An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model

Size: px
Start display at page:

Download "An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model"

Transcription

1 CIRJE-F-873 An Asymptotic Expansion Formula for Up-and-Out Option Price under Stochastic Volatility Model Takashi Kato Osaka University Akihiko Takahashi University of Tokyo Toshihiro Yamada Graduate School of Economics, University of Tokyo and MTEC January 23 CIRJE Discussion Papers can be downloaded without charge from: Discussion Papers are a series of manuscripts in their draft form. They are not intended for circulation or distribution except as indicated by the author. For that reason Discussion Papers may not be reproduced or distributed without the written consent of the author.

2 An Asymptotic Expansion Formula for Up-and-Out Option Price under Stochastic Volatility Model Takashi Kato Akihiko Takahashi Toshihiro Yamada November 23, 22 Abstract This paper derives a new semi closed-form approximation formula for pricing an upand-out barrier option under a certain type of stochastic volatility model including SABR model by applying a rigorous asymptotic expansion method developed by Kato, Takahashi and Yamada []. We also demonstrate the validity of our approximation method through numerical examples. Keywords: Option, Up-and-Out Call Option, Asymptotic Expansion, Stochastic Volatility Model Introduction Numerical computation schemes for pricing barrier options have been a topic of great interest in mathematical finance and stochastic analysis. One of the tractable approaches for evaluation of barrier options is to derive an analytical approximation. However, from the mathematical viewpoint, deriving an approximation formula by applying stochastic analysis is not an easy task since the Malliavin calculus approach as in Takahashi and Yamada [3] cannot be directly applied. Recently, Kato, Takahashi and Yamada [] has provided a new asymptotic expansion method for the Cauchy Dirichlet problem by developing a rigorous perturbation scheme in a partial differential equation (PDE), and as an example, derived an approximation formula for a down-and-out call option price under a stochastic volatility model. In this paper, we give a new asymptotic expansion formula for an up-and-out call option price under a stochastic volatility model which is widely used in trading practice. Moreover, we show the validity of our formula through numerical experiments. Osaka University, The University of Tokyo, The University of Tokyo & MTEC

3 2 Asymptotic expansion formula for up-and-out barrier option prices Consider the following stochastic differential equation (SDE) in a stochastic volatility model: ds ε t = (c q)s ε t dt + σ ε t S ε t db t, S ε = S, dσ ε t = ελ(θ σ ε t )dt σ ε = σ, +ενσ ε t (ρdb t + ρ 2 db 2 t ), where S, σ, c, q >, ε [, ), λ, θ, ν >, ρ [, ] and B = (B, B 2 ) is a two dimensional standard Brownian motion. This model is motivated by pricing currency options. In this case, c and q represent a domestic interest rate and a foreign interest rate, respectively. The process S ε denotes a price of the underlying currency. Our purpose is to evaluate an up-and-out barrier option with time-to-maturity T t and the upper barrier price H(> S), and its initial value is represented under a risk-neutral probability measure as follows: C SV,ε (T t, S) [ ] = E e c(t t) f(st ε t) {τ(,h) (S ε )>T t}, where f stands for a call option payoff function f(s) = max{s K, } for some K >. Here, the stopping time τ (,H) (S ε ) is defined as τ (,H) (S ε ) = inf{t [, T ]; S ε t / (, H)} (inf := ). Remark that C SV,ε (T t, S) has no closed-form solution and therefore we have to rely on some numerical method such as the Monte Carlo simulation in order to calculate C SV,ε (T t, S). However, when ε =, CSV, (T t, S) corresponds to the up-and-out barrier option price in the Black-Scholes model which is known to be solved explicitly. Then, for ε >, we are able to derive a semi closed-form expansion around C SV, (T t, S) when ε. This is our main result and hereafter we show our approximation method for C SV,ε (T t, S). Clearly, applying Itô s formula, we can derive the SDE of logarithmic process of St ε as dx ε t = (c q 2 (σε t ) 2 )dt + σ ε t db t, X ε = x := log S. Then we can rewrite C SV,ε (T t, S) as C SV,ε (T t, ex ) [ ] = E e c(t t) ε f(x T t ) {τd (X ε )>T t}, where f(x) = max{e x K, } and D = (, log H). Note that τ D (X ε ) = inf{t [, T ] ; X ε t / D} = τ (,H) (S ε ). 2

4 Let u ε (t, x) = C SV,ε (T t, ex ) for t [, T ] and x R. Then u ε (t, x) satisfies the following PDE: ( ) t + L ε c u ε (t, x) =, (t, x) (, T ] D, u ε (T, x) = f(x), x D, u ε (t, log H) =, t [, T ], where L ε = ( c q ) 2 σ2 x + 2 σ2 2 x 2 +ερνσ ελ(θ σ) x σ σ + ε2 2 ν2 σ 2 2 σ 2. As mentioned above, when ε =, we can obtain the explicit value of u (t, x). In this case, u (t, x) = C(T BS t, e x, σ, H) represents the price of the up-and-out barrier call option under the Black Scholes model. We have where with See Hull [2] for the details. C BS = C BS Vanilla C, CVanilla BS = e x e qt N(d ) Ke ct N(d 2 ), C = e x e qt N(x ) Ke ct N(x 2 ) e x e qt ( H e x ) 2λ [N( y) N( y )] +Ke ct ( H e x ) 2λ 2 [N( y + ) N( y + )] x = x log H + (c q)t + /2σ2 T x 2 = x, λ = (c q) σ 2 + 2, y = 2 log H x log K + (c q)t + /2σ2 T y = log H x + (c q)t + /2σ2 T,., We can represent u (t, x) = P D t f(x) by using a semi-group ( P D t ) t defined as P D s g(x) = log H e cs 2(log H x)(log H y) ( e σ 2 s ) 3

5 (y x (c q 2 σ 2πσ 2 s e 2σ 2 s 2 )s) 2 g(y)dy (2.) for a continuous function g with polynomial growth rate which satisfies g(x) = on D. The main result of Kato, Takahashi and Yamada [] suggests the following approximation formula. [Asymptotic expansion formula] where u ε (t, x) = C BS +εe c(t t) T t P D s L P D T t s f(x)ds + O(ε 2 ), L = ε L ε ε= = ρσ λ(θ σ) x σ σ. Using (2.), the term T t P D s L P D T t s f(x)ds is expressed as follows: = T t P s D T t log H L P D T t s f(x)ds e cs 2(log H x)(log H y) ( e σ 2 s ) (y x (c q 2 σ 2πσ 2 s e 2σ 2 s 2 )s) 2 L P T D f(y)dyds. t s (2.2) We are able to compute the integrand of the right hand side of the above formula (2.2) as Here, σ CBS (T, e x ) and L P T D f(x) t { = e c(t t) ρσ 2 2 x σ CBS (T t, e x, σ) +λ(θ σ) σ CBS (T t, e x, σ) 2 x σ CBS (T, e x ) are concretely expressed as follows: σ CBS (T, e x ) = e qt e x n(d ) T e qt e x n(x ) T (H K)e ct n(x 2 ) x σ }. 4

6 ( ) H 2λ +e x e qt e { x 4(c q) (log H x) σ 3 [N( y) N( y )] } +[n(y) y σ n(y ) y σ ] ( ) H 2λ 2 Ke ct e { x 4(c q) (log H x) σ 3 [N( y ) N( y )] } +[n(y ) y σ n(y ) y σ ], 2 x σ CBS (T, e x ) = e qt e x n(d )( d 2 ) σ e qt e x n(x )( x 2 ) σ (H K)e ct n(x 2) σ 2 T {x x 2 } 4(c q) + σ 3 {( + 2λ)(log H x) + } e x e qt ( H e x ) 2λ [N( y) N( y )] ( ) H 2λ +e x e qt e x [n(y) y σ n(y ) y σ ] ( ( ) ) H 2λ 2λ e x ( ) H 2λ e x e qt e x (log H x) ( ( ) ( )) 4(c q) σ 3 n(y) σ n(y ) T ( ) H 2λ +e x e qt e ( x ) n(y) σ 2 T (yy ) n(y ) σ 2 T (y y ) Ke ct [N(y ) N(y )] ( ( ) ) H 2λ 2 4(c q) e x σ 3 {(2λ 2)(log H x) + } ( ) H 2λ 2 +Ke ct 4(c q) e x (log H x) σ 3 5

7 where ( ) n(y ) n(y ) ( ) H 2λ 2 +Ke ct (2λ 2) e ( x n(y ) y σ n(y ) y ) σ ( ) H 2λ 2 Ke ct e ( x ) n(y ) σ 2 T (y y ) n(y ) σ 2 T (y y ), 3 Numerical Examples y = 2 log H x log K + (c q)t 2 σ2 T y = log H x + (c q)t 2 σ2 T σ. T In this section we show numerical examples for pricing European up-and-out barrier call options under SABR volatility model (λ = ) as an illustrative purpose. By the asymptotic expansion formula in the previous section, we see C SV,ε (T, S) CBS (T, S) T +εe ct Let us define AE first and AE zeroth as AE first = C(T, BS S) T +εe ct P D s P D s AE zeroth = C BS (T, S). L P D T sf(s)ds. L P D T sf(s)ds, Below we list the numerical examples, [Case ] [Case 6], where the numbers in the parentheses show the error rates (%) relative to the benchmark prices of C SV,ε (T, S) which are computed by Monte Carlo simulations with, time steps and,, trials (denoted by MC). We check the accuracy of our approximation formula by changing the model parameters. Apparently, our approximation formula AE first improves the accuracy for C SV,ε (T, S), and it is observed that the approximation term εe ct T compensates for the difference between C SV,ε the validity of our method. P D s, L P D T sf(s)ds accurately (T, S) and CBS (T, S), which confirms For all cases, we set S =, σ =.2, c =., q =., ρ =.5, ελ =., θ =. and T =.. In Case, 2 and 3, given εν =., the upper bound price is set as 6

8 H = 2, 3, 4, respectively, while in Case 4, 5 and 6, given εν =.2, H is set as 2, 3, 4, respectively. Particularly, for the case of εν =.2 (that is, higher volatility of volatility case, Case 4, 5 and 6), we remark that the errors of the approximation become slightly larger. However, as observed in comparison between AE first and AE zeroth, we are convinced that the higher order expansion improves the approximation further, which will be investigated in our next research. [Case] S =, σ =.2, c =., q =., εν =., ρ =.5, ελ =., θ =., H = 2, T =.. Table : up-and-out barrier option prices and the relative errors (Case ) (-.35%).5 (-8.25%) (-.44%).84 (-8.78%) (-.62%).463 (-9.59%) [Case2] S =, σ =.2, c =., q =., εν =., ρ =.5, ελ =., θ =., H = 3, T =.. Table 2: up-and-out barrier option prices and the relative errors (Case 2) (-.49%) (-7.78%) (-.55%) 2.46 (-8.22%) (-.69%).72 (-8.93%) [Case3] S =, σ =.2, c =., q =., εν =., ρ =.5, ελ =., θ =., H = 4, T =.. 7

9 Table 3: up-and-out barrier option prices and the relative errors (Case 3) (.5%) (-6.49%) (.6%) 4.2 (-6.77%) (.6%) 3.74 (-7.9%) [Case4] S =, σ =.2, c =., q =., εν =.2, ρ =.5, ελ =., θ =., H = 2, T =.. Table 4: up-and-out barrier option prices and the relative errors (Case 4) (-3.5%).5 (-6.2%) (-3.83%).84 (-7.5%) (-4.3%).463 (-8.65%) [Case5] S =, σ =.2, c =., q =., εν =.2, ρ =.5, ελ =., θ =., H = 3, T =.. Table 5: up-and-out barrier option prices and the relative errors (Case 5) (-.5%) (-4.66%) (-.27%) 2.46 (-5.42%) (-.48%).72 (-6.58%) 8

10 [Case6] S =, σ =.2, c =., q =., εν =.2, ρ =.5, ελ =., θ =., H = 4, T =.. Table 6: up-and-out barrier option prices and the relative errors (Case 6) (.78%) (-.59%) (.85%) 4.2 (-2.3%) (.97%) 3.74 (-2.68%) References [] T. Kato, A. Takahashi and T. Yamada, An asymptotic expansion for solutions of Cauchy-Dirichlet problem for second order parabolic PDEs and its application to pricing barrier options, arxiv preprint, (22). [2] J.C. Hull, Options, Futures, and Other Derivatives, 6-th Edition, Prentice Hall, 25 [3] A.Takahashi and T.Yamada, An asymptotic expansion with push-down of Malliavin weights, SIAM Journal on Financial Mathematics, 3, (22),

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model An Asymptotic Expansion Formula for Up-and-Out Option Price under Stochastic Volatility Model Takashi Kato Akihiko Takahashi Toshihiro Yamada arxiv:32.336v [q-fin.cp] 4 Feb 23 December 3, 22 Abstract This

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Stochastic Volatility Effects on Defaultable Bonds

Stochastic Volatility Effects on Defaultable Bonds Stochastic Volatility Effects on Defaultable Bonds Jean-Pierre Fouque Ronnie Sircar Knut Sølna December 24; revised October 24, 25 Abstract We study the effect of introducing stochastic volatility in the

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Analytical formulas for local volatility model with stochastic. Mohammed Miri

Analytical formulas for local volatility model with stochastic. Mohammed Miri Analytical formulas for local volatility model with stochastic rates Mohammed Miri Joint work with Eric Benhamou (Pricing Partners) and Emmanuel Gobet (Ecole Polytechnique Modeling and Managing Financial

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying Sensitivity analysis Simulating the Greeks Meet the Greeks he value of a derivative on a single underlying asset depends upon the current asset price S and its volatility Σ, the risk-free interest rate

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Approximation Methods in Derivatives Pricing

Approximation Methods in Derivatives Pricing Approximation Methods in Derivatives Pricing Minqiang Li Bloomberg LP September 24, 2013 1 / 27 Outline of the talk A brief overview of approximation methods Timer option price approximation Perpetual

More information

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option Antony Stace Department of Mathematics and MASCOS University of Queensland 15th October 2004 AUSTRALIAN RESEARCH COUNCIL

More information

Risk Neutral Pricing Black-Scholes Formula Lecture 19. Dr. Vasily Strela (Morgan Stanley and MIT)

Risk Neutral Pricing Black-Scholes Formula Lecture 19. Dr. Vasily Strela (Morgan Stanley and MIT) Risk Neutral Pricing Black-Scholes Formula Lecture 19 Dr. Vasily Strela (Morgan Stanley and MIT) Risk Neutral Valuation: Two-Horse Race Example One horse has 20% chance to win another has 80% chance $10000

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24 Lecture outline

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Math Computational Finance Barrier option pricing using Finite Difference Methods (FDM)

Math Computational Finance Barrier option pricing using Finite Difference Methods (FDM) . Math 623 - Computational Finance Barrier option pricing using Finite Difference Methods (FDM) Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics,

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL FABIO MERCURIO BANCA IMI, MILAN http://www.fabiomercurio.it 1 Stylized facts Traders use the Black-Scholes formula to price plain-vanilla options. An

More information

1 Implied Volatility from Local Volatility

1 Implied Volatility from Local Volatility Abstract We try to understand the Berestycki, Busca, and Florent () (BBF) result in the context of the work presented in Lectures and. Implied Volatility from Local Volatility. Current Plan as of March

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment

Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment Jean-Pierre Fouque Tracey Andrew Tullie December 11, 21 Abstract We propose a variance reduction method for Monte Carlo

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

Richardson Extrapolation Techniques for the Pricing of American-style Options

Richardson Extrapolation Techniques for the Pricing of American-style Options Richardson Extrapolation Techniques for the Pricing of American-style Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of American-style Options In this paper we re-examine

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING Semih Yön 1, Cafer Erhan Bozdağ 2 1,2 Department of Industrial Engineering, Istanbul Technical University, Macka Besiktas, 34367 Turkey Abstract.

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

WKB Method for Swaption Smile

WKB Method for Swaption Smile WKB Method for Swaption Smile Andrew Lesniewski BNP Paribas New York February 7 2002 Abstract We study a three-parameter stochastic volatility model originally proposed by P. Hagan for the forward swap

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Lecture 15: Exotic Options: Barriers

Lecture 15: Exotic Options: Barriers Lecture 15: Exotic Options: Barriers Dr. Hanqing Jin Mathematical Institute University of Oxford Lecture 15: Exotic Options: Barriers p. 1/10 Barrier features For any options with payoff ξ at exercise

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017 Short-time-to-expiry expansion for a digital European put option under the CEV model November 1, 2017 Abstract In this paper I present a short-time-to-expiry asymptotic series expansion for a digital European

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK MSC FINANCIAL ENGINEERING PRICING I, AUTUMN 2010-2011 LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK In this section we look at some easy extensions of the Black

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

PRICING TIMER OPTIONS UNDER FAST MEAN-REVERTING STOCHASTIC VOLATILITY

PRICING TIMER OPTIONS UNDER FAST MEAN-REVERTING STOCHASTIC VOLATILITY CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 17, Number 4, Winter 009 PRICING TIMER OPTIONS UNDER FAST MEAN-REVERTING STOCHASTIC VOLATILITY DAVID SAUNDERS ABSTRACT. Timer options are derivative securities

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

The Black-Scholes Equation using Heat Equation

The Black-Scholes Equation using Heat Equation The Black-Scholes Equation using Heat Equation Peter Cassar May 0, 05 Assumptions of the Black-Scholes Model We have a risk free asset given by the price process, dbt = rbt The asset price follows a geometric

More information

CS476/676 Mar 6, Today s Topics. American Option: early exercise curve. PDE overview. Discretizations. Finite difference approximations

CS476/676 Mar 6, Today s Topics. American Option: early exercise curve. PDE overview. Discretizations. Finite difference approximations CS476/676 Mar 6, 2019 1 Today s Topics American Option: early exercise curve PDE overview Discretizations Finite difference approximations CS476/676 Mar 6, 2019 2 American Option American Option: PDE Complementarity

More information

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES THE SOURCE OF A PRICE IS ALWAYS A TRADING STRATEGY SPECIAL CASES WHERE TRADING STRATEGY IS INDEPENDENT OF PROBABILITY MEASURE COMPLETENESS,

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case

Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case Guang-Hua Lian Collaboration with Robert Elliott University of Adelaide Feb. 2, 2011 Robert Elliott,

More information

Hedging under Model Uncertainty

Hedging under Model Uncertainty Hedging under Model Uncertainty Efficient Computation of the Hedging Error using the POD 6th World Congress of the Bachelier Finance Society June, 24th 2010 M. Monoyios, T. Schröter, Oxford University

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models

Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models Scott Robertson Carnegie Mellon University scottrob@andrew.cmu.edu http://www.math.cmu.edu/users/scottrob June

More information

Multiscale Stochastic Volatility Models

Multiscale Stochastic Volatility Models Multiscale Stochastic Volatility Models Jean-Pierre Fouque University of California Santa Barbara 6th World Congress of the Bachelier Finance Society Toronto, June 25, 2010 Multiscale Stochastic Volatility

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

Interest rate volatility

Interest rate volatility Interest rate volatility II. SABR and its flavors Andrew Lesniewski Baruch College and Posnania Inc First Baruch Volatility Workshop New York June 16-18, 2015 Outline The SABR model 1 The SABR model 2

More information

Toward a coherent Monte Carlo simulation of CVA

Toward a coherent Monte Carlo simulation of CVA Toward a coherent Monte Carlo simulation of CVA Lokman Abbas-Turki (Joint work with A. I. Bouselmi & M. A. Mikou) TU Berlin January 9, 2013 Lokman (TU Berlin) Advances in Mathematical Finance 1 / 16 Plan

More information

PDE Methods for the Maximum Drawdown

PDE Methods for the Maximum Drawdown PDE Methods for the Maximum Drawdown Libor Pospisil, Jan Vecer Columbia University, Department of Statistics, New York, NY 127, USA April 1, 28 Abstract Maximum drawdown is a risk measure that plays an

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

No-Arbitrage Bounds on Two One-Touch Options

No-Arbitrage Bounds on Two One-Touch Options No-Arbitrage Bounds on Two One-Touch Options Yukihiro Tsuzuki March 30, 04 Abstract This paper investigates the pricing bounds of two one-touch options with the same maturity but different barrier levels,

More information

ON AN IMPLEMENTATION OF BLACK SCHOLES MODEL FOR ESTIMATION OF CALL- AND PUT-OPTION VIA PROGRAMMING ENVIRONMENT MATHEMATICA

ON AN IMPLEMENTATION OF BLACK SCHOLES MODEL FOR ESTIMATION OF CALL- AND PUT-OPTION VIA PROGRAMMING ENVIRONMENT MATHEMATICA Доклади на Българската академия на науките Comptes rendus de l Académie bulgare des Sciences Tome 66, No 5, 2013 MATHEMATIQUES Mathématiques appliquées ON AN IMPLEMENTATION OF BLACK SCHOLES MODEL FOR ESTIMATION

More information

Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor Information. Class Information. Catalog Description. Textbooks

Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor Information. Class Information. Catalog Description. Textbooks Instructor Information Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor: Daniel Bauer Office: Room 1126, Robinson College of Business (35 Broad Street) Office Hours: By appointment (just

More information

Option Pricing Formula for Fuzzy Financial Market

Option Pricing Formula for Fuzzy Financial Market Journal of Uncertain Systems Vol.2, No., pp.7-2, 28 Online at: www.jus.org.uk Option Pricing Formula for Fuzzy Financial Market Zhongfeng Qin, Xiang Li Department of Mathematical Sciences Tsinghua University,

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

The Black-Scholes Equation

The Black-Scholes Equation The Black-Scholes Equation MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will: derive the Black-Scholes partial differential equation using Itô s Lemma and no-arbitrage

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 Interest Rate Modelling UTS Business School University of Technology Sydney Chapter 19. Allowing for Stochastic Interest Rates in the Black-Scholes Model May 15, 2014 1/33 Chapter 19. Allowing for

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 19 11/2/213 Applications of Ito calculus to finance Content. 1. Trading strategies 2. Black-Scholes option pricing formula 1 Security

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Multiscale Stochastic Volatility Models Heston 1.5

Multiscale Stochastic Volatility Models Heston 1.5 Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University of California Santa Barbara Modeling and Managing Financial Risks Paris,

More information

Greek parameters of nonlinear Black-Scholes equation

Greek parameters of nonlinear Black-Scholes equation International Journal of Mathematics and Soft Computing Vol.5, No.2 (2015), 69-74. ISSN Print : 2249-3328 ISSN Online: 2319-5215 Greek parameters of nonlinear Black-Scholes equation Purity J. Kiptum 1,

More information

Fast and accurate pricing of discretely monitored barrier options by numerical path integration

Fast and accurate pricing of discretely monitored barrier options by numerical path integration Comput Econ (27 3:143 151 DOI 1.17/s1614-7-991-5 Fast and accurate pricing of discretely monitored barrier options by numerical path integration Christian Skaug Arvid Naess Received: 23 December 25 / Accepted:

More information

NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE

NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE Trends in Mathematics - New Series Information Center for Mathematical Sciences Volume 13, Number 1, 011, pages 1 5 NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE YONGHOON

More information

MFIN 7003 Module 2. Mathematical Techniques in Finance. Sessions B&C: Oct 12, 2015 Nov 28, 2015

MFIN 7003 Module 2. Mathematical Techniques in Finance. Sessions B&C: Oct 12, 2015 Nov 28, 2015 MFIN 7003 Module 2 Mathematical Techniques in Finance Sessions B&C: Oct 12, 2015 Nov 28, 2015 Instructor: Dr. Rujing Meng Room 922, K. K. Leung Building School of Economics and Finance The University of

More information

Calculating Implied Volatility

Calculating Implied Volatility Statistical Laboratory University of Cambridge University of Cambridge Mathematics and Big Data Showcase 20 April 2016 How much is an option worth? A call option is the right, but not the obligation, to

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

1 Dynamics, initial values, final values

1 Dynamics, initial values, final values Derivative Securities, Courant Institute, Fall 008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 8 1

More information

A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL. Stephen Chin and Daniel Dufresne. Centre for Actuarial Studies

A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL. Stephen Chin and Daniel Dufresne. Centre for Actuarial Studies A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL Stephen Chin and Daniel Dufresne Centre for Actuarial Studies University of Melbourne Paper: http://mercury.ecom.unimelb.edu.au/site/actwww/wps2009/no181.pdf

More information

Optimal robust bounds for variance options and asymptotically extreme models

Optimal robust bounds for variance options and asymptotically extreme models Optimal robust bounds for variance options and asymptotically extreme models Alexander Cox 1 Jiajie Wang 2 1 University of Bath 2 Università di Roma La Sapienza Advances in Financial Mathematics, 9th January,

More information

A Continuity Correction under Jump-Diffusion Models with Applications in Finance

A Continuity Correction under Jump-Diffusion Models with Applications in Finance A Continuity Correction under Jump-Diffusion Models with Applications in Finance Cheng-Der Fuh 1, Sheng-Feng Luo 2 and Ju-Fang Yen 3 1 Institute of Statistical Science, Academia Sinica, and Graduate Institute

More information

Asymptotic Method for Singularity in Path-Dependent Option Pricing

Asymptotic Method for Singularity in Path-Dependent Option Pricing Asymptotic Method for Singularity in Path-Dependent Option Pricing Sang-Hyeon Park, Jeong-Hoon Kim Dept. Math. Yonsei University June 2010 Singularity in Path-Dependent June 2010 Option Pricing 1 / 21

More information

Valuation of Equity Derivatives

Valuation of Equity Derivatives Valuation of Equity Derivatives Dr. Mark W. Beinker XXV Heidelberg Physics Graduate Days, October 4, 010 1 What s a derivative? More complex financial products are derived from simpler products What s

More information

Derivative Securities

Derivative Securities Derivative Securities he Black-Scholes formula and its applications. his Section deduces the Black- Scholes formula for a European call or put, as a consequence of risk-neutral valuation in the continuous

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives Weierstrass Institute for Applied Analysis and Stochastics LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives John Schoenmakers 9th Summer School in Mathematical Finance

More information

Credit Risk : Firm Value Model

Credit Risk : Firm Value Model Credit Risk : Firm Value Model Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe and Karlsruhe Institute of Technology (KIT) Prof. Dr. Svetlozar Rachev

More information

Robust Pricing and Hedging of Options on Variance

Robust Pricing and Hedging of Options on Variance Robust Pricing and Hedging of Options on Variance Alexander Cox Jiajie Wang University of Bath Bachelier 21, Toronto Financial Setting Option priced on an underlying asset S t Dynamics of S t unspecified,

More information