7.1: Sets. What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set?

Size: px
Start display at page:

Download "7.1: Sets. What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set?"

Transcription

1 7.1: Sets What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set? Example 1: Write the elements belonging to each set. a. {x x is a natural number less than 5} b. {x x is a state that borders Florida} What is a subset?

2 Example 2: Decide whether the following statements are true or false. Explain. a. {3,4,5,6} = {4,6,3,5} b. {5,6,9,12} {5,6,7,8,9,10,11} A property of Subsets: Example 3: List all possible subsets for each set. a. {7,8} b. {a,b,c} A set with k elements has subsets. Example 4: Find the number of subsets for each set. a. {3,4,5,6,7} b. What is a Venn diagram? How can we use Venn diagrams to represent sets? What is the complement of a set?

3 Example 5: Let U = {1,2,3,4,5,6,7,8,9,10,11} and A = { 1,2,4,5,7} and B={2,4,5,7,9,11}. Find each set. a. A b. B c. d. (A ) What is the intersection of two sets? What is the union of two sets? What does it mean for sets to be disjoint? Example 6: Let A = {1,3,5,7,9,11}, B= {3,6,9,12}, C = {1,2,3,4,5} and the universal set U={1,2,3,4,5,6,7,8,9,10,11,12}. Find each set. a. A B = b. A C = c. (AB) C = Example 7: A department store classifies credit card applicants by gender, marital status, and employment status. Let the universal set be all credit card applicants, M be the set of male applicants, S be the set of single applicants and E be the set of employed applicants. Describe each set in words. a. M E = b. M S = c. M S =

4 7.2: Applications of Venn Diagrams Venn diagrams can be used to represent the intersection and union of sets. Example 1: Draw Venn diagrams and shade regions to represent each set. a. A B b. A B c. A (B C ) Example 2: A researcher is collecting data on 100 households and finds that 76 have a DVD player 21 have a Blu-ray player 12 have both Answer the following questions. a. How many do not have a DVD player? b. How many have neither a DVD player nor a Blu-ray player? c. How many have a Blu-ray player but not a DVD player?

5 Example 3: A survey of 77 freshman business students at a large university produced the following results 25 of the students read Bloomberg Businessweek; 27 read The Wall Street Journal; 27 do not read Fortune; 11 read Bloomberg Businessweek but not The Wall Street Journal; 11 read The Wall Street Journal and Fortune; 13 read Bloomberg Businessweek and Fortune; 9 read all three. a. How many students read none of the publications? b. How many read only Fortune? c. How many read Bloomberg Businessweek and The Wall Street Journal, but not Fortune? RULE: Union Rule for Sets: Example 4: A group of 10 students meet to plan a school function. All are majoring in accounting or economics or both. Five of the students are economics majors and 7are majors in accounting. How many major in both subjects?

6 Example 5: The following table gives the number of threatened and endangered animal species in the world as of May Source: U.S. Fish and Wildlife Service. Endangered (E) Threatened (T) Totals Amphibians and Reptiles (A) Arachnids and Insects (I) Birds (B) Clams, Crustaceans, corals, snails ( C) Fishes (F) Mammals Totals Using the letters given in the table to denote each set, find the number of species in each of the following sets. a. E B= b. E B = c. (F M) T

7 7.3: Introduction to Probability What is an experiment? What is a trial? What is an outcome? What is a sample space? Example 1: Give the sample space for each experiment: a. A spinner like the one shown is spun. b. For the purpose of a public opinion poll, respondents are classified as young, middle-aged, or senior, and as male or female. c. An experiment consists of studying the numbers of boys and girls in families with exactly 3 children. Let b represent boy and g represent girl. What is an event?

8 Example 2: For the sample space in Example 1(c), write the following events. a. Event H: the family has exactly 2 girls b. Event K: the three children are the same sex c. Event J: the family has 3 girls An event with only one possible outcome is called a. If an event, E, equals the sample space S, then E is called a. Example 3: Suppose a coin is flipped until both a head and a tail appear, or until the coin has been flipped four times, whichever comes first. Write each of the following events in set notation. a. The coin is flipped exactly three times. b. The coin is flipped at least three times. c. The coin is flipped at least two times. d. The coin is flipped fewer than two times. RULE: Set operations for Events: o Let E and F be events for a sample space S E F occurs when E F occurs when E occurs when

9 Example 4: A study of workers earning the minimum wage grouped such workers into various categories, which can be interpreted as events when a worker is selected at random. Consider the following events: E: worker is under 20; F: worker is white; G: worker is female. Describe the following events in words. Source: Economic Policy Institute. a. E b. F G c. E G DEFINITION: Mutually Exclusive Events Example of mutually exclusive event: DEFINITION: Basic Probability Principle: Example 5: Suppose a single fair die is rolled. Use the sample space S = {1,2,3,4,5,6} and give the probability of each event. a. E: the die shows an even number b. F: the die shows a number less than 10 c. G: the die shows an 8.

10 For any event E, It is not always possible to establish exact probabilities for events. Instead, useful approximations are often found by drawing past experience. This is known as. Example 6: The following table lists the estimated number of injuries in the US associated with recreation equipment. Source: National Safety Council Equipment Number of Injuries Bicycles 515,871 Skateboards 143,682 Trampolines 107,345 Playground Climbing Equipment 77,845 Swings or swing sets 59,144 Find the probability that a randomly selected person whose injury is associated with recreation equipment was hurt on a trampoline.

11 7.4: Basic Concepts of Probability RULE: Union Rule for Probability: Example 1: If a single card is drawn from an ordinary deck of cards, find the probability that it will be a red or a face card. Example 2: Suppose two fair dice are rolled. Find each probability. a. The first die shows a 2 or the sum of the two die is 6 or 7. b. The sum of the two die is 11 or the second die shows a 5. RULE: The Complement Rule: Example 3: If a fair die is rolled, what is the probability that any number but 5 will come up?

12 Example 4: If two fair die are rolled, find the probability that the sum of the numbers rolled is greater than 3. How do we give a probability statement in terms of odds? Example 5: Suppose the weather forecaster says the probability of rain tomorrow is 1/3. Find the odds in favor or rain tomorrow. Example 6: The odds that a particular package will be delivered on time are 25 to 2. a. Find the probability that the package will be delivered on time. b. Find the odds against the package being delivered on time. What is a probability distribution?

13 Example 8: The following table lists the major holders of US consumer credit (in billions of dollars) inn Source: The World Almanac and Book of Facts Holder Amount Depository institutions Finance companies Credit unions Federal government Nonfinancial business 48.5 Pools of securitized assets 49.9 a. Construct a probability distribution for the probability that a dollar of consumer credit is held by each type of holder. b. Find the probability that a dollar of consumer credit is held by a finance company or a credit union.

14 7.5: Conditional Probability; Independent Events DEFINITION: Conditional Probability: Example 1: The chart below shows results of a stock broker survey. Use the information in the chart to find the following probabilities. Picked stocks that Didn t pick stocks Totals went up (A) that went up (A ) Used research (B) Didn t use research (B ) Totals a. P(B A) b. P(A B) c. P(B A ) Example 2: Given P(E)= 0.4, P(F) = 0.5 and P(EF) = 0.7, find P(E F) Example 3: Two fair coins were tossed, and it is known that at least one was a head. Find the probability that both were heads.

15 Example 4: Two cards are drawn from a standard deck, one after another without replacement. Find the probability that the second is a red card, given that the first is a red card. RULE: Product Rule of Probability: Example 5: in a class with 2/5 women and 3/5 men, 25% of the women are business majors. Find the probability that a student chosen from the class at random is a female business major. Example 6: The Environmental Protection Agency is considering inspecting 6 plant for environmental compliance: 3 in Chicago, 2 in Los Angeles and 1 in New York. Due to a lack of inspectors, they decide to inspect 2 plants selected at random, one this month and one next month, with each plant equally likely to be selected, but no plant selected twice. What is the probability that one Chicago plant and one Los Angeles plant are selected?

16 Example 7: Two cards are drawn from a standard deck, one after another without replacement. a. Find the probability that the first card is a heart and the second card is a red. b. Find the probability that the second card is a red card. What is the difference between independent and dependent events? RULE: If events E and F are independent events, then RULE: Product Rule for Independent Events: Example 8: A calculator requires a keystroke assembly and a logic circuit. Assume that 99% of the keystroke assemblies are satisfactory and 97% of the logic circuits are satisfactory. Find the probability that a finished calculator will be satisfactory.

17 How can we show that two events are independent? Example 9: On a typical January day in Manhattan, the probability of snow is 0.10, the probability of a traffic jam is 0.80 and the probability of snow or a traffic jam (or both) is Are the event it snows and the event a traffic jam occurs independent?

18 7.6: Bayes Theorem Bayes Formula: Example 1: A manufacturer claims that its test will detect anabolic steroid use (that is, show positive for an athlete who uses steroids) 95% of the time. What the company does not tell you is that 6% of all anabolic steroid-free users also test positive (the false positive rate). At ESU, it is estimated that 10% of all the athletes use anabolic steroids. Let T denote the event that an athlete tests positive in the drug test and A denote the event that an athlete has used anabolic steroids. Create a tree diagram to represent the situation. Then find the following probabilities. P(A) = P(T A)= P(T A )= P(A )= P(T A)= P(T A )= Compute the probability that an athlete who tested positive is a steroid user.

19 Example 2: For a fixed length of time, the probability of a worker error on a certain production line is 0.1, the probability that an accident will occur when there is a worker error is 0.3, and the probability that an accident will occur when there is no worker error is 0.2. Find the probability of a worker error if there is an accident. Example 3: 1 % of women at age forty who participate in a routine screening have breast cancer. 80% of women with breast cancer will receive a positive mammography. 9.6% of women without breast cancer will also get a positive mammography. a. A woman in this age group had a positive mammography in a routine screening. What is the probability that she has breast cancer? b. Another woman in this age group has a negative mammography in her routine screening. What is the probability that she does not have breast cancer?

20 Example 4: Marie is getting married tomorrow, an at outdoor ceremony in the desert. In recent years, it has rained only 5 days each year. Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weather man correctly forecasts rain 90% of the time. When it doesn t rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain on the day of Marie s wedding? Example 5: An insurance company issues life insurance policies in three separate categories: standard, preferred, and ultra-preferred. Of the company s policy holders, 50% are standard, 40% are preferred, and 10% are ultra-preferred. Each standard policy holder has probability of dying in the next year, each preferred policyholder has probability of dying in the next year and each ultra-preferred policyholder as probability of dying in the next year. What is the probability that a deceased policy holder was ultra-preferred?

Event p351 An event is an outcome or a set of outcomes of a random phenomenon. That is, an event is a subset of the sample space.

Event p351 An event is an outcome or a set of outcomes of a random phenomenon. That is, an event is a subset of the sample space. Chapter 12: From randomness to probability 350 Terminology Sample space p351 The sample space of a random phenomenon is the set of all possible outcomes. Example Toss a coin. Sample space: S = {H, T} Example:

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

expl 1: Consider rolling two distinguishable, six-sided dice. Here is the sample space. Answer the questions that follow.

expl 1: Consider rolling two distinguishable, six-sided dice. Here is the sample space. Answer the questions that follow. General Education Statistics Class Notes Conditional Probability (Section 5.4) What is the probability you get a sum of 5 on two dice? Now assume one die is a 4. Does that affect the probability the sum

More information

Determine whether the given events are disjoint. 1) Drawing a face card from a deck of cards and drawing a deuce A) Yes B) No

Determine whether the given events are disjoint. 1) Drawing a face card from a deck of cards and drawing a deuce A) Yes B) No Assignment 8.-8.6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the given events are disjoint. 1) Drawing a face card from

More information

PROBABILITY and BAYES THEOREM

PROBABILITY and BAYES THEOREM PROBABILITY and BAYES THEOREM From: http://ocw.metu.edu.tr/pluginfile.php/2277/mod_resource/content/0/ ocw_iam530/2.conditional%20probability%20and%20bayes%20theorem.pdf CONTINGENCY (CROSS- TABULATION)

More information

Chapter Six Probability

Chapter Six Probability Chapter Six Probability Copyright 2005 Brooks/Cole, a division of Thomson Learning, Inc. 6.1 Random Experiment a random experiment is an action or process that leads to one of several possible outcomes.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Shade the Venn diagram to represent the set. 1) B A 1) 2) (A B C')' 2) Determine whether the given events

More information

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes MDM 4U Probability Review Properties of Probability Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes Theoretical

More information

300 total 50 left handed right handed = 250

300 total 50 left handed right handed = 250 Probability Rules 1. There are 300 students at a certain school. All students indicated they were either right handed or left handed but not both. Fifty of the students are left handed. How many students

More information

STAT 430/510 Probability Lecture 5: Conditional Probability and Bayes Rule

STAT 430/510 Probability Lecture 5: Conditional Probability and Bayes Rule STAT 430/510 Probability Lecture 5: Conditional Probability and Bayes Rule Pengyuan (Penelope) Wang May 26, 2011 Review Sample Spaces and Events Axioms and Properties of Probability Conditional Probability

More information

Fall 2015 Math 141:505 Exam 3 Form A

Fall 2015 Math 141:505 Exam 3 Form A Fall 205 Math 4:505 Exam 3 Form A Last Name: First Name: Exam Seat #: UIN: On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work Signature: INSTRUCTIONS Part

More information

Math 14 Lecture Notes Ch. 4.3

Math 14 Lecture Notes Ch. 4.3 4.3 The Binomial Distribution Example 1: The former Sacramento King's DeMarcus Cousins makes 77% of his free throws. If he shoots 3 times, what is the probability that he will make exactly 0, 1, 2, or

More information

6.1 Binomial Theorem

6.1 Binomial Theorem Unit 6 Probability AFM Valentine 6.1 Binomial Theorem Objective: I will be able to read and evaluate binomial coefficients. I will be able to expand binomials using binomial theorem. Vocabulary Binomial

More information

Lecture 6 Probability

Lecture 6 Probability Faculty of Medicine Epidemiology and Biostatistics الوبائيات واإلحصاء الحيوي (31505204) Lecture 6 Probability By Hatim Jaber MD MPH JBCM PhD 3+4-7-2018 1 Presentation outline 3+4-7-2018 Time Introduction-

More information

PROBABILITY DISTRIBUTIONS

PROBABILITY DISTRIBUTIONS CHAPTER 3 PROBABILITY DISTRIBUTIONS Page Contents 3.1 Introduction to Probability Distributions 51 3.2 The Normal Distribution 56 3.3 The Binomial Distribution 60 3.4 The Poisson Distribution 64 Exercise

More information

Test - Sections 11-13

Test - Sections 11-13 Test - Sections 11-13 version 1 You have just been offered a job with medical benefits. In talking with the insurance salesperson you learn that the insurer uses the following probability calculations:

More information

Assignment 2 (Solution) Probability and Statistics

Assignment 2 (Solution) Probability and Statistics Assignment 2 (Solution) Probability and Statistics Dr. Jitesh J. Thakkar Department of Industrial and Systems Engineering Indian Institute of Technology Kharagpur Instruction Total No. of Questions: 15.

More information

Math 235 Final Exam Practice test. Name

Math 235 Final Exam Practice test. Name Math 235 Final Exam Practice test Name Use the Gauss-Jordan method to solve the system of equations. 1) x + y + z = -1 x - y + 3z = -7 4x + y + z = -7 A) (-1, -2, 2) B) (-2, 2, -1) C)(-1, 2, -2) D) No

More information

Instructor: A.E.Cary. Math 243 Exam 2

Instructor: A.E.Cary. Math 243 Exam 2 Name: Instructor: A.E.Cary Instructions: Show all your work in a manner consistent with that demonstrated in class. Round your answers where appropriate. Use 3 decimal places when rounding answers. In

More information

Unit 04 Review. Probability Rules

Unit 04 Review. Probability Rules Unit 04 Review Probability Rules A sample space contains all the possible outcomes observed in a trial of an experiment, a survey, or some random phenomenon. The sum of the probabilities for all possible

More information

Chapter 4. Probability Lecture 1 Sections: Fundamentals of Probability

Chapter 4. Probability Lecture 1 Sections: Fundamentals of Probability Chapter 4 Probability Lecture 1 Sections: 4.1 4.2 Fundamentals of Probability In discussing probabilities, we must take into consideration three things. Event: Any result or outcome from a procedure or

More information

PROBABILITY AND STATISTICS, A16, TEST 1

PROBABILITY AND STATISTICS, A16, TEST 1 PROBABILITY AND STATISTICS, A16, TEST 1 Name: Student number (1) (1.5 marks) i) Let A and B be mutually exclusive events with p(a) = 0.7 and p(b) = 0.2. Determine p(a B ) and also p(a B). ii) Let C and

More information

Chapter 5: Probability

Chapter 5: Probability Chapter 5: These notes reflect material from our text, Exploring the Practice of Statistics, by Moore, McCabe, and Craig, published by Freeman, 2014. quantifies randomness. It is a formal framework with

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic.

AP Statistics Section 6.1 Day 1 Multiple Choice Practice. a) a random variable. b) a parameter. c) biased. d) a random sample. e) a statistic. A Statistics Section 6.1 Day 1 ultiple Choice ractice Name: 1. A variable whose value is a numerical outcome of a random phenomenon is called a) a random variable. b) a parameter. c) biased. d) a random

More information

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin 3 times where P(H) = / (b) THUS, find the probability

More information

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI 08-0- Lesson 9 - Binomial Distributions IBHL - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin times where P(H) = / (b) THUS, find the probability

More information

Mathematical Statistics İST2011 PROBABILITY THEORY (3) DEU, DEPARTMENT OF STATISTICS MATHEMATICAL STATISTICS SUMMER SEMESTER, 2017.

Mathematical Statistics İST2011 PROBABILITY THEORY (3) DEU, DEPARTMENT OF STATISTICS MATHEMATICAL STATISTICS SUMMER SEMESTER, 2017. Mathematical Statistics İST2011 PROBABILITY THEORY (3) 1 DEU, DEPARTMENT OF STATISTICS MATHEMATICAL STATISTICS SUMMER SEMESTER, 2017 If the five balls are places in five cell at random, find the probability

More information

WorkSHEET 13.3 Probability III Name:

WorkSHEET 13.3 Probability III Name: WorkSHEET 3.3 Probability III Name: In the Lotto draw there are numbered balls. Find the probability that the first number drawn is: (a) a (b) a (d) even odd (e) greater than 40. Using: (a) P() = (b) P()

More information

Probability Distributions

Probability Distributions 4.1 Probability Distributions Random Variables A random variable x represents a numerical value associated with each outcome of a probability distribution. A random variable is discrete if it has a finite

More information

Examples: On a menu, there are 5 appetizers, 10 entrees, 6 desserts, and 4 beverages. How many possible dinners are there?

Examples: On a menu, there are 5 appetizers, 10 entrees, 6 desserts, and 4 beverages. How many possible dinners are there? Notes Probability AP Statistics Probability: A branch of mathematics that describes the pattern of chance outcomes. Probability outcomes are the basis for inference. Randomness: (not haphazardous) A kind

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables You are dealt a hand of 5 cards. Find the probability distribution table for the number of hearts. Graph

More information

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations.

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations. Chapter 8 Notes Binomial and Geometric Distribution Often times we are interested in an event that has only two outcomes. For example, we may wish to know the outcome of a free throw shot (good or missed),

More information

Ex 1) Suppose a license plate can have any three letters followed by any four digits.

Ex 1) Suppose a license plate can have any three letters followed by any four digits. AFM Notes, Unit 1 Probability Name 1-1 FPC and Permutations Date Period ------------------------------------------------------------------------------------------------------- The Fundamental Principle

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

(c) The probability that a randomly selected driver having a California drivers license

(c) The probability that a randomly selected driver having a California drivers license Statistics Test 2 Name: KEY 1 Classify each statement as an example of classical probability, empirical probability, or subjective probability (a An executive for the Krusty-O cereal factory makes an educated

More information

Ch 9 SB answers.notebook. May 06, 2014 WARM UP

Ch 9 SB answers.notebook. May 06, 2014 WARM UP WARM UP 1 9.1 TOPICS Factorial Review Counting Principle Permutations Distinguishable permutations Combinations 2 FACTORIAL REVIEW 3 Question... How many sandwiches can you make if you have 3 types of

More information

MATH 112 Section 7.3: Understanding Chance

MATH 112 Section 7.3: Understanding Chance MATH 112 Section 7.3: Understanding Chance Prof. Jonathan Duncan Walla Walla University Autumn Quarter, 2007 Outline 1 Introduction to Probability 2 Theoretical vs. Experimental Probability 3 Advanced

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 131-03 Practice Questions for Exam# 2 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) What is the effective rate that corresponds to a nominal

More information

Name Period AP Statistics Unit 5 Review

Name Period AP Statistics Unit 5 Review Name Period AP Statistics Unit 5 Review Multiple Choice 1. Jay Olshansky from the University of Chicago was quoted in Chance News as arguing that for the average life expectancy to reach 100, 18% of people

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 6 Learning Objectives Define terms random variable and probability distribution. Distinguish between discrete and continuous probability distributions. Calculate

More information

Math 21 Test

Math 21 Test Math 21 Test 2 010705 Name Show all your work for each problem in the space provided. Correct answers without work shown will earn minimum credit. You may use your calculator. 1. [6 points] The sample

More information

Lecture 3. Sample spaces, events, probability

Lecture 3. Sample spaces, events, probability 18.440: Lecture 3 s, events, probability Scott Sheffield MIT 1 Outline Formalizing probability 2 Outline Formalizing probability 3 What does I d say there s a thirty percent chance it will rain tomorrow

More information

Test 3 Review. 2. What is the effective rate of interest for money invested at 10% annual interest compounded monthly?

Test 3 Review. 2. What is the effective rate of interest for money invested at 10% annual interest compounded monthly? Test 3 Review For questions 1 6, state the type of problem and calculate the answer. 1. Parents of a college student wish to set up an account that will pay $350 per month to the student for four years.

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Exam II Math 1342 Capters 3-5 HCCS. Name

Exam II Math 1342 Capters 3-5 HCCS. Name Exam II Math 1342 Capters 3-5 HCCS Name Date Provide an appropriate response. 1) A single six-sided die is rolled. Find the probability of rolling a number less than 3. A) 0.5 B) 0.1 C) 0.25 D 0.333 1)

More information

Chapter 11. Data Descriptions and Probability Distributions. Section 4 Bernoulli Trials and Binomial Distribution

Chapter 11. Data Descriptions and Probability Distributions. Section 4 Bernoulli Trials and Binomial Distribution Chapter 11 Data Descriptions and Probability Distributions Section 4 Bernoulli Trials and Binomial Distribution 1 Learning Objectives for Section 11.4 Bernoulli Trials and Binomial Distributions The student

More information

Math 160 Professor Busken Chapter 5 Worksheets

Math 160 Professor Busken Chapter 5 Worksheets Math 160 Professor Busken Chapter 5 Worksheets Name: 1. Find the expected value. Suppose you play a Pick 4 Lotto where you pay 50 to select a sequence of four digits, such as 2118. If you select the same

More information

Probability Review. The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE

Probability Review. The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Probability Review The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Probability Models In Section 5.1, we used simulation to imitate chance behavior. Fortunately, we don t have to

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 13: Binomial Formula Tessa L. Childers-Day UC Berkeley 14 July 2014 By the end of this lecture... You will be able to: Calculate the ways an event can

More information

MATH 446/546 Homework 1:

MATH 446/546 Homework 1: MATH 446/546 Homework 1: Due September 28th, 216 Please answer the following questions. Students should type there work. 1. At time t, a company has I units of inventory in stock. Customers demand the

More information

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE)

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) Normal and Binomial Distribution Applied to Construction Management Sampling and Confidence Intervals Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile:

More information

Review. What is the probability of throwing two 6s in a row with a fair die? a) b) c) d) 0.333

Review. What is the probability of throwing two 6s in a row with a fair die? a) b) c) d) 0.333 Review In most card games cards are dealt without replacement. What is the probability of being dealt an ace and then a 3? Choose the closest answer. a) 0.0045 b) 0.0059 c) 0.0060 d) 0.1553 Review What

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.3 Binomial Probability Copyright Cengage Learning. All rights reserved. Objectives Binomial Probability The Binomial Distribution

More information

(# of die rolls that satisfy the criteria) (# of possible die rolls)

(# of die rolls that satisfy the criteria) (# of possible die rolls) BMI 713: Computational Statistics for Biomedical Sciences Assignment 2 1 Random variables and distributions 1. Assume that a die is fair, i.e. if the die is rolled once, the probability of getting each

More information

1. Find the slope and y-intercept for

1. Find the slope and y-intercept for MA 0 REVIEW PROBLEMS FOR THE FINAL EXAM This review is to accompany the course text which is Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences, th Edition by Barnett, Ziegler,

More information

TEST 1 STUDY GUIDE L M. (a) Shade the regions that represent the following events: (i) L and M. (ii) M but not L. (iii) C. .

TEST 1 STUDY GUIDE L M. (a) Shade the regions that represent the following events: (i) L and M. (ii) M but not L. (iii) C. . 006 by The Arizona Board of Regents for The University of Arizona. All rights reserved. Business Mathematics I TEST 1 STUDY GUIDE 1. Consider a randomly selected new small business in your area. Let L

More information

Chapter 14. From Randomness to Probability. Copyright 2010 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2010 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2010 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen, but we don

More information

Mutually Exclusive Events & Non-Mutually Exclusive Events. When two events A and B are mutually exclusive, the probability that A or B will occur is

Mutually Exclusive Events & Non-Mutually Exclusive Events. When two events A and B are mutually exclusive, the probability that A or B will occur is EVENTS & PROBABILITIES RULES PROBABILITY RULES Mutually Exclusive Events & Non-Mutually Exclusive Events Two events are mutually exclusive if they cannot occur at the same time (they have no outcomes in

More information

( ) P = = =

( ) P = = = 1. On a lunch counter, there are 5 oranges and 6 apples. If 3 pieces of fruit are selected, find the probability that 1 orange and apples are selected. Order does not matter Combinations: 5C1 (1 ) 6C P

More information

STT 315 Practice Problems Chapter 3.7 and 4

STT 315 Practice Problems Chapter 3.7 and 4 STT 315 Practice Problems Chapter 3.7 and 4 Answer the question True or False. 1) The number of children in a family can be modelled using a continuous random variable. 2) For any continuous probability

More information

Probability and Probability Distributions Problems

Probability and Probability Distributions Problems Probability and Probability Distributions Problems Q.1. Among male birds of a species, 20% have a particular gene. Among females of the species, 10% have the gene. The males comprise 40% of all the birds

More information

Chapter 15, More Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and

Chapter 15, More Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and Chapter 15, More Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used under

More information

The Binomial Distribution

The Binomial Distribution AQR Reading: Binomial Probability Reading #1: The Binomial Distribution A. It would be very tedious if, every time we had a slightly different problem, we had to determine the probability distributions

More information

Binomial Random Variable - The count X of successes in a binomial setting

Binomial Random Variable - The count X of successes in a binomial setting 6.3.1 Binomial Settings and Binomial Random Variables What do the following scenarios have in common? Toss a coin 5 times. Count the number of heads. Spin a roulette wheel 8 times. Record how many times

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Section 8.4 The Binomial Distribution

Section 8.4 The Binomial Distribution Section 8.4 The Binomial Distribution Binomial Experiment A binomial experiment has the following properties: 1. The number of trials in the experiment is fixed. 2. There are two outcomes of each trial:

More information

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x)

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x) N. Name: MATH: Mathematical Thinking Sec. 08 Spring 0 Worksheet 9: Solution Problem Compute the expected value of this probability distribution: x 3 8 0 3 P(x) 0. 0.0 0.3 0. Clearly, a value is missing

More information

= = b = 1 σ y = = 0.001

= = b = 1 σ y = = 0.001 Econ 250 Fall 2007 s for Assignment 1 1. A local TV station advertises two news-casting positions. If three women (W 1, W 2, W 3 and two men (M 1, M 2 apply what is the sample space of the experiment of

More information

STT315 Chapter 4 Random Variables & Probability Distributions AM KM

STT315 Chapter 4 Random Variables & Probability Distributions AM KM Before starting new chapter: brief Review from Algebra Combinations In how many ways can we select x objects out of n objects? In how many ways you can select 5 numbers out of 45 numbers ballot to win

More information

What do you think "Binomial" involves?

What do you think Binomial involves? Learning Goals: * Define a binomial experiment (Bernoulli Trials). * Applying the binomial formula to solve problems. * Determine the expected value of a Binomial Distribution What do you think "Binomial"

More information

Chapter 6: Probability: What are the Chances?

Chapter 6: Probability: What are the Chances? + Chapter 6: Probability: What are the Chances? Section 6.1 Randomness and Probability The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE + Section 6.1 Randomness and Probability Learning

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems.

Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems. Learning Goals: * Determining the expected value from a probability distribution. * Applying the expected value formula to solve problems. The following are marks from assignments and tests in a math class.

More information

Math 300 Semester Review Name. Let U = {1, 2, 4, 5, a, b, c, d, e}. Find the complement of the set. 1) N = {a}

Math 300 Semester Review Name. Let U = {1, 2, 4, 5, a, b, c, d, e}. Find the complement of the set. 1) N = {a} Math 300 Semester Review Name Let U = {1, 2, 4, 5, a, b, c, d, e}. Find the complement of the set. 1) N = {a} 1) Objective: (2.2) Find Complement of Set Find the indicated cardinal number. 2) Find n(g),

More information

List of Online Quizzes: Quiz7: Basic Probability Quiz 8: Expectation and sigma. Quiz 9: Binomial Introduction Quiz 10: Binomial Probability

List of Online Quizzes: Quiz7: Basic Probability Quiz 8: Expectation and sigma. Quiz 9: Binomial Introduction Quiz 10: Binomial Probability List of Online Homework: Homework 6: Random Variables and Discrete Variables Homework7: Expected Value and Standard Dev of a Variable Homework8: The Binomial Distribution List of Online Quizzes: Quiz7:

More information

Section 8.1 Distributions of Random Variables

Section 8.1 Distributions of Random Variables Section 8.1 Distributions of Random Variables Random Variable A random variable is a rule that assigns a number to each outcome of a chance experiment. There are three types of random variables: 1. Finite

More information

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP Note 1: The exercises below that are referenced by chapter number are taken or modified from the following open-source online textbook that was adapted by

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

12 Math Chapter Review April 16 th, Multiple Choice Identify the choice that best completes the statement or answers the question.

12 Math Chapter Review April 16 th, Multiple Choice Identify the choice that best completes the statement or answers the question. Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which situation does not describe a discrete random variable? A The number of cell phones per household.

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

Mathematical Concepts Joysheet 1 MAT 117, Spring 2011 D. Ivanšić. Name: Show all your work!

Mathematical Concepts Joysheet 1 MAT 117, Spring 2011 D. Ivanšić. Name: Show all your work! Mathematical Concepts Joysheet 1 Use your calculator to compute each expression to 6 significant digits accuracy. Write down thesequence of keys youentered inorder to compute each expression. Donot roundnumbers

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!!

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!! Student s Printed Name: Instructor: XID: Section #: Read each question very carefully. You are permitted to use a calculator on all portions of this exam. You are NOT allowed to use any textbook, notes,

More information

Solving and Applying Proportions Name Core

Solving and Applying Proportions Name Core Solving and Applying Proportions Name Core pg. 1 L. 4.1 Ratio and Proportion Notes Ratio- a comparison of 2 numbers by -written. a:b, a to b, or a/b. For example if there are twice as many girls in this

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Name PID Section # (enrolled)

Name PID Section # (enrolled) STT 200 -Lecture 2 Instructor: Aylin ALIN 02/19/2014 Midterm # 1 A Name PID Section # (enrolled) * The exam is closed book and 80 minutes. * You may use a calculator and the formula sheet that you brought

More information

Chapter 7 Probability

Chapter 7 Probability Chapter 7 Probability Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 7.1 Random Circumstances Random circumstance is one in which the outcome is unpredictable. Case Study 1.1 Alicia Has

More information

Chapter 7 Study Guide: The Central Limit Theorem

Chapter 7 Study Guide: The Central Limit Theorem Chapter 7 Study Guide: The Central Limit Theorem Introduction Why are we so concerned with means? Two reasons are that they give us a middle ground for comparison and they are easy to calculate. In this

More information

Mean, Median and Mode. Lecture 2 - Introduction to Probability. Where do they come from? We start with a set of 21 numbers, Statistics 102

Mean, Median and Mode. Lecture 2 - Introduction to Probability. Where do they come from? We start with a set of 21 numbers, Statistics 102 Mean, Median and Mode Lecture 2 - Statistics 102 Colin Rundel January 15, 2013 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4 0.5 0.6 0.7 0.7 0.9 1.2

More information

Probability. Logic and Decision Making Unit 1

Probability. Logic and Decision Making Unit 1 Probability Logic and Decision Making Unit 1 Questioning the probability concept In risky situations the decision maker is able to assign probabilities to the states But when we talk about a probability

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Midterm Review Name 1) As part of an economics class project, students were asked to randomly select 500 New York Stock Exchange (NYSE) stocks from the Wall Street Journal. As part of the project, students

More information

Continuous distributions. Lecture 6: Probability. Probabilities from continuous distributions. From histograms to continuous distributions

Continuous distributions. Lecture 6: Probability. Probabilities from continuous distributions. From histograms to continuous distributions Lecture 6: Probability Below is a histogram of the distribution of heights of US adults. The proportion of data that falls in the shaded bins gives the probability that a randomly sampled US adult is between

More information

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - SUMMER DR. DAVID BRIDGE

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - SUMMER DR. DAVID BRIDGE MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - SUMMER 2007 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the

More information

STUDY SET 1. Discrete Probability Distributions. x P(x) and x = 6.

STUDY SET 1. Discrete Probability Distributions. x P(x) and x = 6. STUDY SET 1 Discrete Probability Distributions 1. Consider the following probability distribution function. Compute the mean and standard deviation of. x 0 1 2 3 4 5 6 7 P(x) 0.05 0.16 0.19 0.24 0.18 0.11

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

Section 3.1 Distributions of Random Variables

Section 3.1 Distributions of Random Variables Section 3.1 Distributions of Random Variables Random Variable A random variable is a rule that assigns a number to each outcome of a chance experiment. There are three types of random variables: 1. Finite

More information