When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution?

Size: px
Start display at page:

Download "When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution?"

Transcription

1 Distributions 1. What are distributions? When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution? In other words, if we have a large number of Y s, what kind of shape does the frequency histogram have? We talked about some of these shapes already (shapes of distributions, etc.) The basic idea (simplified): We take a sample and measure some random variable (e.g. blood oxygen levels of bats). We look to see how this random variable is distributed. Based on this distribution, we then make estimates and/or perform tests that might reveal interesting information about the population. But how we proceed is based on how the random variable is distributed. Not only that, but many of our analyses and tests rely on particular kinds of distributions. Why is this so important? Because the probabilities of getting a particular result are different based on the outcome. For example, consider the two following distributions for length of an insect: Obviously, the probability of of our insect being less then 10 cm depends a lot on the shape of the distribution.

2 So here are some examples of examples of distributions: 2. The binomial distribution If we toss a coin 25 times, and if Y = number of heads, then Y will have a binomial distribution We write Y ~ Binomial. The ~ symbol means distributed as Often we put the parameters (more on this soon) of our distribution in parenthesis after the type of distribution, for example: Y ~ Binom(25, 0.5) Notice we abbreviated the distribution (we usually do). What are 25 and 0.5? They are parameters (n = 25, and p = 0.5), but we'll save up the details for another page or two. If we measure heights of a sample of men on campus (Y = heights of men on campus), we can be pretty sure that Y will have a normal distribution. We write Y ~ N (The normal distribution is almost always abbreviated N ). We already used this distribution when we did probability. Here it is again: n p y y n y 1 p From now on we will definitely be using y in stead of j. So what makes this a distribution? Because we can use this to calculate all possible outcomes and then see what the distribution of Y looks like. Here's an example using our coin. We toss it 10 times and note that n = 10, p = 0.5 (these are the parameters of our distribution, but more soon).

3 We get: Heads Tails Probability (You should recognize some of these numbers) Sum: A summary like this can be very useful. For example, we can now easily calculate the probability that Y = 0, 1 or 2 (where Y = number of heads): Pr{0 Y 2} = = Also notice that if we add up all the possible outcomes we get 1.0: Pr{0 Y 10} = 1.0 This is important but ought to be obvious: if we toss a coin, something has to happen, and the above list is every single possibility! If we want to see what the distribution of Y looks like we can plot it:

4 So what (finally), are parameters? Parameters determine what our distribution looks like. For a random variable, Y, we need to know two things to figure out what the distribution of Y looks like: 1) What kind of distribution Y has. 2) What the parameters of this distributions are. Since we're looking at the binomial distribution, let's change the parameters and see what happens to Y: Instead of n = 10 and p = 0.5, let's use n = 3 and p = 0.2. Notice that now Y can go from 0 to 3. So let's again calculate all the probabilities for Y: Y Probability Sum And if we plot Y, this time our distribution looks rather different:

5 (See also figure 3.13 p. 109 [3.15, p. 106] {3.6.4, p. 111} in your text using n = 5 and p = 0.39 {remember that the 4 th edition uses p =.37}. Again, to emphasize this: the parameters determine what our particular distribution looks like! 3. About distributions in general: We've learned several things about distributions: 1) The shape of a distribution can vary based on the parameters. 2) All possible outcomes must add up to one. a) If Y is discrete, this is easy. For example, with the binomial what we are saying is: n ( n y) py (1 p) n y = 1 y=0 In other words, take take all possible values of y, put them into the binomial distribution formula, and add these up and you'll get b) If Y is continuous, then the area under the curve formed by our distribution will add up to one. How do we add up all possible outcomes if our distribution is continuous? We need calculus. Don't worry, you're not responsible for anything involving calculus. But what we're saying is: + (continuous distribution of y) dy = 1 Historical note: the symbol is short for sum (same word in Latin). In calculus we can add up a sequence of infinitely small things, which, in this case must add up to one. Let's use the normal distribution as an example. 4. The normal distribution The importance of the normal distribution to statistics can not be overemphasized. The Germans even put this on the old 10DM bill! Sometimes also known as the Gaussian distribution.

6 So what is it? f ( y) = 1 σ 2π 1 ( y μ e 2 σ ) 2 Good! Now you know everything, right? Seriously, here are a couple of examples from your text: Example 4.2, p [ ] {4.1.3, p. 122}: We're looking at the thickness of eggshells from hens, and somehow we know that: μ =.38 mm, and σ =.03 mm This gives us the following picture (note the scale on the x-axis): Example 4.4, p. 124 [p. 121] {4.1.4, p. 123}: This time we're looking at the number of white blood cells per cubic mm, and again we somehow know that:: μ = 7,000 cells/mm 3, and σ = 100 cells/mm 3 (By the way, are these data really normally distributed?)

7 Some comments on the normal distribution: The curve peaks at the mean (μ) The inflection (direction of the curve) changes at ± σ. See also fig. 4.6, p. 125 [122] {fig , p. 124}) The parameters for the normal distribution are μ and σ. If I know what these are, I know what my normal distribution looks like. The curve for the normal distribution actually goes from - to +. The area under the curve will add up to 1, or using calculus we can say: + 1 σ 2π 1 ( y μ e 2 σ ) 2 dy = 1 (Again, since this is calculus you are not responsible for the above equation). So now we know the normal distribution is and what it looks like. Why is it so important? 1) Because many things, particularly in biology, have a normal, or approximately normal distribution: Heights, weights, IQ, many blood hormone levels, etc.

8 5. The normal distribution and probability: 2) Because of something called the Central Limit Theorem. Well get back to this. If you re really curious, see section 5.4 in your text. (Basically it implies that even if Y is not normally distributed, we can often still use a normal distribution in statistics). (It is one of the most important theorems/results in statistics). Since many things in biology (and elsewhere) have a normal distribution, we need to learn how to answer probability questions using the normal distribution. For example, suppose Y = height of male basketball players, and we want to know: Pr{Y < 6 } Incidentally, notice that: Pr{Y < 6 } = Pr{Y 6 }. Why? What we're asking is, what's the probability a male basketball player is less than 6 feet tall? If you know calculus, then you might think we could do: 6 1 σ 2 π 1 ( y μ e 2 σ ) 2 dy Unfortunately this doesn't work except for a few special values of y (notice also that we need to know μ and σ). Instead, we need to use normal distribution tables that list probabilities. If we know μ and σ we find a table for those values of μ and σ, and then find Pr{Y < 6 }. The obvious problem is that we would need an infinite number of normal tables, one for every possible combination of μ and σ. This is obviously impossible, so we need to do something else. The standard normal distribution. Instead, we use one normal distribution to calculate all our probabilities. This is called the standard normal distribution and has: μ = 0, and σ = 1 (= σ 2 )

9 Here s how we use this distribution: Subtract the mean from the distribution you re studying. This will obviously give you μ = 0. Divide by the standard deviation of the distribution you re studying. This will give you σ = 1. We call this new number Z, for z-score. We say Z ~ N(0,1) Here s the formula: Z = Y So if we use Z instead of our original Y, we only need to list our areas in one table and then use the standard normal (or sometimes z ) curve. Comment: usually we let a computer (or fancy calculator) spit out the answer.

10 So here's how we can calculate some probabilities using the standard normal (or z) curve/tables: Pr{Z > 1.53}: Let's look at what we want first (it's always a good idea to sketch/draw pictures of what you want): Table 3 in your text will give you the area less than a particular value of Z Go to table 3 in your text. Find Read 1.5 off the column on the left side going down. Read the.03 off the top row going across. Now read across and down until these two values (1.5 and.03 in our example) intersect, and write down that number. This is the area of the normal curve that is below You should see So we can write Pr{Z < 1.53} = But we want the area above 1.53: We remember that the total area under the curve = 1.0, so we can do: = And finally we can say: Pr{Y > 1.53} =

11 Comment: since the standard normal distribution is symmetrical around 0, you could also do the following: Let's try Pr{-1.2 < Z < 0.8}: Change the sign of the value we're interested in: instead of 1.53, use Now we can just look up Pr{Y < -1.53} and we get This is a little bit of a shortcut - if it's confusing, don't worry about it and stick to method presented above. Again, let's look at our area first: Look up the values in the z-table for for 0.8 and -1.2: Pr{Z < -1.2} = Pr{Z < 0.8} = And since we want the area between these two z-values, we can subtract one from the other: Pr{-1.2 < Z < 0.8} = Pr{Z < 0.8} - Pr{Z < -1.2} = Look in your text on p. 127 [125] {126} for this example.

12 But of course, we usually deal with Y, not Z. So let's do a practical example. Exercise 4.3, p. 133 [131] (we're only doing select parts of the exercise): For Swedish men, we somehow know that μ = 1,400 gm, and σ = 100 gm. a) Find the probability that a (random) brain is 1,500 gm or less (note that your text asks the question just a little differently, but it works out the same): Pr{Y < 1,500}: Convert to Z: Z = = 1 very convenient! Note that Pr{Y < 1,500} Pr{Z < 1.0} (The symbol means exactly equivalent to ) Before we go on, let's look at some pictures: Notice that the areas are identical. Look up 1.00 in table 3 and get So Pr{Y < 1,500} = Pr{Z < 1.0} = c) Find the probability that a brain is 1,325 gm or more: Pr{Y > 1,325}: Z = = 0.75 Again, remember that Pr{Y > 1,325} Pr{Z > -0.75}

13 Just one picture this time: And, of course, we want the area in gray. Look up in table 3 and get Remember that this time we need to subtract this result from 1: So Pr{Y > 1,325} = Pr{Z > -0.75} = = f) (last one) find probability that a brain is between 1,200 and 1,325 gm: Pr{1,200 < Y < 1,325}: This time we need two values of Z: Z 1 = = 2.0 Z 2 = = 0.75 Look up Z 1 to get Look up Z 2 to get So we have: Pr{1,200 < Y < 1,325} = Pr{-2.0 < Z < -0.75} = =.2038

When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution?

When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution? Distributions 1. What are distributions? When we look at a random variable, such as Y, one of the first things we want to know, is what is it s distribution? In other words, if we have a large number of

More information

The probability of having a very tall person in our sample. We look to see how this random variable is distributed.

The probability of having a very tall person in our sample. We look to see how this random variable is distributed. Distributions We're doing things a bit differently than in the text (it's very similar to BIOL 214/312 if you've had either of those courses). 1. What are distributions? When we look at a random variable,

More information

But suppose we want to find a particular value for y, at which the probability is, say, 0.90? In other words, we want to figure out the following:

But suppose we want to find a particular value for y, at which the probability is, say, 0.90? In other words, we want to figure out the following: More on distributions, and some miscellaneous topics 1. Reverse lookup and the normal distribution. Up until now, we wanted to find probabilities. For example, the probability a Swedish man has a brain

More information

Since his score is positive, he s above average. Since his score is not close to zero, his score is unusual.

Since his score is positive, he s above average. Since his score is not close to zero, his score is unusual. Chapter 06: The Standard Deviation as a Ruler and the Normal Model This is the worst chapter title ever! This chapter is about the most important random variable distribution of them all the normal distribution.

More information

7.1 Graphs of Normal Probability Distributions

7.1 Graphs of Normal Probability Distributions 7 Normal Distributions In Chapter 6, we looked at the distributions of discrete random variables in particular, the binomial. Now we turn out attention to continuous random variables in particular, the

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2019 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

2. Modeling Uncertainty

2. Modeling Uncertainty 2. Modeling Uncertainty Models for Uncertainty (Random Variables): Big Picture We now move from viewing the data to thinking about models that describe the data. Since the real world is uncertain, our

More information

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. For exams (MD1, MD2, and Final): You may bring one 8.5 by 11 sheet of

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2018 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

The Normal Distribution

The Normal Distribution 5.1 Introduction to Normal Distributions and the Standard Normal Distribution Section Learning objectives: 1. How to interpret graphs of normal probability distributions 2. How to find areas under the

More information

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative STAT:10 Statistical Methods and Computing Normal Distributions Lecture 4 Feb. 6, 17 Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu 1 2 Using density curves to describe the distribution of values of

More information

Contents. The Binomial Distribution. The Binomial Distribution The Normal Approximation to the Binomial Left hander example

Contents. The Binomial Distribution. The Binomial Distribution The Normal Approximation to the Binomial Left hander example Contents The Binomial Distribution The Normal Approximation to the Binomial Left hander example The Binomial Distribution When you flip a coin there are only two possible outcomes - heads or tails. This

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

4: Probability. Notes: Range of possible probabilities: Probabilities can be no less than 0% and no more than 100% (of course).

4: Probability. Notes: Range of possible probabilities: Probabilities can be no less than 0% and no more than 100% (of course). 4: Probability What is probability? The probability of an event is its relative frequency (proportion) in the population. An event that happens half the time (such as a head showing up on the flip of a

More information

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management BA 386T Tom Shively PROBABILITY CONCEPTS AND NORMAL DISTRIBUTIONS The fundamental idea underlying any statistical

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x)

A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) Section 6-2 I. Continuous Probability Distributions A continuous random variable is one that can theoretically take on any value on some line interval. We use f ( x) to represent a probability density

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

Statistics 431 Spring 2007 P. Shaman. Preliminaries

Statistics 431 Spring 2007 P. Shaman. Preliminaries Statistics 4 Spring 007 P. Shaman The Binomial Distribution Preliminaries A binomial experiment is defined by the following conditions: A sequence of n trials is conducted, with each trial having two possible

More information

Chapter 6 Analyzing Accumulated Change: Integrals in Action

Chapter 6 Analyzing Accumulated Change: Integrals in Action Chapter 6 Analyzing Accumulated Change: Integrals in Action 6. Streams in Business and Biology You will find Excel very helpful when dealing with streams that are accumulated over finite intervals. Finding

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

The Normal Distribution

The Normal Distribution Stat 6 Introduction to Business Statistics I Spring 009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:300:50 a.m. Chapter, Section.3 The Normal Distribution Density Curves So far we

More information

6.2 Normal Distribution. Normal Distributions

6.2 Normal Distribution. Normal Distributions 6.2 Normal Distribution Normal Distributions 1 Homework Read Sec 6-1, and 6-2. Make sure you have a good feel for the normal curve. Do discussion question p302 2 3 Objective Identify Complete normal model

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao The binomial: mean and variance Recall that the number of successes out of n, denoted

More information

Introduction to Business Statistics QM 120 Chapter 6

Introduction to Business Statistics QM 120 Chapter 6 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Chapter 6: Continuous Probability Distribution 2 When a RV x is discrete, we can

More information

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.)

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.) Starter Ch. 6: A z-score Analysis Starter Ch. 6 Your Statistics teacher has announced that the lower of your two tests will be dropped. You got a 90 on test 1 and an 85 on test 2. You re all set to drop

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

Chapter 18: The Correlational Procedures

Chapter 18: The Correlational Procedures Introduction: In this chapter we are going to tackle about two kinds of relationship, positive relationship and negative relationship. Positive Relationship Let's say we have two values, votes and campaign

More information

STAT 201 Chapter 6. Distribution

STAT 201 Chapter 6. Distribution STAT 201 Chapter 6 Distribution 1 Random Variable We know variable Random Variable: a numerical measurement of the outcome of a random phenomena Capital letter refer to the random variable Lower case letters

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Lecture - 05 Normal Distribution So far we have looked at discrete distributions

More information

CHAPTER 5 Sampling Distributions

CHAPTER 5 Sampling Distributions CHAPTER 5 Sampling Distributions 5.1 The possible values of p^ are 0, 1/3, 2/3, and 1. These correspond to getting 0 persons with lung cancer, 1 with lung cancer, 2 with lung cancer, and all 3 with lung

More information

4: Probability. What is probability? Random variables (RVs)

4: Probability. What is probability? Random variables (RVs) 4: Probability b binomial µ expected value [parameter] n number of trials [parameter] N normal p probability of success [parameter] pdf probability density function pmf probability mass function RV random

More information

Random variables The binomial distribution The normal distribution Sampling distributions. Distributions. Patrick Breheny.

Random variables The binomial distribution The normal distribution Sampling distributions. Distributions. Patrick Breheny. Distributions September 17 Random variables Anything that can be measured or categorized is called a variable If the value that a variable takes on is subject to variability, then it the variable is a

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Multiple regression - a brief introduction

Multiple regression - a brief introduction Multiple regression - a brief introduction Multiple regression is an extension to regular (simple) regression. Instead of one X, we now have several. Suppose, for example, that you are trying to predict

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

On one of the feet? 1 2. On red? 1 4. Within 1 of the vertical black line at the top?( 1 to 1 2

On one of the feet? 1 2. On red? 1 4. Within 1 of the vertical black line at the top?( 1 to 1 2 Continuous Random Variable If I spin a spinner, what is the probability the pointer lands... On one of the feet? 1 2. On red? 1 4. Within 1 of the vertical black line at the top?( 1 to 1 2 )? 360 = 1 180.

More information

Expected Value of a Random Variable

Expected Value of a Random Variable Knowledge Article: Probability and Statistics Expected Value of a Random Variable Expected Value of a Discrete Random Variable You're familiar with a simple mean, or average, of a set. The mean value of

More information

Real Estate Private Equity Case Study 3 Opportunistic Pre-Sold Apartment Development: Waterfall Returns Schedule, Part 1: Tier 1 IRRs and Cash Flows

Real Estate Private Equity Case Study 3 Opportunistic Pre-Sold Apartment Development: Waterfall Returns Schedule, Part 1: Tier 1 IRRs and Cash Flows Real Estate Private Equity Case Study 3 Opportunistic Pre-Sold Apartment Development: Waterfall Returns Schedule, Part 1: Tier 1 IRRs and Cash Flows Welcome to the next lesson in this Real Estate Private

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Prof. Thistleton MAT 505 Introduction to Probability Lecture 3

Prof. Thistleton MAT 505 Introduction to Probability Lecture 3 Sections from Text and MIT Video Lecture: Sections 2.1 through 2.5 http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systemsanalysis-and-applied-probability-fall-2010/video-lectures/lecture-1-probability-models-and-axioms/

More information

Random variables The binomial distribution The normal distribution Other distributions. Distributions. Patrick Breheny.

Random variables The binomial distribution The normal distribution Other distributions. Distributions. Patrick Breheny. Distributions February 11 Random variables Anything that can be measured or categorized is called a variable If the value that a variable takes on is subject to variability, then it the variable is a random

More information

E509A: Principle of Biostatistics. GY Zou

E509A: Principle of Biostatistics. GY Zou E509A: Principle of Biostatistics (Week 2: Probability and Distributions) GY Zou gzou@robarts.ca Reporting of continuous data If approximately symmetric, use mean (SD), e.g., Antibody titers ranged from

More information

5.1 Mean, Median, & Mode

5.1 Mean, Median, & Mode 5.1 Mean, Median, & Mode definitions Mean: Median: Mode: Example 1 The Blue Jays score these amounts of runs in their last 9 games: 4, 7, 2, 4, 10, 5, 6, 7, 7 Find the mean, median, and mode: Example 2

More information

MA 1125 Lecture 18 - Normal Approximations to Binomial Distributions. Objectives: Compute probabilities for a binomial as a normal distribution.

MA 1125 Lecture 18 - Normal Approximations to Binomial Distributions. Objectives: Compute probabilities for a binomial as a normal distribution. MA 25 Lecture 8 - Normal Approximations to Binomial Distributions Friday, October 3, 207 Objectives: Compute probabilities for a binomial as a normal distribution.. Normal Approximations to the Binomial

More information

The topics in this section are related and necessary topics for both course objectives.

The topics in this section are related and necessary topics for both course objectives. 2.5 Probability Distributions The topics in this section are related and necessary topics for both course objectives. A probability distribution indicates how the probabilities are distributed for outcomes

More information

MA 1125 Lecture 05 - Measures of Spread. Wednesday, September 6, Objectives: Introduce variance, standard deviation, range.

MA 1125 Lecture 05 - Measures of Spread. Wednesday, September 6, Objectives: Introduce variance, standard deviation, range. MA 115 Lecture 05 - Measures of Spread Wednesday, September 6, 017 Objectives: Introduce variance, standard deviation, range. 1. Measures of Spread In Lecture 04, we looked at several measures of central

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Statistics, Measures of Central Tendency I

Statistics, Measures of Central Tendency I Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom

More information

5.1 Personal Probability

5.1 Personal Probability 5. Probability Value Page 1 5.1 Personal Probability Although we think probability is something that is confined to math class, in the form of personal probability it is something we use to make decisions

More information

11.5: Normal Distributions

11.5: Normal Distributions 11.5: Normal Distributions 11.5.1 Up to now, we ve dealt with discrete random variables, variables that take on only a finite (or countably infinite we didn t do these) number of values. A continuous random

More information

The "bell-shaped" curve, or normal curve, is a probability distribution that describes many real-life situations.

The bell-shaped curve, or normal curve, is a probability distribution that describes many real-life situations. 6.1 6.2 The Standard Normal Curve The "bell-shaped" curve, or normal curve, is a probability distribution that describes many real-life situations. Basic Properties 1. The total area under the curve is.

More information

Introduction to Statistical Data Analysis II

Introduction to Statistical Data Analysis II Introduction to Statistical Data Analysis II JULY 2011 Afsaneh Yazdani Preface Major branches of Statistics: - Descriptive Statistics - Inferential Statistics Preface What is Inferential Statistics? Preface

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw MAS1403 Quantitative Methods for Business Management Semester 1, 2018 2019 Module leader: Dr. David Walshaw Additional lecturers: Dr. James Waldren and Dr. Stuart Hall Announcements: Written assignment

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

A useful modeling tricks.

A useful modeling tricks. .7 Joint models for more than two outcomes We saw that we could write joint models for a pair of variables by specifying the joint probabilities over all pairs of outcomes. In principal, we could do this

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Stat511 Additional Materials

Stat511 Additional Materials Binomial Random Variable Stat511 Additional Materials The first discrete RV that we will discuss is the binomial random variable. The binomial random variable is a result of observing the outcomes from

More information

Valuation Public Comps and Precedent Transactions: Historical Metrics and Multiples for Public Comps

Valuation Public Comps and Precedent Transactions: Historical Metrics and Multiples for Public Comps Valuation Public Comps and Precedent Transactions: Historical Metrics and Multiples for Public Comps Welcome to our next lesson in this set of tutorials on comparable public companies and precedent transactions.

More information

Chapter 6: Supply and Demand with Income in the Form of Endowments

Chapter 6: Supply and Demand with Income in the Form of Endowments Chapter 6: Supply and Demand with Income in the Form of Endowments 6.1: Introduction This chapter and the next contain almost identical analyses concerning the supply and demand implied by different kinds

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

We use probability distributions to represent the distribution of a discrete random variable.

We use probability distributions to represent the distribution of a discrete random variable. Now we focus on discrete random variables. We will look at these in general, including calculating the mean and standard deviation. Then we will look more in depth at binomial random variables which are

More information

Elementary Statistics

Elementary Statistics Chapter 7 Estimation Goal: To become familiar with how to use Excel 2010 for Estimation of Means. There is one Stat Tool in Excel that is used with estimation of means, T.INV.2T. Open Excel and click on

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

A Derivation of the Normal Distribution. Robert S. Wilson PhD.

A Derivation of the Normal Distribution. Robert S. Wilson PhD. A Derivation of the Normal Distribution Robert S. Wilson PhD. Data are said to be normally distributed if their frequency histogram is apporximated by a bell shaped curve. In practice, one can tell by

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

What s Normal? Chapter 8. Hitting the Curve. In This Chapter

What s Normal? Chapter 8. Hitting the Curve. In This Chapter Chapter 8 What s Normal? In This Chapter Meet the normal distribution Standard deviations and the normal distribution Excel s normal distribution-related functions A main job of statisticians is to estimate

More information

Binomial Random Variable - The count X of successes in a binomial setting

Binomial Random Variable - The count X of successes in a binomial setting 6.3.1 Binomial Settings and Binomial Random Variables What do the following scenarios have in common? Toss a coin 5 times. Count the number of heads. Spin a roulette wheel 8 times. Record how many times

More information

Continuous Probability Distributions & Normal Distribution

Continuous Probability Distributions & Normal Distribution Mathematical Methods Units 3/4 Student Learning Plan Continuous Probability Distributions & Normal Distribution 7 lessons Notes: Students need practice in recognising whether a problem involves a discrete

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

Chapter 4. The Normal Distribution

Chapter 4. The Normal Distribution Chapter 4 The Normal Distribution 1 Chapter 4 Overview Introduction 4-1 Normal Distributions 4-2 Applications of the Normal Distribution 4-3 The Central Limit Theorem 4-4 The Normal Approximation to the

More information

Numerical Descriptive Measures. Measures of Center: Mean and Median

Numerical Descriptive Measures. Measures of Center: Mean and Median Steve Sawin Statistics Numerical Descriptive Measures Having seen the shape of a distribution by looking at the histogram, the two most obvious questions to ask about the specific distribution is where

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

1/12/2011. Chapter 5: z-scores: Location of Scores and Standardized Distributions. Introduction to z-scores. Introduction to z-scores cont.

1/12/2011. Chapter 5: z-scores: Location of Scores and Standardized Distributions. Introduction to z-scores. Introduction to z-scores cont. Chapter 5: z-scores: Location of Scores and Standardized Distributions Introduction to z-scores In the previous two chapters, we introduced the concepts of the mean and the standard deviation as methods

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

= 0.35 (or ˆp = We have 20 independent trials, each with probability of success (heads) equal to 0.5, so X has a B(20, 0.5) distribution.

= 0.35 (or ˆp = We have 20 independent trials, each with probability of success (heads) equal to 0.5, so X has a B(20, 0.5) distribution. Chapter 5 Solutions 51 (a) n = 1500 (the sample size) (b) The Yes count seems like the most reasonable choice, but either count is defensible (c) X = 525 (or X = 975) (d) ˆp = 525 1500 = 035 (or ˆp = 975

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

Section 0: Introduction and Review of Basic Concepts

Section 0: Introduction and Review of Basic Concepts Section 0: Introduction and Review of Basic Concepts Carlos M. Carvalho The University of Texas McCombs School of Business mccombs.utexas.edu/faculty/carlos.carvalho/teaching 1 Getting Started Syllabus

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Review: Population, sample, and sampling distributions

Review: Population, sample, and sampling distributions Review: Population, sample, and sampling distributions A population with mean µ and standard deviation σ For instance, µ = 0, σ = 1 0 1 Sample 1, N=30 Sample 2, N=30 Sample 100000000000 InterquartileRange

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information