Mathematical Statistics İST2011 PROBABILITY THEORY (3) DEU, DEPARTMENT OF STATISTICS MATHEMATICAL STATISTICS SUMMER SEMESTER, 2017.

Size: px
Start display at page:

Download "Mathematical Statistics İST2011 PROBABILITY THEORY (3) DEU, DEPARTMENT OF STATISTICS MATHEMATICAL STATISTICS SUMMER SEMESTER, 2017."

Transcription

1 Mathematical Statistics İST2011 PROBABILITY THEORY (3) 1 DEU, DEPARTMENT OF STATISTICS MATHEMATICAL STATISTICS SUMMER SEMESTER, 2017 If the five balls are places in five cell at random, find the probability p that exactly one cell is empty? 1

2 Two cards are selected at random from 10 cards numbered 1 to 10. Find the probability p that the sum is odd if I. The two cards are drawn together II. The two cards are drawn one after the other without replacement III. The two cards are drawn one after the other with replacement Conditional Probability 4 A major objective of probability modelling is to determine how likely it is that an event A will occur when a certain experiment is performed. However, in numerous cases the probability assigned to A will be affected by knowledge of the occurence of another event B. 2

3 Conditional Probability 5 In such an example, we will use the terminology conditional probability of A given B and the notation P(A B) will be used to disttinguish between this new concept and ordinary probability P(A). 6 A consumer research organization has studied the services under warranty provided by the 50 new-car dealers in a certain city, and its findings are summarized in the following table: Good Service under warranty Poor Service under warranty In business 10 years or more In business less than 10 years

4 (Cont.) 7 a) If a person randomly selects one of these new-car dealers, what is the probability that he gets one who provides good service under warranty? b) Also, if a person randomly selects one of the dealers who has been in business for 10 years or more, what is the probability that he gets one who provides good service under warranty? (Cont.) G: the selection of a dealer who provides good service under warranty T:the selection of a dealer who has been in business 10 years or more 8 Since the numerator of P(G T) is n(t G 16 in the preceeding example, the number of dealers who have been in business for 10 years or more and provide good service under warranty, and the denominator is n T, the number of dealers who have been in business for 10 years or more. 4

5 (Cont.) 9 Symbolically, Then if we divide the numerator and the denominator by n(s), the total number of new-car dealers in the given city, we get and we have, thus expressed the conditional probability P(G T) in terms of two probability defined for the whole sample space S. Definition: Conditional Probability If A and B are any two events in a sample space S and P(B) 0, the conditional probability of A given B is 10 5

6 Properties of Conditional Probability If P B 0, we have 1. P A B 0 2. P B B 1 3. If are mutually exclusive events, then From probability axioms, we have Properties of Conditional Probability a. P(A B)>P(A) P B A P B P A B P A P B positive correlation b. P(A B)<P(A) P B A P B P A B P A P B negative correlation c. P(A B)=P(A) P(B A)=P(B) P(A B)=P(A)P(B) independence 6

7 Theorem: Multiplication Rule 13 For any events A and B, P(A B)=P(A B)P(B)=P(B A)P(A). This procedure would be extended to three or more events occur: P(A B C)=P(C A B)P(B A)P(A) 14 An urn contains five white chips, four black chips and three red chips. Four chips are drawn sequentially and without replacement. What is the probability of obtaining the sequence (W,R,W,B)? 7

8 Total Probability and Bayes Rule Let A and B be events. We may express A as 15 or more generally, If are mutually exclusive and exhaustive in the sense that then Theorem (Law of Total Probability) 16 If is a collection of mutually exclusive and exhaustive events, then for any event A, Proof: 8

9 17 An insurance company believes that people can be divided into two classes: those who are accident prone and those are not. Their statistics show that an accident-prone person will have an accident at some time within a fixed 1-year period with probability 0.4, whereas this probability decreases to 0.2 for a non-accident prone person. If we assume that 30 percent of the population is accident prone, what is the probability that a new policyholder will have an accident within a year of purchasing policy? Bayes Rule 18 If is a collection of mutually exclusive and exhaustive events, then for each j = 1,..,k Proof: 9

10 19 Suppose that a new policyholder has an accident within a year of purchasing a policy. What is the probability that he or she is accident prone? 20 A lie-detector test will give apositive result 99 percent of the time when a person is actually lying, but it will also give a positive (false) result 1 percent of the time when a person is telling the truth. It is estimated that 10 percent of the people who take the test are lying. What is the probability that aperson chosen at random will test positively? 10

11 Independent Events 21 Informally speaking, two events A and B are independent if the occurrence of nonoccurrence of either one does not affect the prob. of the occurrence of the other. Symbolically, two events A and B are independent if P(B A)=P(B) and P(A B)=P(A), and it can be shown that either of these equalities implies the other when both of the conditional prob. exist, when neither P(A) nor P(B) equals zero. Definition (Independent Events) Two events A and B are called independent events if 22 P(A B) P(A)P(B) Otherwise, A and B are called dependent events. 11

12 Note: If A and B are mutually exclusive then, 23 P(A B) P(BA) 0 whereas for independent nonnull events the conditional probabilities are nonzero. Series System Consider a series system of two components C 1 and C 2. Let A 1 ={C 1 fails} A 2 ={C 2 fails} F={the system fails} is A1 A 2 24 P(A1 A2) P(A 1) P(A2) P(A1 A2) Suppose that P(A 1 )=0.1 and P(A 2 )=0.2 If we assume that A 1 and A 2 are independent, then the prob. that system fails is P 2 (F) P(A1 A ) The prob. that the system works properly is =

13 Parallel System 25 For a parallel system to fail, it is necessary that both components fail, so the event the system fails is The prob. That this system fails is A 1 A 2 P(A1 A2) P(A 1) P(A2) P 2 (F) P(A1 A ) Again assuming the components fail independently. Series&Parallel System 26 C 1 C 2 Series System C 1 C 2 Parallel System 13

14 Theorem If A and B are independent, then AandB C 2. A C and B 3. A C and B C are also independent. Proof: 28 A company employs 2 managers. The prob. that A is unable to work due to illness is 0.04 and the prob. that B is unable to work due to illness is Assuming that the health status of the two managers are independent, calculate the prob. that both are able to work? P(A C C B )? Solt: 14

15 Definition:Mutually Independence 29 The k events A 1,A 2,,A k are said to be independent or mutually independent if for every j=2,3,,k and every subset of distinct indices i 1,i 2,,i j. P(A i1 A i2... A ) P(A ij i1 )P(A i2 )...P(A ij ) 30 Lets consider an experiment in which a computer randomly selects an integer between 1 and 9. (inclusive) S={1,2,,9} Let A={1,2,3}, B={2,5,8} and C={2,4,6} Prove that the events A, B, and C are pairwise independent and the events A, B, and C are not mutually independent. Proof: 15

16 Product Set 31 Suppose first that we have n sets, S 1, S 2,, S n. The Cartesian product (named for René Descartes) of S 1,S 2,,S n denoted S 1 xs 2 x xs n is the set of all (ordered) sequences (S 1,S 2,,S n )where S i is an element of S i for each i. Product Set 32 If we have n experiments with sample spaces S 1,S 2,,S n,thens 1 xs 2 x x S n is the natural sample space for the compound experiment that consists of performing the n experiments in sequence if S i =S for each i, then the product set can be written conpactly as S n =S 1 xs 2 x xs n (n factors) 16

17 Product Set/Exp 33 A coin-die experiment, we have a coin and a die. First the coin is tossed, and then the die is rolled. The coin score and the score of die are recorded. Let A denote the event that the die score is at least 4. Let B denote the event that the coin score is head. Define the sample space S mathematically. ExpressAasasubsetofS. Is A and B independent? Product Set/Exp 34 In a certain district, candidates 1,2 and 3 are running for congress. A political consulting samples 1000 registered voters from the district and records the age, gender and candidate preference of each person in the sample. Asuume that a registered voter must be at least 18 years old. Define a sample space for experiment. 17

STAT 430/510 Probability Lecture 5: Conditional Probability and Bayes Rule

STAT 430/510 Probability Lecture 5: Conditional Probability and Bayes Rule STAT 430/510 Probability Lecture 5: Conditional Probability and Bayes Rule Pengyuan (Penelope) Wang May 26, 2011 Review Sample Spaces and Events Axioms and Properties of Probability Conditional Probability

More information

Assignment 2 (Solution) Probability and Statistics

Assignment 2 (Solution) Probability and Statistics Assignment 2 (Solution) Probability and Statistics Dr. Jitesh J. Thakkar Department of Industrial and Systems Engineering Indian Institute of Technology Kharagpur Instruction Total No. of Questions: 15.

More information

Language Models Review: 1-28

Language Models Review: 1-28 Language Models Review: 1-28 Why are language models (LMs) useful? Maximum Likelihood Estimation for Binomials Idea of Chain Rule, Markov assumptions Why is word sparsity an issue? Further interest: Leplace

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

7.1: Sets. What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set?

7.1: Sets. What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set? 7.1: Sets What is a set? What is the empty set? When are two sets equal? What is set builder notation? What is the universal set? Example 1: Write the elements belonging to each set. a. {x x is a natural

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 131-03 Practice Questions for Exam# 2 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) What is the effective rate that corresponds to a nominal

More information

6.1 Binomial Theorem

6.1 Binomial Theorem Unit 6 Probability AFM Valentine 6.1 Binomial Theorem Objective: I will be able to read and evaluate binomial coefficients. I will be able to expand binomials using binomial theorem. Vocabulary Binomial

More information

PROBABILITY and BAYES THEOREM

PROBABILITY and BAYES THEOREM PROBABILITY and BAYES THEOREM From: http://ocw.metu.edu.tr/pluginfile.php/2277/mod_resource/content/0/ ocw_iam530/2.conditional%20probability%20and%20bayes%20theorem.pdf CONTINGENCY (CROSS- TABULATION)

More information

Mean, Median and Mode. Lecture 2 - Introduction to Probability. Where do they come from? We start with a set of 21 numbers, Statistics 102

Mean, Median and Mode. Lecture 2 - Introduction to Probability. Where do they come from? We start with a set of 21 numbers, Statistics 102 Mean, Median and Mode Lecture 2 - Statistics 102 Colin Rundel January 15, 2013 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4 0.5 0.6 0.7 0.7 0.9 1.2

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

Fall 2015 Math 141:505 Exam 3 Form A

Fall 2015 Math 141:505 Exam 3 Form A Fall 205 Math 4:505 Exam 3 Form A Last Name: First Name: Exam Seat #: UIN: On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work Signature: INSTRUCTIONS Part

More information

Chapter 6 Probability

Chapter 6 Probability Chapter 6 Probability Learning Objectives 1. Simulate simple experiments and compute empirical probabilities. 2. Compute both theoretical and empirical probabilities. 3. Apply the rules of probability

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

CUR 412: Game Theory and its Applications, Lecture 11

CUR 412: Game Theory and its Applications, Lecture 11 CUR 412: Game Theory and its Applications, Lecture 11 Prof. Ronaldo CARPIO May 17, 2016 Announcements Homework #4 will be posted on the web site later today, due in two weeks. Review of Last Week An extensive

More information

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016 Probability Theory Probability and Statistics for Data Science CSE594 - Spring 2016 What is Probability? 2 What is Probability? Examples outcome of flipping a coin (seminal example) amount of snowfall

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Probability Distributions

Probability Distributions 4.1 Probability Distributions Random Variables A random variable x represents a numerical value associated with each outcome of a probability distribution. A random variable is discrete if it has a finite

More information

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x)

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x) N. Name: MATH: Mathematical Thinking Sec. 08 Spring 0 Worksheet 9: Solution Problem Compute the expected value of this probability distribution: x 3 8 0 3 P(x) 0. 0.0 0.3 0. Clearly, a value is missing

More information

Lecture 6 Probability

Lecture 6 Probability Faculty of Medicine Epidemiology and Biostatistics الوبائيات واإلحصاء الحيوي (31505204) Lecture 6 Probability By Hatim Jaber MD MPH JBCM PhD 3+4-7-2018 1 Presentation outline 3+4-7-2018 Time Introduction-

More information

Probability and Statistics. Copyright Cengage Learning. All rights reserved.

Probability and Statistics. Copyright Cengage Learning. All rights reserved. Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.3 Binomial Probability Copyright Cengage Learning. All rights reserved. Objectives Binomial Probability The Binomial Distribution

More information

Event p351 An event is an outcome or a set of outcomes of a random phenomenon. That is, an event is a subset of the sample space.

Event p351 An event is an outcome or a set of outcomes of a random phenomenon. That is, an event is a subset of the sample space. Chapter 12: From randomness to probability 350 Terminology Sample space p351 The sample space of a random phenomenon is the set of all possible outcomes. Example Toss a coin. Sample space: S = {H, T} Example:

More information

WorkSHEET 13.3 Probability III Name:

WorkSHEET 13.3 Probability III Name: WorkSHEET 3.3 Probability III Name: In the Lotto draw there are numbered balls. Find the probability that the first number drawn is: (a) a (b) a (d) even odd (e) greater than 40. Using: (a) P() = (b) P()

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

Shifting our focus. We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why?

Shifting our focus. We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why? Probability Introduction Shifting our focus We were studying statistics (data, displays, sampling...) The next few lectures focus on probability (randomness) Why? What is Probability? Probability is used

More information

PROBABILITY AND STATISTICS, A16, TEST 1

PROBABILITY AND STATISTICS, A16, TEST 1 PROBABILITY AND STATISTICS, A16, TEST 1 Name: Student number (1) (1.5 marks) i) Let A and B be mutually exclusive events with p(a) = 0.7 and p(b) = 0.2. Determine p(a B ) and also p(a B). ii) Let C and

More information

4.2 Bernoulli Trials and Binomial Distributions

4.2 Bernoulli Trials and Binomial Distributions Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 4.2 Bernoulli Trials and Binomial Distributions A Bernoulli trial 1 is an experiment with exactly two outcomes: Success and

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable 1. A number between 0 and 1 that is use to measure uncertainty is called: (a) Random variable (b) Trial (c) Simple event (d) Probability 2. Probability can be expressed as: (a) Rational (b) Fraction (c)

More information

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes

Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes MDM 4U Probability Review Properties of Probability Experimental Probability - probability measured by performing an experiment for a number of n trials and recording the number of outcomes Theoretical

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

= = b = 1 σ y = = 0.001

= = b = 1 σ y = = 0.001 Econ 250 Fall 2007 s for Assignment 1 1. A local TV station advertises two news-casting positions. If three women (W 1, W 2, W 3 and two men (M 1, M 2 apply what is the sample space of the experiment of

More information

NMAI059 Probability and Statistics Exercise assignments and supplementary examples October 21, 2017

NMAI059 Probability and Statistics Exercise assignments and supplementary examples October 21, 2017 NMAI059 Probability and Statistics Exercise assignments and supplementary examples October 21, 2017 How to use this guide. This guide is a gradually produced text that will contain key exercises to practise

More information

Math 14 Lecture Notes Ch. 4.3

Math 14 Lecture Notes Ch. 4.3 4.3 The Binomial Distribution Example 1: The former Sacramento King's DeMarcus Cousins makes 77% of his free throws. If he shoots 3 times, what is the probability that he will make exactly 0, 1, 2, or

More information

The Binomial Distribution

The Binomial Distribution AQR Reading: Binomial Probability Reading #1: The Binomial Distribution A. It would be very tedious if, every time we had a slightly different problem, we had to determine the probability distributions

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

MATH 446/546 Homework 1:

MATH 446/546 Homework 1: MATH 446/546 Homework 1: Due September 28th, 216 Please answer the following questions. Students should type there work. 1. At time t, a company has I units of inventory in stock. Customers demand the

More information

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers?

1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 1 451/551 - Final Review Problems 1 Probability by Sample Points 1. If four dice are rolled, what is the probability of obtaining two identical odd numbers and two identical even numbers? 2. A box contains

More information

MATH/STAT 3360, Probability FALL 2013 Toby Kenney

MATH/STAT 3360, Probability FALL 2013 Toby Kenney MATH/STAT 3360, Probability FALL 2013 Toby Kenney In Class Examples () September 6, 2013 1 / 92 Basic Principal of Counting A statistics textbook has 8 chapters. Each chapter has 50 questions. How many

More information

5.1 Personal Probability

5.1 Personal Probability 5. Probability Value Page 1 5.1 Personal Probability Although we think probability is something that is confined to math class, in the form of personal probability it is something we use to make decisions

More information

Determine whether the given events are disjoint. 1) Drawing a face card from a deck of cards and drawing a deuce A) Yes B) No

Determine whether the given events are disjoint. 1) Drawing a face card from a deck of cards and drawing a deuce A) Yes B) No Assignment 8.-8.6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the given events are disjoint. 1) Drawing a face card from

More information

Part 10: The Binomial Distribution

Part 10: The Binomial Distribution Part 10: The Binomial Distribution The binomial distribution is an important example of a probability distribution for a discrete random variable. It has wide ranging applications. One readily available

More information

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE)

MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) MANAGEMENT PRINCIPLES AND STATISTICS (252 BE) Normal and Binomial Distribution Applied to Construction Management Sampling and Confidence Intervals Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile:

More information

Chapter 15, More Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and

Chapter 15, More Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and Chapter 15, More Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used under

More information

N(A) P (A) = lim. N(A) =N, we have P (A) = 1.

N(A) P (A) = lim. N(A) =N, we have P (A) = 1. Chapter 2 Probability 2.1 Axioms of Probability 2.1.1 Frequency definition A mathematical definition of probability (called the frequency definition) is based upon the concept of data collection from an

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Shade the Venn diagram to represent the set. 1) B A 1) 2) (A B C')' 2) Determine whether the given events

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin 3 times where P(H) = / (b) THUS, find the probability

More information

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI 08-0- Lesson 9 - Binomial Distributions IBHL - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin times where P(H) = / (b) THUS, find the probability

More information

STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions

STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions 5/31/11 Lecture 14 1 Statistic & Its Sampling Distribution

More information

(c) The probability that a randomly selected driver having a California drivers license

(c) The probability that a randomly selected driver having a California drivers license Statistics Test 2 Name: KEY 1 Classify each statement as an example of classical probability, empirical probability, or subjective probability (a An executive for the Krusty-O cereal factory makes an educated

More information

Math 235 Final Exam Practice test. Name

Math 235 Final Exam Practice test. Name Math 235 Final Exam Practice test Name Use the Gauss-Jordan method to solve the system of equations. 1) x + y + z = -1 x - y + 3z = -7 4x + y + z = -7 A) (-1, -2, 2) B) (-2, 2, -1) C)(-1, 2, -2) D) No

More information

Chapter CHAPTER 4. Basic Probability. Assessing Probability. Example of a priori probability

Chapter CHAPTER 4. Basic Probability. Assessing Probability. Example of a priori probability Chapter 4 4-1 CHAPTER 4. Basic Probability Basic Probability Concepts Probability the chance that an uncertain event will occur (always between 0 and 1) Impossible Event an event that has no chance of

More information

Probability and Expected Utility

Probability and Expected Utility Probability and Expected Utility Economics 282 - Introduction to Game Theory Shih En Lu Simon Fraser University ECON 282 (SFU) Probability and Expected Utility 1 / 12 Topics 1 Basic Probability 2 Preferences

More information

Math 160 Professor Busken Chapter 5 Worksheets

Math 160 Professor Busken Chapter 5 Worksheets Math 160 Professor Busken Chapter 5 Worksheets Name: 1. Find the expected value. Suppose you play a Pick 4 Lotto where you pay 50 to select a sequence of four digits, such as 2118. If you select the same

More information

Ex 1) Suppose a license plate can have any three letters followed by any four digits.

Ex 1) Suppose a license plate can have any three letters followed by any four digits. AFM Notes, Unit 1 Probability Name 1-1 FPC and Permutations Date Period ------------------------------------------------------------------------------------------------------- The Fundamental Principle

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

Random variables. Discrete random variables. Continuous random variables.

Random variables. Discrete random variables. Continuous random variables. Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Examples:

More information

Probability mass function; cumulative distribution function

Probability mass function; cumulative distribution function PHP 2510 Random variables; some discrete distributions Random variables - what are they? Probability mass function; cumulative distribution function Some discrete random variable models: Bernoulli Binomial

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

TEST 1 STUDY GUIDE L M. (a) Shade the regions that represent the following events: (i) L and M. (ii) M but not L. (iii) C. .

TEST 1 STUDY GUIDE L M. (a) Shade the regions that represent the following events: (i) L and M. (ii) M but not L. (iii) C. . 006 by The Arizona Board of Regents for The University of Arizona. All rights reserved. Business Mathematics I TEST 1 STUDY GUIDE 1. Consider a randomly selected new small business in your area. Let L

More information

Problem Set #4. Econ 103. (b) Let A be the event that you get at least one head. List all the basic outcomes in A.

Problem Set #4. Econ 103. (b) Let A be the event that you get at least one head. List all the basic outcomes in A. Problem Set #4 Econ 103 Part I Problems from the Textbook Chapter 3: 1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 Part II Additional Problems 1. Suppose you flip a fair coin twice. (a) List all the

More information

expl 1: Consider rolling two distinguishable, six-sided dice. Here is the sample space. Answer the questions that follow.

expl 1: Consider rolling two distinguishable, six-sided dice. Here is the sample space. Answer the questions that follow. General Education Statistics Class Notes Conditional Probability (Section 5.4) What is the probability you get a sum of 5 on two dice? Now assume one die is a 4. Does that affect the probability the sum

More information

Discrete Mathematics for CS Spring 2008 David Wagner Final Exam

Discrete Mathematics for CS Spring 2008 David Wagner Final Exam CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Final Exam PRINT your name:, (last) SIGN your name: (first) PRINT your Unix account login: Your section time (e.g., Tue 3pm): Name of the person

More information

Stochastic Manufacturing & Service Systems. Discrete-time Markov Chain

Stochastic Manufacturing & Service Systems. Discrete-time Markov Chain ISYE 33 B, Fall Week #7, September 9-October 3, Introduction Stochastic Manufacturing & Service Systems Xinchang Wang H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

Section 8.1 Distributions of Random Variables

Section 8.1 Distributions of Random Variables Section 8.1 Distributions of Random Variables Random Variable A random variable is a rule that assigns a number to each outcome of a chance experiment. There are three types of random variables: 1. Finite

More information

Consider the following (true) preference orderings of 4 agents on 4 candidates.

Consider the following (true) preference orderings of 4 agents on 4 candidates. Part 1: Voting Systems Consider the following (true) preference orderings of 4 agents on 4 candidates. Agent #1: A > B > C > D Agent #2: B > C > D > A Agent #3: C > B > D > A Agent #4: D > C > A > B Assume

More information

5.7 Probability Distributions and Variance

5.7 Probability Distributions and Variance 160 CHAPTER 5. PROBABILITY 5.7 Probability Distributions and Variance 5.7.1 Distributions of random variables We have given meaning to the phrase expected value. For example, if we flip a coin 100 times,

More information

Probability Distributions

Probability Distributions Chapter 6 Discrete Probability Distributions Section 6-2 Probability Distributions Definitions Let S be the sample space of a probability experiment. A random variable X is a function from the set S into

More information

MATH 112 Section 7.3: Understanding Chance

MATH 112 Section 7.3: Understanding Chance MATH 112 Section 7.3: Understanding Chance Prof. Jonathan Duncan Walla Walla University Autumn Quarter, 2007 Outline 1 Introduction to Probability 2 Theoretical vs. Experimental Probability 3 Advanced

More information

INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS. 20 th May Subject CT3 Probability & Mathematical Statistics

INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS. 20 th May Subject CT3 Probability & Mathematical Statistics INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 20 th May 2013 Subject CT3 Probability & Mathematical Statistics Time allowed: Three Hours (10.00 13.00) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES 1.

More information

TABLE OF CONTENTS - VOLUME 2

TABLE OF CONTENTS - VOLUME 2 TABLE OF CONTENTS - VOLUME 2 CREDIBILITY SECTION 1 - LIMITED FLUCTUATION CREDIBILITY PROBLEM SET 1 SECTION 2 - BAYESIAN ESTIMATION, DISCRETE PRIOR PROBLEM SET 2 SECTION 3 - BAYESIAN CREDIBILITY, DISCRETE

More information

November 2001 Course 1 Mathematical Foundations of Actuarial Science. Society of Actuaries/Casualty Actuarial Society

November 2001 Course 1 Mathematical Foundations of Actuarial Science. Society of Actuaries/Casualty Actuarial Society November 00 Course Mathematical Foundations of Actuarial Science Society of Actuaries/Casualty Actuarial Society . An urn contains 0 balls: 4 red and 6 blue. A second urn contains 6 red balls and an unknown

More information

Chapter 7 Probability

Chapter 7 Probability Chapter 7 Probability Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 7.1 Random Circumstances Random circumstance is one in which the outcome is unpredictable. Case Study 1.1 Alicia Has

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

MTP_FOUNDATION_Syllabus 2012_Dec2016 SET - I. Paper 4-Fundamentals of Business Mathematics and Statistics

MTP_FOUNDATION_Syllabus 2012_Dec2016 SET - I. Paper 4-Fundamentals of Business Mathematics and Statistics SET - I Paper 4-Fundamentals of Business Mathematics and Statistics Full Marks: 00 Time allowed: 3 Hours Section A (Fundamentals of Business Mathematics) I. Answer any two questions. Each question carries

More information

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Summer 2014 1 / 26 Sampling Distributions!!!!!!

More information

PROBABILITY DISTRIBUTIONS

PROBABILITY DISTRIBUTIONS CHAPTER 3 PROBABILITY DISTRIBUTIONS Page Contents 3.1 Introduction to Probability Distributions 51 3.2 The Normal Distribution 56 3.3 The Binomial Distribution 60 3.4 The Poisson Distribution 64 Exercise

More information

Section Random Variables and Histograms

Section Random Variables and Histograms Section 3.1 - Random Variables and Histograms Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Descrip(ve Sta(s(cs Chapter 4 1) The collection of all possible events is called A) a sample space. B) a simple probability. C) a joint probability. D) the null set. 1) 2) All the events in the sample

More information

MATH/STAT 3360, Probability FALL 2012 Toby Kenney

MATH/STAT 3360, Probability FALL 2012 Toby Kenney MATH/STAT 3360, Probability FALL 2012 Toby Kenney In Class Examples () August 31, 2012 1 / 81 A statistics textbook has 8 chapters. Each chapter has 50 questions. How many questions are there in total

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

300 total 50 left handed right handed = 250

300 total 50 left handed right handed = 250 Probability Rules 1. There are 300 students at a certain school. All students indicated they were either right handed or left handed but not both. Fifty of the students are left handed. How many students

More information

Section 3.1 Distributions of Random Variables

Section 3.1 Distributions of Random Variables Section 3.1 Distributions of Random Variables Random Variable A random variable is a rule that assigns a number to each outcome of a chance experiment. There are three types of random variables: 1. Finite

More information

Name: Show all your work! Mathematical Concepts Joysheet 1 MAT 117, Spring 2013 D. Ivanšić

Name: Show all your work! Mathematical Concepts Joysheet 1 MAT 117, Spring 2013 D. Ivanšić Mathematical Concepts Joysheet 1 Use your calculator to compute each expression to 6 significant digits accuracy or six decimal places, whichever is more accurate. Write down the sequence of keys you entered

More information

Probability. Logic and Decision Making Unit 1

Probability. Logic and Decision Making Unit 1 Probability Logic and Decision Making Unit 1 Questioning the probability concept In risky situations the decision maker is able to assign probabilities to the states But when we talk about a probability

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution)

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) I. Concept Questions 1. Give an example of a random variable in the context of Drawing a card from a deck of cards.

More information

The Binomial Distribution

The Binomial Distribution Patrick Breheny September 13 Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 1 / 16 Outcomes and summary statistics Random variables Distributions So far, we have discussed the

More information

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!!

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!! Student s Printed Name: Instructor: XID: Section #: Read each question very carefully. You are permitted to use a calculator on all portions of this exam. You are NOT allowed to use any textbook, notes,

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

Decision Theory at its Best

Decision Theory at its Best Decision Theory at its Best I am very excited about today s class. Today s Fare: Bayesian Revision Bayesian Decision Making The Reverend Bayes shows us how to do it with posterior distributions. See priors

More information

Mutually Exclusive Events & Non-Mutually Exclusive Events. When two events A and B are mutually exclusive, the probability that A or B will occur is

Mutually Exclusive Events & Non-Mutually Exclusive Events. When two events A and B are mutually exclusive, the probability that A or B will occur is EVENTS & PROBABILITIES RULES PROBABILITY RULES Mutually Exclusive Events & Non-Mutually Exclusive Events Two events are mutually exclusive if they cannot occur at the same time (they have no outcomes in

More information

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - SUMMER DR. DAVID BRIDGE

MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - SUMMER DR. DAVID BRIDGE MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - SUMMER 2007 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the

More information

3.2 Binomial and Hypergeometric Probabilities

3.2 Binomial and Hypergeometric Probabilities 3.2 Binomial and Hypergeometric Probabilities Ulrich Hoensch Wednesday, January 23, 2013 Example An urn contains ten balls, exactly seven of which are red. Suppose five balls are drawn at random and with

More information

Lecture 3. Sample spaces, events, probability

Lecture 3. Sample spaces, events, probability 18.440: Lecture 3 s, events, probability Scott Sheffield MIT 1 Outline Formalizing probability 2 Outline Formalizing probability 3 What does I d say there s a thirty percent chance it will rain tomorrow

More information

Math 1070 Final Exam Practice Spring 2014

Math 1070 Final Exam Practice Spring 2014 University of Connecticut Department of Mathematics Math 1070 Practice Spring 2014 Name: Instructor Name: Section: Read This First! This is a closed notes, closed book exam. You can not receive aid on

More information

Section M Discrete Probability Distribution

Section M Discrete Probability Distribution Section M Discrete Probability Distribution A random variable is a numerical measure of the outcome of a probability experiment, so its value is determined by chance. Random variables are typically denoted

More information