Proceedings of the 2004 Winter Simulation Conference R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds. APPROXIMATING FREE EXERCISE BOUNDARIES FOR AMERICAN-STYLE OPTIONS USING SIMULATION

More information

Research Paper 394 October Pricing American Options with Jumps in Asset and Volatility

Research Paper 394 October Pricing American Options with Jumps in Asset and Volatility QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 394 October 2018 Pricing American Options with Jumps in Asset and Volatility

More information

On VIX Futures in the rough Bergomi model

On VIX Futures in the rough Bergomi model On VIX Futures in the rough Bergomi model Oberwolfach Research Institute for Mathematics, February 28, 2017 joint work with Antoine Jacquier and Claude Martini Contents VIX future dynamics under rbergomi

More information

A METHODOLOGY FOR ASSESSING MODEL RISK AND ITS APPLICATION TO THE IMPLIED VOLATILITY FUNCTION MODEL

A METHODOLOGY FOR ASSESSING MODEL RISK AND ITS APPLICATION TO THE IMPLIED VOLATILITY FUNCTION MODEL A METHODOLOGY FOR ASSESSING MODEL RISK AND ITS APPLICATION TO THE IMPLIED VOLATILITY FUNCTION MODEL John Hull and Wulin Suo Joseph L. Rotman School of Management University of Toronto 105 St George Street

More information

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID:

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID: MATH6911 Page 1 of 16 Winter 2007 MATH6911: Numerical Methods in Finance Final exam Time: 2:00pm - 5:00pm, April 11, 2007 Student Name (print): Student Signature: Student ID: Question Full Mark Mark 1

More information

Optimal Trade Execution: Mean Variance or Mean Quadratic Variation?

Optimal Trade Execution: Mean Variance or Mean Quadratic Variation? Optimal Trade Execution: Mean Variance or Mean Quadratic Variation? Peter Forsyth 1 S. Tse 2 H. Windcliff 2 S. Kennedy 2 1 Cheriton School of Computer Science University of Waterloo 2 Morgan Stanley New

More information

Optimal robust bounds for variance options and asymptotically extreme models

Optimal robust bounds for variance options and asymptotically extreme models Optimal robust bounds for variance options and asymptotically extreme models Alexander Cox 1 Jiajie Wang 2 1 University of Bath 2 Università di Roma La Sapienza Advances in Financial Mathematics, 9th January,

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Accelerated Option Pricing Multiple Scenarios

Accelerated Option Pricing Multiple Scenarios Accelerated Option Pricing in Multiple Scenarios 04.07.2008 Stefan Dirnstorfer (stefan@thetaris.com) Andreas J. Grau (grau@thetaris.com) 1 Abstract This paper covers a massive acceleration of Monte-Carlo

More information

Stochastic volatility model of Heston and the smile

Stochastic volatility model of Heston and the smile Stochastic volatility model of Heston and the smile Rafa l Weron Hugo Steinhaus Center Wroc law University of Technology Poland In collaboration with: Piotr Uniejewski (LUKAS Bank) Uwe Wystup (Commerzbank

More information

Rough volatility models

Rough volatility models Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de October 18, 2018 Weierstrass Institute for Applied Analysis and Stochastics Rough volatility models Christian Bayer EMEA Quant

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

Multi-Curve Pricing of Non-Standard Tenor Vanilla Options in QuantLib. Sebastian Schlenkrich QuantLib User Meeting, Düsseldorf, December 1, 2015

Multi-Curve Pricing of Non-Standard Tenor Vanilla Options in QuantLib. Sebastian Schlenkrich QuantLib User Meeting, Düsseldorf, December 1, 2015 Multi-Curve Pricing of Non-Standard Tenor Vanilla Options in QuantLib Sebastian Schlenkrich QuantLib User Meeting, Düsseldorf, December 1, 2015 d-fine d-fine All rights All rights reserved reserved 0 Swaption

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

MC-Simulation for pathes in Heston's stochastic volatility model

MC-Simulation for pathes in Heston's stochastic volatility model MC-Simulation for pathes in Heston's stochastic volatility model References: S. L. Heston, A closed-form solution for options with stochastic volatility..., Review of Financial Studies 6, 327 (1993) For

More information

Financial Mathematics and Supercomputing

Financial Mathematics and Supercomputing GPU acceleration in early-exercise option valuation Álvaro Leitao and Cornelis W. Oosterlee Financial Mathematics and Supercomputing A Coruña - September 26, 2018 Á. Leitao & Kees Oosterlee SGBM on GPU

More information

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model CIRJE-F-873 An Asymptotic Expansion Formula for Up-and-Out Option Price under Stochastic Volatility Model Takashi Kato Osaka University Akihiko Takahashi University of Tokyo Toshihiro Yamada Graduate School

More information

Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options

Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options Kin Hung (Felix) Kan 1 Greg Frank 3 Victor Mozgin 3 Mark Reesor 2 1 Department of Applied

More information

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions 11/4/ / 24

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions 11/4/ / 24 Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions Liuren Wu, Baruch College and Graduate Center Joint work with Peter Carr, New York University and Morgan Stanley CUNY Macroeconomics

More information

Learning Minimum Variance Discrete Hedging Directly from Market

Learning Minimum Variance Discrete Hedging Directly from Market Learning Minimum Variance Discrete Hedging Directly from Market Ke Nian a,1, Thomas Coleman b,2, Yuying Li a,1, a Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1

More information

ifa Institut für Finanz- und Aktuarwissenschaften

ifa Institut für Finanz- und Aktuarwissenschaften The Impact of Stochastic Volatility on Pricing, Hedging, and Hedge Efficiency of Variable Annuity Guarantees Alexander Kling, Frederik Ruez, and Jochen Ruß Helmholtzstraße 22 D-89081 Ulm phone +49 (731)

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

John Hull and Wulin Suo. This Version: July, 2001

John Hull and Wulin Suo. This Version: July, 2001 A METHODOLOGY FOR ASSESSING MODEL RISK AND ITS APPLICATION TO THE IMPLIED VOLATILITY FUNCTION MODEL Forthcoming: Journal of Financial and Quantitative Analysis John Hull and Wulin Suo This Version: July,

More information

Pricing and Risk Management with Stochastic Volatility. Using Importance Sampling

Pricing and Risk Management with Stochastic Volatility. Using Importance Sampling Pricing and Risk Management with Stochastic Volatility Using Importance Sampling Przemyslaw Stan Stilger, Simon Acomb and Ser-Huang Poon March 2, 214 Abstract In this paper, we apply importance sampling

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

INTRODUCTION TO THE ECONOMICS AND MATHEMATICS OF FINANCIAL MARKETS. Jakša Cvitanić and Fernando Zapatero

INTRODUCTION TO THE ECONOMICS AND MATHEMATICS OF FINANCIAL MARKETS. Jakša Cvitanić and Fernando Zapatero INTRODUCTION TO THE ECONOMICS AND MATHEMATICS OF FINANCIAL MARKETS Jakša Cvitanić and Fernando Zapatero INTRODUCTION TO THE ECONOMICS AND MATHEMATICS OF FINANCIAL MARKETS Table of Contents PREFACE...1

More information

Lattice (Binomial Trees) Version 1.2

Lattice (Binomial Trees) Version 1.2 Lattice (Binomial Trees) Version 1. 1 Introduction This plug-in implements different binomial trees approximations for pricing contingent claims and allows Fairmat to use some of the most popular binomial

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

Hedging under Model Uncertainty

Hedging under Model Uncertainty Hedging under Model Uncertainty Efficient Computation of the Hedging Error using the POD 6th World Congress of the Bachelier Finance Society June, 24th 2010 M. Monoyios, T. Schröter, Oxford University

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

What is Cyclical in Credit Cycles?

What is Cyclical in Credit Cycles? What is Cyclical in Credit Cycles? Rui Cui May 31, 2014 Introduction Credit cycles are growth cycles Cyclicality in the amount of new credit Explanations: collateral constraints, equity constraints, leverage

More information

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs.

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs. Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs Andrea Cosso LPMA, Université Paris Diderot joint work with Francesco Russo ENSTA,

More information

Robust Pricing and Hedging of Options on Variance

Robust Pricing and Hedging of Options on Variance Robust Pricing and Hedging of Options on Variance Alexander Cox Jiajie Wang University of Bath Bachelier 21, Toronto Financial Setting Option priced on an underlying asset S t Dynamics of S t unspecified,

More information

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

Convergence Analysis of Monte Carlo Calibration of Financial Market Models Analysis of Monte Carlo Calibration of Financial Market Models Christoph Käbe Universität Trier Workshop on PDE Constrained Optimization of Certain and Uncertain Processes June 03, 2009 Monte Carlo Calibration

More information

Pricing Early-exercise options

Pricing Early-exercise options Pricing Early-exercise options GPU Acceleration of SGBM method Delft University of Technology - Centrum Wiskunde & Informatica Álvaro Leitao Rodríguez and Cornelis W. Oosterlee Lausanne - December 4, 2016

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

Financial Computing with Python

Financial Computing with Python Introduction to Financial Computing with Python Matthieu Mariapragassam Why coding seems so easy? But is actually not Sprezzatura : «It s an art that doesn t seem to be an art» - The Book of the Courtier

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Calibrating to Market Data Getting the Model into Shape

Calibrating to Market Data Getting the Model into Shape Calibrating to Market Data Getting the Model into Shape Tutorial on Reconfigurable Architectures in Finance Tilman Sayer Department of Financial Mathematics, Fraunhofer Institute for Industrial Mathematics

More information

Pricing American Options Using a Space-time Adaptive Finite Difference Method

Pricing American Options Using a Space-time Adaptive Finite Difference Method Pricing American Options Using a Space-time Adaptive Finite Difference Method Jonas Persson Abstract American options are priced numerically using a space- and timeadaptive finite difference method. The

More information

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option Antony Stace Department of Mathematics and MASCOS University of Queensland 15th October 2004 AUSTRALIAN RESEARCH COUNCIL

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

Essays in Financial Engineering. Andrew Jooyong Ahn

Essays in Financial Engineering. Andrew Jooyong Ahn Essays in Financial Engineering Andrew Jooyong Ahn Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY

More information

Barrier Option. 2 of 33 3/13/2014

Barrier Option. 2 of 33 3/13/2014 FPGA-based Reconfigurable Computing for Pricing Multi-Asset Barrier Options RAHUL SRIDHARAN, GEORGE COOKE, KENNETH HILL, HERMAN LAM, ALAN GEORGE, SAAHPC '12, PROCEEDINGS OF THE 2012 SYMPOSIUM ON APPLICATION

More information

Which GARCH Model for Option Valuation? By Peter Christoffersen and Kris Jacobs

Which GARCH Model for Option Valuation? By Peter Christoffersen and Kris Jacobs Online Appendix Sample Index Returns Which GARCH Model for Option Valuation? By Peter Christoffersen and Kris Jacobs In order to give an idea of the differences in returns over the sample, Figure A.1 plots

More information

Convertible Bond Difinition and Pricing Guide

Convertible Bond Difinition and Pricing Guide Convertible Bond Difinition and Pricing Guide John Smith FinPricing A convertible bonds can be thought of as a normal corporate bond with embedded options, which enable the holder to exchange the bond

More information

Convertible Bond Pricing with Stochastic Volatility

Convertible Bond Pricing with Stochastic Volatility Convertible Bond Pricing with Stochastic Volatility by Simon Edwin Garisch A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Masters in Finance

More information

Portfolio selection with multiple risk measures

Portfolio selection with multiple risk measures Portfolio selection with multiple risk measures Garud Iyengar Columbia University Industrial Engineering and Operations Research Joint work with Carlos Abad Outline Portfolio selection and risk measures

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Fall 2017 Computer Exercise 2 Simulation This lab deals with pricing

More information