Statistics, Measures of Central Tendency I

Size: px
Start display at page:

Download "Statistics, Measures of Central Tendency I"

Transcription

1 Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom an experiment n times and record the outcome. This means we have X 1,..., X n i.i.d. random variables, with probability distribution same as X. We want to use the outcome to infer what the parameters are. Mean The outcomes are x 1,..., x n. The Sample Mean is x := x 1+ +x n n. Also sometimes called the average. The expected value of X, EX, is also called the mean of X. Often denoted by µ. Sometimes called population mean. Median The number so that half the values are below, half above. If the sample is of even size, you take the average of the middle terms. Mode The number that occurs most frequently. There could be several modes, or no mode. Dan Barbasch Math 1105 Chapter 9 Week of September 25 1 / 24

2 Statistics, Measures of Central Tendency II Example You have a coin for which you know that P(H) = p and P(T ) = 1 p. You would like to estimate p. You toss it n times. You count the number of heads. The sample mean should be an estimate of p. EX = p, and E(X X n ) = np. So ( ) X1 + + X n E = p. n Dan Barbasch Math 1105 Chapter 9 Week of September 25 2 / 24

3 Descriptive Statistics I Frequency Distribution Divide into a number of equal disjoint intervals. For each interval count the number of elements in the sample occuring. Histogram see the next slide Grouped Data Mean Essentially calculate the mean of the frequency distribution. Intervals are used, rather than single values. It is assumed that all these values are located at the midpoint of the interval. The letter x M is used to represent the midpoints and f represents the frequencies: fi x M,i Frequency Polygon Connect the middles of the tops of each interval. n Dan Barbasch Math 1105 Chapter 9 Week of September 25 3 / 24

4 Histogram A histogram is a graphical representation of the distribution of numerical data. It is a kind of bar graph. To construct a histogram, the first step is to bin the range of values, that is, divide the entire range of values into a series of intervals, and then count how many values fall into each interval. The bins are usually specified as consecutive, non-overlapping intervals of a variable. The bins (intervals) must be adjacent, and are often (but are not required to be) of equal size. Mean: Bin Count ( 3) 9+( 2) 32+( 1) 109+ (0) Dan Barbasch Math 1105 Chapter 9 Week of September 25 4 / 24

5 Example The table on the next page gives the number of days in June and July of recent years in which the temperature reached 90 degrees or higher in New Yorks Central Park. Source: The New York Times and Accuweather.com. a. Prepare a frequency distribution with a column for intervals and frequencies. Use seven intervals, starting with [0 4]. b. Sketch a histogram and a frequency polygon, using the intervals in part a. c. Find the mean for the original data. d. Find the mean using the grouped data from part a. e. Explain why your answers to parts c and d are different. f. Find the median and the mode for the original data. Dan Barbasch Math 1105 Chapter 9 Week of September 25 5 / 24

6 Temperature Data om- om- ful. mn ng. ) of fol- New York Times and Accuweather.com. Year Days Year Days Year Days Dan Barbasch Math 1105 Chapter 9 Week of September 25 6 / 24

7 Measures of Variation Summary of Section 9.2 Range The difference Largest Data - Smallest Data in a Sample. Deviation from the Mean 1 Variance σ 2 = s 2 = x 2 i nx 2 n 1 = (xi x) 2 n 1 2 Standard Deviation σ = s = s 2 These are random variables called Sample Variance and Sample Standard Deviation. For a random variable X, µ = E(X ) is called the mean. The variance Var(X ) is σ 2 = Var(X ) = E((X µ) 2 ). Main Property/ Explanation for dividing by n 1: If X i are (Xi X ) 2 i.i.d with distribution X, then if you set S 2 = n 1 expected value is E(S 2 ) = σ 2. This is not true for the standard deviation, E(S) σ. fi xm,i 2 Grouped Data s = nx 2. n 1, its Dan Barbasch Math 1105 Chapter 9 Week of September 25 7 / 24

8 Examples I Example (Range) Data 15, 3, 4, 7, 18. The smallest is 3, the largest 18 so Range = 18 ( 3) = 21. Always a nonnegative number. Example (Deviation from the Mean) In the previous example, x = = 8.2. So = 6.8, = 11.2, = 3.8, = 1.2, = 9.8. Example (Variance and Standard Deviation) s 2 = = s = s 2. Dan Barbasch Math 1105 Chapter 9 Week of September 25 8 / 24

9 Examples II Example (Binomial Distribution) P(X = 1) = p, P(X = 0) = 1 p. Then µ = E(X ) = p, and σ 2 = E((X p) 2 ) = (1 p) 2 p + (0 p) 2 (1 p) = p(1 p). This is the same as E(X 2 p 2 ) = (1 p 2 )p + ( p 2 )(1 p) = (1 p)p. Remark: Note that the formula for variance and standard deviation only holds for n > 2. Otherwise, for n = 1, you would be dividing by 0. For one random variable, the variance is defined as Var(X ) = E((X E(X )) 2 ). For X 1, X 2,, two independent random variables, Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ). Suppose X is a random variable. We can write a table X a 1 a 2... a n P(X ) p 1 p 2... p n Dan Barbasch Math 1105 Chapter 9 Week of September 25 9 / 24

10 Examples III For the expected value µ = E(X ), you multiply the two terms in each column, and add a i p n = a 1 p a n p n. i In a spreadsheet program, the data would be in columns and you would add over the products from the rows. You use a command like sumproduct to perform the operation. If you have some other variable like (X µ) 2, you would use the values (a i µ) 2 and the same p i. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

11 Examples IV Example X X (X µ) 2 (2 1/4) 2 (3 1/4) 2 ( 1 1/4) 2 (1 1/4) 2 P(X ) 1/2 1/8 1/4 1/8 Computing the expected values is below. µ = E(X ) = (2) (1/2) + (3) (1/8) + ( 1) (1/4) + (1) (1/8) = 1/4. Var(X ) =(2 1/4) 2 (1/2) + (3 1/4) 2 (1/8) + ( 1 1/4) 2 (1/4)+ +(1 1/4) 2 (1/8) = 47/16. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

12 Grouped Data Example (Grouped Data) Interval Frequency Midpoint x M Find the standard deviation of these grouped data. In this case you must sum the xm 2 multiplied by the frequencies, and subtract 80 x where x is for the full sample, (which is not in the table, you must get it from the full data). Dan Barbasch Math 1105 Chapter 9 Week of September / 24

13 Chebyshev s and Markov s Inequality I P(X a) E(X ) a P ( X µ kσ) 1 k 2 Markov. Chebyshev. In words, the probability that X is more than k standard deviations away from the mean is less than 1/k 2. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

14 Chebyshev s and Markov s Inequality II Example (from the practice prelim) 8. (14 points) Assume that the height in inches of American women follows a normal distribution with mean Mu = 64 (5 4 ) and standard deviation σ = 3. (a) (3 points) How many standard deviations above or below the mean is a height of 72 (6 0 )? (b) (4 points) What fraction of women are taller than 6 feet? (c) (4 points) In a room with 30 women, what is the probability that at least one of them is taller than 6 feet? (d) (3 points) What assumptions did you make when answering part (c)? Are there circumstances under which those assumptions would not be justified? Dan Barbasch Math 1105 Chapter 9 Week of September / 24

15 Chebyshev s and Markov s Inequality III Answer. Say we don t know what distribution it is. We can still use Markov s and Chebyshev s inequality., so closer to 3. Use 73 to get 3. (b) Markov s inequality says P(X 73) To use Chebyshev s inequality we must write X 64 3σ. Then (a) = 8 3 P( X 64 3σ) 1 9. In other words, k = 3. This includes not just X 73, but also X 55. Still we can say the probability is less than 1/9, because X 64 9 is larger than X (c) 1 P( none are taller than 6 ) = 1 (1 P( one is not taller than 6 )) 30. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

16 Continuous Random Variables I In many applications it useful to assume that the random varuiable X may take any real value. The probability distribution for the case of finitely many values does not work. We assume that the sampe space is S = R all real number. The typical event (subset of S) is restricted to sets of the form A = {x x a} and complements and intersections of such sets. For us they will be at most sets of the form A = {a x b}. The probability distribution is given as numbers P(X a); in other words a function which takes nonnegative values only, and we allow a = in which case the value is 0, and, in which case the number is 1. For a continuous reandom variable, P(X = a) = 0 always, but the situation is not trivial. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

17 Continuous Random Variables II Example (the uniform distribution of the interval (0, 1)) Let 0 if a 0 f (x) = 1 if a < 0 < 1 0 if 1 a Define P(X a) = area between the x axis and f (x), and before the vertical line x = a. See the picture in class, or in the text for the normal distribution. So 0 if a 0 P(X a) = a if 0 < a < 1 1 if 1 a Dan Barbasch Math 1105 Chapter 9 Week of September / 24

18 Continuous Random Variables III Exercise Do the same for 0 if x 0 f (x) = 2x if 0 x 1 0 if 1 < x. You need the formula for the area of the triangle, Area = (base) (height)/2. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

19 Normal Distribution I Definition Data are said to be normally distributed if the rate at which the frequencies fall off is proportional to the distance of the score from the mean, and to the frequencies themselves. This definition requires Calculus. We don t assume or do Calculus in this course. We will however learn how to work with this distribution. It is very useful in that many phenomena can be modeled by this. We will see how the binomial distribution is related to the normal distribution later in the chapter. Suppose you have a random variable X, and you would like to know about its mean µ. So you perform many n independent trials, and draw a histogram. The larger the n, the closer the outcome will look like the curve f (x) = 1 2πσ e (x µ)2 2σ 2. The pictures in the text show what it looks like. The resulting probability is called N(µ, σ 2 ), normal with mean µ and Dan Barbasch Math 1105 Chapter 9 Week of September / 24

20 Normal Distribution II variance σ 2. There is a precise statement called the Central Limit Theorem which says that for large n, n(s n µ) looks like a normal distribution N(0, σ 2 ). it is used in practice to model large populations and errors. There are many examples that can be approximated by normal distributions. Heights of people, and scores on tests are examples. This is not a finite distribution. For a random variable that is normally distributed, we write N(µ, σ 2 ), P(X a) = the area under the normal curve from to a. This is tabulated for µ = 0 and σ = 1. The rest is computed by simple formulas involving arithmetic. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

21 Height Example I Example (from the practice prelim) 8. (14 points) Assume that the height in inches of American women follows a normal distribution with mean mu = 64 (5 4 ) and standard deviation σ = 3. (a) (3 points) How many standard deviations above or below the mean is a height of 73 (6 1 )? (b) (4 points) What fraction of women are taller than 73 inches? (c) (4 points) In a room with 30 women, what is the probability that at least one of them is taller than 73? (d) (3 points) What assumptions did you make when answering part (c)? Are there circumstances under which those assumptions would not be justified? Dan Barbasch Math 1105 Chapter 9 Week of September / 24

22 Height Example II Answer. (a) same as before 3 standard deviations away. (b) P(X 73) = P(X = 9 = 3σ) = P( X µ σ =1 P( X µ 3) = = σ 3) = This is 1/1000. The random variable X has probability distribution N(64, 17). The probability P(X 73) comes from this normal distribution. To actually look it up in the tables, you rewrite it in terms of Z = X 64 3 which has probability distribution N(0, 1). This is the one in the tables. (c) P(at least 1/30 73) =1 P(30/30 73) = 1 P(X 73) 30 = =1 (0.998) 30. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

23 z value The principle is X normal N(µ, σ 2 ) Z = X µ σ normal N(0, 1). So P(X a) = P(Z a µ σ ). z = a µ σ is called the z value. This is what you look up in the tables. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

24 Example with Grades Example A professor (not this one!) of a course wants to give grades so that A top 8% F bottom 8% B next 20% below A D next 20% above the F C the rest The mean is µ = 67 and the standard deviation is σ = 17. Find the cutoffs. Answer. P( A) = 0.92 z = 1.41 a = µ + zσ = = 91 P( B) = 0.72 z = 0.58 a = µ + zσ = = 77 P( C) = 0.28 z =.59 a = µ + zσ = (.59) = 57 P( D) = 0.08 z = 1.39 a = µ + zσ = ( 1.39) = 43 from the tables. In Excel or alike you can write norminv(0.92, 67, 17) = 91. Dan Barbasch Math 1105 Chapter 9 Week of September / 24

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics. Bluman 5 th edition Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 6 The Normal Distribution 2 Objectives Identify distributions as symmetrical or skewed. Identify the properties of the normal distribution. Find

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of Stat 400, section 4.3 Normal Random Variables notes prepared by Tim Pilachowski Another often-useful probability density function is the normal density function, which graphs as the familiar bell-shaped

More information

MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION

MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION We have examined discrete random variables, those random variables for which we can list the possible values. We will now look at continuous random variables.

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads

Consider the following examples: ex: let X = tossing a coin three times and counting the number of heads Overview Both chapters and 6 deal with a similar concept probability distributions. The difference is that chapter concerns itself with discrete probability distribution while chapter 6 covers continuous

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao The binomial: mean and variance Recall that the number of successes out of n, denoted

More information

Chapter 6 Continuous Probability Distributions. Learning objectives

Chapter 6 Continuous Probability Distributions. Learning objectives Chapter 6 Continuous s Slide 1 Learning objectives 1. Understand continuous probability distributions 2. Understand Uniform distribution 3. Understand Normal distribution 3.1. Understand Standard normal

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5 H homework problems, C-copyright Joe Kahlig Chapter Solutions, Page Chapter Homework Solutions Compiled by Joe Kahlig. (a) finite discrete (b) infinite discrete (c) continuous (d) finite discrete (e) continuous.

More information

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw MAS1403 Quantitative Methods for Business Management Semester 1, 2018 2019 Module leader: Dr. David Walshaw Additional lecturers: Dr. James Waldren and Dr. Stuart Hall Announcements: Written assignment

More information

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem 1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 Fall 216 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / Fall 216 1

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

11.5: Normal Distributions

11.5: Normal Distributions 11.5: Normal Distributions 11.5.1 Up to now, we ve dealt with discrete random variables, variables that take on only a finite (or countably infinite we didn t do these) number of values. A continuous random

More information

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management BA 386T Tom Shively PROBABILITY CONCEPTS AND NORMAL DISTRIBUTIONS The fundamental idea underlying any statistical

More information

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Lecture - 05 Normal Distribution So far we have looked at discrete distributions

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables In this chapter, we introduce a new concept that of a random variable or RV. A random variable is a model to help us describe the state of the world around us. Roughly, a RV can

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler Ch. 5: Confidence Intervals, Sample Variance Math 186 / Winter 2017 1 / 29 Estimating parameters

More information

Statistics, Their Distributions, and the Central Limit Theorem

Statistics, Their Distributions, and the Central Limit Theorem Statistics, Their Distributions, and the Central Limit Theorem MATH 3342 Sections 5.3 and 5.4 Sample Means Suppose you sample from a popula0on 10 0mes. You record the following sample means: 10.1 9.5 9.6

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

AMS7: WEEK 4. CLASS 3

AMS7: WEEK 4. CLASS 3 AMS7: WEEK 4. CLASS 3 Sampling distributions and estimators. Central Limit Theorem Normal Approximation to the Binomial Distribution Friday April 24th, 2015 Sampling distributions and estimators REMEMBER:

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

The topics in this section are related and necessary topics for both course objectives.

The topics in this section are related and necessary topics for both course objectives. 2.5 Probability Distributions The topics in this section are related and necessary topics for both course objectives. A probability distribution indicates how the probabilities are distributed for outcomes

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS 8.1 Distribution of Random Variables Random Variable Probability Distribution of Random Variables 8.2 Expected Value Mean Mean is the average value of

More information

The Normal Distribution

The Normal Distribution 5.1 Introduction to Normal Distributions and the Standard Normal Distribution Section Learning objectives: 1. How to interpret graphs of normal probability distributions 2. How to find areas under the

More information

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Random Variables Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8.1 What is a Random Variable? Random Variable: assigns a number to each outcome of a random circumstance, or,

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Consumer Guide Dealership Word of Mouth Internet

Consumer Guide Dealership Word of Mouth Internet 8.1 Graphing Data In this chapter, we will study techniques for graphing data. We will see the importance of visually displaying large sets of data so that meaningful interpretations of the data can be

More information

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance Chapter 5 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance.40.30.20.10 0 1 2 3 4 Random Variables A random variable is a numerical description

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Chapter 3: Probability Distributions and Statistics

Chapter 3: Probability Distributions and Statistics Chapter 3: Probability Distributions and Statistics Section 3.-3.3 3. Random Variables and Histograms A is a rule that assigns precisely one real number to each outcome of an experiment. We usually denote

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Chapter 4. The Normal Distribution

Chapter 4. The Normal Distribution Chapter 4 The Normal Distribution 1 Chapter 4 Overview Introduction 4-1 Normal Distributions 4-2 Applications of the Normal Distribution 4-3 The Central Limit Theorem 4-4 The Normal Approximation to the

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 7 Sampling Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 2014 Pearson Education, Inc. Chap 7-1 Learning Objectives

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

Central Limit Theorem, Joint Distributions Spring 2018

Central Limit Theorem, Joint Distributions Spring 2018 Central Limit Theorem, Joint Distributions 18.5 Spring 218.5.4.3.2.1-4 -3-2 -1 1 2 3 4 Exam next Wednesday Exam 1 on Wednesday March 7, regular room and time. Designed for 1 hour. You will have the full

More information

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics.

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics. ENM 207 Lecture 12 Some Useful Continuous Distributions Normal Distribution The most important continuous probability distribution in entire field of statistics. Its graph, called the normal curve, is

More information

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Chapter 3 Numerical Descriptive Measures Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Objectives In this chapter, you learn to: Describe the properties of central tendency, variation, and

More information

Probability Distributions

Probability Distributions Chapter 6 Discrete Probability Distributions Section 6-2 Probability Distributions Definitions Let S be the sample space of a probability experiment. A random variable X is a function from the set S into

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

MA131 Lecture 8.2. The normal distribution curve can be considered as a probability distribution curve for normally distributed variables.

MA131 Lecture 8.2. The normal distribution curve can be considered as a probability distribution curve for normally distributed variables. Normal distribution curve as probability distribution curve The normal distribution curve can be considered as a probability distribution curve for normally distributed variables. The area under the normal

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 207 Homework 5 Drew Armstrong Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Section 3., Exercises 3, 0. Section 3.3, Exercises 2, 3, 0,.

More information

5.7 Probability Distributions and Variance

5.7 Probability Distributions and Variance 160 CHAPTER 5. PROBABILITY 5.7 Probability Distributions and Variance 5.7.1 Distributions of random variables We have given meaning to the phrase expected value. For example, if we flip a coin 100 times,

More information

Lecture 5 - Continuous Distributions

Lecture 5 - Continuous Distributions Lecture 5 - Continuous Distributions Statistics 102 Colin Rundel January 30, 2013 Announcements Announcements HW1 and Lab 1 have been graded and your scores are posted in Gradebook on Sakai (it is good

More information

Statistics 431 Spring 2007 P. Shaman. Preliminaries

Statistics 431 Spring 2007 P. Shaman. Preliminaries Statistics 4 Spring 007 P. Shaman The Binomial Distribution Preliminaries A binomial experiment is defined by the following conditions: A sequence of n trials is conducted, with each trial having two possible

More information

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE)

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) Normal and Binomial Distribution Applied to Construction Management Sampling and Confidence Intervals Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile:

More information

A.REPRESENTATION OF DATA

A.REPRESENTATION OF DATA A.REPRESENTATION OF DATA (a) GRAPHS : PART I Q: Why do we need a graph paper? Ans: You need graph paper to draw: (i) Histogram (ii) Cumulative Frequency Curve (iii) Frequency Polygon (iv) Box-and-Whisker

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Elementary Statistics Blue Book. The Normal Curve

Elementary Statistics Blue Book. The Normal Curve Elementary Statistics Blue Book How to work smarter not harder The Normal Curve 68.2% 95.4% 99.7 % -4-3 -2-1 0 1 2 3 4 Z Scores John G. Blom May 2011 01 02 TI 30XA Key Strokes 03 07 TI 83/84 Key Strokes

More information

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10. IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See

More information