Rational Secret Sharing & Game Theory

Size: px
Start display at page:

Download "Rational Secret Sharing & Game Theory"

Transcription

1 Rational Secret Sharing & Game Theory Diptarka Chakraborty ( ) Abstract Consider m out of n secret sharing protocol among n players where each player is rational. In 2004, J.Halpern and V.Teague first pointed out problem for any Rational Secret Sharing protocol from completely game theoretic point of view and then proposed a randomized protocol to solve that problem. Later in 2006, S. Dov Gordon and J. Katz extended the idea proposed by J.Halpern and V.Teague and introduced a new randomized protocol for Rational Secret Sharing with unbounded number of rounds. Although their protocol was secure from the game theoretic point of view but main problem in their protocol is unbounded number of rounds. Here I propose a new 2-round protocol for Rational Secret Sharing which is also completely secure from the game theoretic point of view. Introduction As one of the basic blocks in modern cryptography, secret sharing plays an important role in key management, data security, distributed computing and so on. Shamirs secret-sharing scheme allows someone to share a secret s among n other agents, so that any m of them may reconstruct it. In the protocol, the dealer or issuer will split the secret into n shares in the dealing phase, every player will get one share, and players are asked to show their shares at the reconstructing phase. The secret will be reconstructed when players get no less than m shares. However, players may send wrong shares or no share when they are asked to send right shares in reality. Suppose the agents share their part of the secret just by broadcasting a message with their share. Then the problem in Shamir s secret-sharing scheme is that rational agents will simply not broadcast their shares. Suppose that each agent would prefer to learn the secret above all else and otherwise, prefer other agents not learn the secret. Then each agent is sometimes better off not broadcasting, and never worse off. Thus, not sharing his share weakly dominates sending his share. Here first it is discussed that how Rational Secret Sharing can be designed as a Normal Form Game and then the game is analysed and Nash Equilibrium is 1

2 determined. Then a randomized protocol with unbounded number of rounds proposed by S. Dov Gordon and J. Katz is discussed analysed from game theoretic point of view. Lastly a new 2-round protocol is introduced that is secure from the game theoretic point of view. Rational Secret Sharing Secret Sharing can be defined as follows: Suppose there are n parties. A secret s is shared among them. To reconstruct the secret s, atleast m among n parties must be given. Now, when every party is rational, it is assumed that -each party prefers to learn s above all else -otherwise, prefers other parties not learn s Rational Secret Sharing as a Game Players Each agent is assumed to be as a player P i, i 1 n. Dealer can be assumed as P 0. Pay-off Now, there are several natural cryptographic considerations which might weight into the definition of party P i s utility: (1) Correctness: Each P i wishes to compute s correctly. (2) Exclusivity: Each P i prefers others parties P j not to learn the value of s correctly. (3) Privacy: Each P i wishes to leak as little as possible about its share to the other parties. (4) Voyeurism: Each P i wishes to learn as much as possible about the other parties shares. For Rational Secret Sharing it is sufficient to implement only the first two of the above. Let u i (σ) denote the utility of player P i for the strategy σ. For a particular outcome o for a strategy σ of the protocol, let δ i (σ) be the bit denoting whether or not P i learns the secret and let correct i (σ) = j i δ j (σ),i.e., correct i (σ) is simply the number of players other than i who learn the secret. Now utility function should satisfy following two criteria: (i) If δ i (σ) > δ i (σ ), then u i (σ) > u i (σ ) (ii) If δ i (σ) = δ i (σ ) and correct i (σ) < correct i (σ ), then u i (σ) > u i (σ ) 2

3 e.g. one way of constructing such a utility function is: u i (σ) = C correct i (σ), for a constant C, where C > n 1 Now, without loss of generality, utilities of players can be assumed to be as follows: If P i learns the secret then the pay-off will be U +. If all the agents learn the secret then the pay-off will be U. If none of the agents learn the secret then the pay-off will be U. U + > U > U. Analysis Now let s consider ideal situation where every computation is by a Trusted Third Party(TTP). Here every party sends their shares to the TTP and then TTP reconstructs s and then broadcast this. In this case, clearly the Nash Equilibrium is to follow the protocol because if any one of the players will deviate unilaterally from this, he cannot be better off. Now let s consider the protocol where parties broadcast their shares sequentially or concurrently and this is the case that is observed in the real world. There are two cases: (i) When m = n: If all parties follow the protocol and broadcast their shares, then for all the players pay-off will be U. But this is obviously not the Nash Equilibrium as if the player P i will see that others have broadcasted their shares already then he will remain silent because other parties cannot reconstruct the secret, but the player P i can reconstruct the secret by using his own share and shares broadcasted by other parities and thus his pay-off will be U +. So, then it will be better for the player P i not to broadcast his share. So the Nash Equilibrium will be when everyone will remain silent as in this situation everyone will get pay-off equal to U and any single player deviating unilaterally from this point will never worse off. (ii) When m < n: If all parties follow the protocol and broadcast their shares, then for all the players pay-off will be U. This is a Nash Equilibrium as if a single player will deviate unilaterally from this situation then also everyone can reconstruct the share. Another Nash Equilibrium in this case will be when everyone will remain silent as in this situation everyone will get pay-off equal to U and any single player deviating unilaterally from this point will never worse off. Now if less than m players will broadcast their shares, then if any one of them will deviate unilaterally from this then also no one can reconstruct s and thus the player who will deviate will not worse off and if all players will follow the protocol then if any one of them will deviate unilaterally from this then also everyone can reconstruct s and thus the player who will deviate will not worse off and if exactly m players will broadcast their shares then if any one among 3

4 these m players will deviate unilaterally from this situation then players who will not broadcast can reconstruct the secret using broadcasted m 1 shares and his own share but others cannot and thus the players who will not broadcast will get pay-off equal to U +. So following the protocol is weakly dominated by remaining silent. Thus Nash Equilibrium that everyone follow the protocol may not be survived from iterated deletion. Randomized Protocol to solve the Problem To solve the above mentioned problem, the first randomized protocol was proposer by J.Halpern and V.Teague[4] in However their proposed protocol solved the above mentioned problem but in their protocol they used a private communication channel in addition with broadcast. In 2006, S. Dov Gordon and J. Katz [GK 06][5] extended J.Halpern and V.Teague s idea and proposed a new randomized protocol. GK 06 Let us assume that the dealer wants to share the secret s, where s S and S is a strict subset of a finite field F. Now define a special symbol abort which is an element of F S. This protocol consists of unbounded number of iterations. At the beginning of the each iteration, with probability α, dealer generates m out of n Shamirs sharing of s and with probability 1 α, dealer generates m out of n Shamirs sharing of a special element abort. Each player begins with a flag all honest = true. During each iteration, each of the players does the following: First, if all honest = true then broadcast the share received from the dealer. Otherwise, do nothing(which is similar to the termination of the protocol). Now if atleast m shares have been broadcasted then reconstruct s and then check whether it is same as abort or not. If not then it must be the actual share s, otherwise move to the next iteration. If atleast one player failed to broadcast his share then every player set the flag all honest = false and move to next iteration. Analysis of GK 06 If parties form coalition and decide not to follow the protocol then coalition of size upto m-1, the parties involved in coalition can not reconstruct s. If coalition is of size greater than or equal to m, then if parties decide not to broadcast then with probability α he learns the secret and with probability 1 αhe does not learn the secret forever. So, in this case, expected utility of each player will be α (U+) + (1 α) (U ). Now if α is chosen such that, U > α (U+) + (1 α) (U ), then it is better 4

5 for any player to follow the protocol. Thus following the protocol is the Nash Equilibrium and it is survived from iterated deletion. Problems with Bounded Round Randomized Protocol The main problem in GK 06 protocol is that it has unbounded round complexity. As in each round probability of share secret s is α, so expected number of round will be 1 α and as α. J.Halpern and V.Teague showed that protocol with fixed number(say r) of round is not useful at all. If a protocol has r rounds, then in the r th round every party remains silent(reason is same as that for 1 round protocol). Thus actually the protocol becomes (r-1) rounded protocol and using the same argument(this is actually known as Backward Induction), it is actually similar to 1-rounded protocol and thus every party remains silent. A New 2-Round Protocol Here a new 2-rounded simple protocol is proposed that is secure from the game theoretic point of view,i.e.,nash Equilibrium is following the protocol. The protocol is as follows: Dealer first choose a random r and then determine s = s r. Then keep r with himself and distribute s following Shamir s m out of n sharing scheme where each share is digitally signed using dealer s private key. In the first round, every party broadcast their shares along with their identity. Each party keeps track of parties who have broadcasted. If less than m parties broadcast, then abort the protocol. Otherwise, each party first check validity of broadcasted shares using public key of the dealer and if all valid then reconstruct the s and broadcast along with their identity, else abort. If any party finds that any party who have not broadcasted their shares broadcast the reconstructed message then abort. Then move to the next round. In the 2 nd ) round, dealer send r to each party who has broadcasted reconstructed message(dealer sends r in the way he sends shares to each party) and then parties will reconstruct s(as s = s r). Analysis Here the Nash Equilibrium is to follow the protocol. If any one deviate from this he cannot reconstruct s and thus he will never better off and sometimes worse off. Thus following the protocol is not dominated by remaining silent. Thus the Nash Equilibrium that is to follow the protocol will be survived from iterated deletion. 5

6 Conclusion I have provided a new approach to rational secret sharing that is completely secure with respect to game theory and also it has bounded(2-round) number of rounds. Also the proposed protocol is very simple. However the problem in this proposed protocol is the computational complexity of the protocol. References [1] A. Shamir. How to Share a Secret. Communications of the ACM, 22:612613, 1979 [2] Cryptography and Game Theory by YevgeniyDodis, NYU and Tal Rabin, IBM [3] Bridging Game Theory and Cryptography: Recent Results and Future Directions by Jonathan Katz [4] J. Halpernand V. Teague. Rational secret sharing and multiparty computation. In Proc. of 36th STOC, pages ACM Press, 2004 [5] S. DovGordon and J. Katz. Rational secret sharing, revisited. In 5thConference on Security and Cryptography for Networks, Updated version available at [6] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed Computing Meets Game Theory: Robust Mechanisms for Rational Secret Sharing and Multiparty Computation. 25th ACM Symposium on Principles of Distributed Computing (PODC 2006) [7] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications, Cambridge University Press, 2004 [8] D. Fudenberg and J. Tirole. Game Theory. MIT Press,

Lower Bounds on Implementing Robust and Resilient Mediators

Lower Bounds on Implementing Robust and Resilient Mediators Lower Bounds on Implementing Robust and Resilient Mediators Ittai Abraham 1, Danny Dolev 2, and Joseph Y. Halpern 3 1 Hebrew University. ittaia@cs.huji.ac.il 2 Hebrew University. dolev@cs.huji.ac.il 3

More information

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts 6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts Asu Ozdaglar MIT February 9, 2010 1 Introduction Outline Review Examples of Pure Strategy Nash Equilibria

More information

Lower Bounds on Implementing Robust and Resilient Mediators

Lower Bounds on Implementing Robust and Resilient Mediators Lower Bounds on Implementing Robust and Resilient Mediators Ittai Abraham School of Computer Science and Engineering The Hebrew University of Jerusalem Jerusalem, Israel ittaia@cs.huji.ac.il Danny Dolev

More information

ECON 803: MICROECONOMIC THEORY II Arthur J. Robson Fall 2016 Assignment 9 (due in class on November 22)

ECON 803: MICROECONOMIC THEORY II Arthur J. Robson Fall 2016 Assignment 9 (due in class on November 22) ECON 803: MICROECONOMIC THEORY II Arthur J. Robson all 2016 Assignment 9 (due in class on November 22) 1. Critique of subgame perfection. 1 Consider the following three-player sequential game. In the first

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India October 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India October 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India October 22 COOPERATIVE GAME THEORY Correlated Strategies and Correlated

More information

G5212: Game Theory. Mark Dean. Spring 2017

G5212: Game Theory. Mark Dean. Spring 2017 G5212: Game Theory Mark Dean Spring 2017 Bargaining We will now apply the concept of SPNE to bargaining A bit of background Bargaining is hugely interesting but complicated to model It turns out that the

More information

Game theory and applications: Lecture 1

Game theory and applications: Lecture 1 Game theory and applications: Lecture 1 Adam Szeidl September 20, 2018 Outline for today 1 Some applications of game theory 2 Games in strategic form 3 Dominance 4 Nash equilibrium 1 / 8 1. Some applications

More information

Problem 3 Solutions. l 3 r, 1

Problem 3 Solutions. l 3 r, 1 . Economic Applications of Game Theory Fall 00 TA: Youngjin Hwang Problem 3 Solutions. (a) There are three subgames: [A] the subgame starting from Player s decision node after Player s choice of P; [B]

More information

January 26,

January 26, January 26, 2015 Exercise 9 7.c.1, 7.d.1, 7.d.2, 8.b.1, 8.b.2, 8.b.3, 8.b.4,8.b.5, 8.d.1, 8.d.2 Example 10 There are two divisions of a firm (1 and 2) that would benefit from a research project conducted

More information

Game Theory for Wireless Engineers Chapter 3, 4

Game Theory for Wireless Engineers Chapter 3, 4 Game Theory for Wireless Engineers Chapter 3, 4 Zhongliang Liang ECE@Mcmaster Univ October 8, 2009 Outline Chapter 3 - Strategic Form Games - 3.1 Definition of A Strategic Form Game - 3.2 Dominated Strategies

More information

Complexity of Iterated Dominance and a New Definition of Eliminability

Complexity of Iterated Dominance and a New Definition of Eliminability Complexity of Iterated Dominance and a New Definition of Eliminability Vincent Conitzer and Tuomas Sandholm Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 {conitzer, sandholm}@cs.cmu.edu

More information

Game Theory with Applications to Finance and Marketing, I

Game Theory with Applications to Finance and Marketing, I Game Theory with Applications to Finance and Marketing, I Homework 1, due in recitation on 10/18/2018. 1. Consider the following strategic game: player 1/player 2 L R U 1,1 0,0 D 0,0 3,2 Any NE can be

More information

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 5 Games and Strategy (Ch. 4)

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 5 Games and Strategy (Ch. 4) Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 5 Games and Strategy (Ch. 4) Outline: Modeling by means of games Normal form games Dominant strategies; dominated strategies,

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

Regret Minimization and Security Strategies

Regret Minimization and Security Strategies Chapter 5 Regret Minimization and Security Strategies Until now we implicitly adopted a view that a Nash equilibrium is a desirable outcome of a strategic game. In this chapter we consider two alternative

More information

An introduction on game theory for wireless networking [1]

An introduction on game theory for wireless networking [1] An introduction on game theory for wireless networking [1] Ning Zhang 14 May, 2012 [1] Game Theory in Wireless Networks: A Tutorial 1 Roadmap 1 Introduction 2 Static games 3 Extensive-form games 4 Summary

More information

In the Name of God. Sharif University of Technology. Microeconomics 2. Graduate School of Management and Economics. Dr. S.

In the Name of God. Sharif University of Technology. Microeconomics 2. Graduate School of Management and Economics. Dr. S. In the Name of God Sharif University of Technology Graduate School of Management and Economics Microeconomics 2 44706 (1394-95 2 nd term) - Group 2 Dr. S. Farshad Fatemi Chapter 8: Simultaneous-Move Games

More information

Best-Reply Sets. Jonathan Weinstein Washington University in St. Louis. This version: May 2015

Best-Reply Sets. Jonathan Weinstein Washington University in St. Louis. This version: May 2015 Best-Reply Sets Jonathan Weinstein Washington University in St. Louis This version: May 2015 Introduction The best-reply correspondence of a game the mapping from beliefs over one s opponents actions to

More information

Iterated Dominance and Nash Equilibrium

Iterated Dominance and Nash Equilibrium Chapter 11 Iterated Dominance and Nash Equilibrium In the previous chapter we examined simultaneous move games in which each player had a dominant strategy; the Prisoner s Dilemma game was one example.

More information

Lecture 5 Leadership and Reputation

Lecture 5 Leadership and Reputation Lecture 5 Leadership and Reputation Reputations arise in situations where there is an element of repetition, and also where coordination between players is possible. One definition of leadership is that

More information

Microeconomics of Banking: Lecture 5

Microeconomics of Banking: Lecture 5 Microeconomics of Banking: Lecture 5 Prof. Ronaldo CARPIO Oct. 23, 2015 Administrative Stuff Homework 2 is due next week. Due to the change in material covered, I have decided to change the grading system

More information

Rationalizable Strategies

Rationalizable Strategies Rationalizable Strategies Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Jun 1st, 2015 C. Hurtado (UIUC - Economics) Game Theory On the Agenda 1

More information

Game Theory Problem Set 4 Solutions

Game Theory Problem Set 4 Solutions Game Theory Problem Set 4 Solutions 1. Assuming that in the case of a tie, the object goes to person 1, the best response correspondences for a two person first price auction are: { }, < v1 undefined,

More information

Repeated Games with Perfect Monitoring

Repeated Games with Perfect Monitoring Repeated Games with Perfect Monitoring Mihai Manea MIT Repeated Games normal-form stage game G = (N, A, u) players simultaneously play game G at time t = 0, 1,... at each date t, players observe all past

More information

In reality; some cases of prisoner s dilemma end in cooperation. Game Theory Dr. F. Fatemi Page 219

In reality; some cases of prisoner s dilemma end in cooperation. Game Theory Dr. F. Fatemi Page 219 Repeated Games Basic lesson of prisoner s dilemma: In one-shot interaction, individual s have incentive to behave opportunistically Leads to socially inefficient outcomes In reality; some cases of prisoner

More information

10.1 Elimination of strictly dominated strategies

10.1 Elimination of strictly dominated strategies Chapter 10 Elimination by Mixed Strategies The notions of dominance apply in particular to mixed extensions of finite strategic games. But we can also consider dominance of a pure strategy by a mixed strategy.

More information

CS364A: Algorithmic Game Theory Lecture #14: Robust Price-of-Anarchy Bounds in Smooth Games

CS364A: Algorithmic Game Theory Lecture #14: Robust Price-of-Anarchy Bounds in Smooth Games CS364A: Algorithmic Game Theory Lecture #14: Robust Price-of-Anarchy Bounds in Smooth Games Tim Roughgarden November 6, 013 1 Canonical POA Proofs In Lecture 1 we proved that the price of anarchy (POA)

More information

MS&E 246: Lecture 5 Efficiency and fairness. Ramesh Johari

MS&E 246: Lecture 5 Efficiency and fairness. Ramesh Johari MS&E 246: Lecture 5 Efficiency and fairness Ramesh Johari A digression In this lecture: We will use some of the insights of static game analysis to understand efficiency and fairness. Basic setup N players

More information

1 x i c i if x 1 +x 2 > 0 u i (x 1,x 2 ) = 0 if x 1 +x 2 = 0

1 x i c i if x 1 +x 2 > 0 u i (x 1,x 2 ) = 0 if x 1 +x 2 = 0 Game Theory - Midterm Examination, Date: ctober 14, 017 Total marks: 30 Duration: 10:00 AM to 1:00 PM Note: Answer all questions clearly using pen. Please avoid unnecessary discussions. In all questions,

More information

Game Theory and Economics Prof. Dr. Debarshi Das Department of Humanities and Social Sciences Indian Institute of Technology, Guwahati.

Game Theory and Economics Prof. Dr. Debarshi Das Department of Humanities and Social Sciences Indian Institute of Technology, Guwahati. Game Theory and Economics Prof. Dr. Debarshi Das Department of Humanities and Social Sciences Indian Institute of Technology, Guwahati. Module No. # 06 Illustrations of Extensive Games and Nash Equilibrium

More information

Introduction to Game Theory

Introduction to Game Theory Introduction to Game Theory 3a. More on Normal-Form Games Dana Nau University of Maryland Nau: Game Theory 1 More Solution Concepts Last time, we talked about several solution concepts Pareto optimality

More information

Follow the Leader I has three pure strategy Nash equilibria of which only one is reasonable.

Follow the Leader I has three pure strategy Nash equilibria of which only one is reasonable. February 3, 2014 Eric Rasmusen, Erasmuse@indiana.edu. Http://www.rasmusen.org Follow the Leader I has three pure strategy Nash equilibria of which only one is reasonable. Equilibrium Strategies Outcome

More information

Introduction to Multi-Agent Programming

Introduction to Multi-Agent Programming Introduction to Multi-Agent Programming 10. Game Theory Strategic Reasoning and Acting Alexander Kleiner and Bernhard Nebel Strategic Game A strategic game G consists of a finite set N (the set of players)

More information

Game Theoretic Notions of Fairness in Multi-Party Coin Toss

Game Theoretic Notions of Fairness in Multi-Party Coin Toss TCC 28 (Goa) Game Theoretic Notions of Fairness in Multi-Party Coin Toss Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi Nov 3, 28 Who Gets to TCC in Goa? Soft merge of A and B Only one

More information

SI 563 Homework 3 Oct 5, Determine the set of rationalizable strategies for each of the following games. a) X Y X Y Z

SI 563 Homework 3 Oct 5, Determine the set of rationalizable strategies for each of the following games. a) X Y X Y Z SI 563 Homework 3 Oct 5, 06 Chapter 7 Exercise : ( points) Determine the set of rationalizable strategies for each of the following games. a) U (0,4) (4,0) M (3,3) (3,3) D (4,0) (0,4) X Y U (0,4) (4,0)

More information

MIDTERM ANSWER KEY GAME THEORY, ECON 395

MIDTERM ANSWER KEY GAME THEORY, ECON 395 MIDTERM ANSWER KEY GAME THEORY, ECON 95 SPRING, 006 PROFESSOR A. JOSEPH GUSE () There are positions available with wages w and w. Greta and Mary each simultaneously apply to one of them. If they apply

More information

M.Phil. Game theory: Problem set II. These problems are designed for discussions in the classes of Week 8 of Michaelmas term. 1

M.Phil. Game theory: Problem set II. These problems are designed for discussions in the classes of Week 8 of Michaelmas term. 1 M.Phil. Game theory: Problem set II These problems are designed for discussions in the classes of Week 8 of Michaelmas term.. Private Provision of Public Good. Consider the following public good game:

More information

Game Theory: Global Games. Christoph Schottmüller

Game Theory: Global Games. Christoph Schottmüller Game Theory: Global Games Christoph Schottmüller 1 / 20 Outline 1 Global Games: Stag Hunt 2 An investment example 3 Revision questions and exercises 2 / 20 Stag Hunt Example H2 S2 H1 3,3 3,0 S1 0,3 4,4

More information

preferences of the individual players over these possible outcomes, typically measured by a utility or payoff function.

preferences of the individual players over these possible outcomes, typically measured by a utility or payoff function. Leigh Tesfatsion 26 January 2009 Game Theory: Basic Concepts and Terminology A GAME consists of: a collection of decision-makers, called players; the possible information states of each player at each

More information

CUR 412: Game Theory and its Applications Final Exam Ronaldo Carpio Jan. 13, 2015

CUR 412: Game Theory and its Applications Final Exam Ronaldo Carpio Jan. 13, 2015 CUR 41: Game Theory and its Applications Final Exam Ronaldo Carpio Jan. 13, 015 Instructions: Please write your name in English. This exam is closed-book. Total time: 10 minutes. There are 4 questions,

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 2 1. Consider a zero-sum game, where

More information

In the Name of God. Sharif University of Technology. Graduate School of Management and Economics

In the Name of God. Sharif University of Technology. Graduate School of Management and Economics In the Name of God Sharif University of Technology Graduate School of Management and Economics Microeconomics (for MBA students) 44111 (1393-94 1 st term) - Group 2 Dr. S. Farshad Fatemi Game Theory Game:

More information

Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002

Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002 Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002 P1. Consider the following game. There are two piles of matches and two players. The game starts with Player 1 and thereafter the players

More information

Chapter 2 Strategic Dominance

Chapter 2 Strategic Dominance Chapter 2 Strategic Dominance 2.1 Prisoner s Dilemma Let us start with perhaps the most famous example in Game Theory, the Prisoner s Dilemma. 1 This is a two-player normal-form (simultaneous move) game.

More information

Exercises Solutions: Game Theory

Exercises Solutions: Game Theory Exercises Solutions: Game Theory Exercise. (U, R).. (U, L) and (D, R). 3. (D, R). 4. (U, L) and (D, R). 5. First, eliminate R as it is strictly dominated by M for player. Second, eliminate M as it is strictly

More information

MIDTERM 1 SOLUTIONS 10/16/2008

MIDTERM 1 SOLUTIONS 10/16/2008 4. Game Theory MIDTERM SOLUTIONS 0/6/008 Prof. Casey Rothschild Instructions. Thisisanopenbookexam; you canuse anywritten material. You mayuse a calculator. You may not use a computer or any electronic

More information

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory Strategies and Nash Equilibrium A Whirlwind Tour of Game Theory (Mostly from Fudenberg & Tirole) Players choose actions, receive rewards based on their own actions and those of the other players. Example,

More information

Player 2 L R M H a,a 7,1 5,0 T 0,5 5,3 6,6

Player 2 L R M H a,a 7,1 5,0 T 0,5 5,3 6,6 Question 1 : Backward Induction L R M H a,a 7,1 5,0 T 0,5 5,3 6,6 a R a) Give a definition of the notion of a Nash-Equilibrium! Give all Nash-Equilibria of the game (as a function of a)! (6 points) b)

More information

ODD. Answers to Odd-Numbered Problems, 4th Edition of Games and Information, Rasmusen PROBLEMS FOR CHAPTER 1

ODD. Answers to Odd-Numbered Problems, 4th Edition of Games and Information, Rasmusen PROBLEMS FOR CHAPTER 1 ODD Answers to Odd-Numbered Problems, 4th Edition of Games and Information, Rasmusen PROBLEMS FOR CHAPTER 1 26 March 2005. 12 September 2006. 29 September 2012. Erasmuse@indiana.edu. Http://www.rasmusen

More information

TR : Knowledge-Based Rational Decisions and Nash Paths

TR : Knowledge-Based Rational Decisions and Nash Paths City University of New York (CUNY) CUNY Academic Works Computer Science Technical Reports Graduate Center 2009 TR-2009015: Knowledge-Based Rational Decisions and Nash Paths Sergei Artemov Follow this and

More information

Microeconomic Theory II Preliminary Examination Solutions Exam date: August 7, 2017

Microeconomic Theory II Preliminary Examination Solutions Exam date: August 7, 2017 Microeconomic Theory II Preliminary Examination Solutions Exam date: August 7, 017 1. Sheila moves first and chooses either H or L. Bruce receives a signal, h or l, about Sheila s behavior. The distribution

More information

S 2,2-1, x c C x r, 1 0,0

S 2,2-1, x c C x r, 1 0,0 Problem Set 5 1. There are two players facing each other in the following random prisoners dilemma: S C S, -1, x c C x r, 1 0,0 With probability p, x c = y, and with probability 1 p, x c = 0. With probability

More information

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 More on strategic games and extensive games with perfect information Block 2 Jun 11, 2017 Auctions results Histogram of

More information

A Short Tutorial on Game Theory

A Short Tutorial on Game Theory A Short Tutorial on Game Theory EE228a, Fall 2002 Dept. of EECS, U.C. Berkeley Outline Introduction Complete-Information Strategic Games Static Games Repeated Games Stackelberg Games Cooperative Games

More information

So we turn now to many-to-one matching with money, which is generally seen as a model of firms hiring workers

So we turn now to many-to-one matching with money, which is generally seen as a model of firms hiring workers Econ 805 Advanced Micro Theory I Dan Quint Fall 2009 Lecture 20 November 13 2008 So far, we ve considered matching markets in settings where there is no money you can t necessarily pay someone to marry

More information

(a) (5 points) Suppose p = 1. Calculate all the Nash Equilibria of the game. Do/es the equilibrium/a that you have found maximize social utility?

(a) (5 points) Suppose p = 1. Calculate all the Nash Equilibria of the game. Do/es the equilibrium/a that you have found maximize social utility? GAME THEORY EXAM (with SOLUTIONS) January 20 P P2 P3 P4 INSTRUCTIONS: Write your answers in the space provided immediately after each question. You may use the back of each page. The duration of this exam

More information

Introduction to Game Theory Lecture Note 5: Repeated Games

Introduction to Game Theory Lecture Note 5: Repeated Games Introduction to Game Theory Lecture Note 5: Repeated Games Haifeng Huang University of California, Merced Repeated games Repeated games: given a simultaneous-move game G, a repeated game of G is an extensive

More information

Econ 618: Topic 11 Introduction to Coalitional Games

Econ 618: Topic 11 Introduction to Coalitional Games Econ 618: Topic 11 Introduction to Coalitional Games Sunanda Roy 1 Coalitional games with transferable payoffs, the Core Consider a game with a finite set of players. A coalition is a nonempty subset of

More information

Signaling Games. Farhad Ghassemi

Signaling Games. Farhad Ghassemi Signaling Games Farhad Ghassemi Abstract - We give an overview of signaling games and their relevant solution concept, perfect Bayesian equilibrium. We introduce an example of signaling games and analyze

More information

Problem Set 2 Answers

Problem Set 2 Answers Problem Set 2 Answers BPH8- February, 27. Note that the unique Nash Equilibrium of the simultaneous Bertrand duopoly model with a continuous price space has each rm playing a wealy dominated strategy.

More information

Solution to Tutorial 1

Solution to Tutorial 1 Solution to Tutorial 1 011/01 Semester I MA464 Game Theory Tutor: Xiang Sun August 4, 011 1 Review Static means one-shot, or simultaneous-move; Complete information means that the payoff functions are

More information

Renegotiation-Safe Protocols

Renegotiation-Safe Protocols Renegotiation-Safe Protocols Rafael Pass rafael@cornell.edu abhi shelat abhi@virginia.edu August 19, 2010 Abstract We consider a model of renegotiation in extensive-form games: when it is player i s turn

More information

Solution to Tutorial /2013 Semester I MA4264 Game Theory

Solution to Tutorial /2013 Semester I MA4264 Game Theory Solution to Tutorial 1 01/013 Semester I MA464 Game Theory Tutor: Xiang Sun August 30, 01 1 Review Static means one-shot, or simultaneous-move; Complete information means that the payoff functions are

More information

Game Theory: Normal Form Games

Game Theory: Normal Form Games Game Theory: Normal Form Games Michael Levet June 23, 2016 1 Introduction Game Theory is a mathematical field that studies how rational agents make decisions in both competitive and cooperative situations.

More information

Microeconomic Theory III Final Exam March 18, 2010 (80 Minutes)

Microeconomic Theory III Final Exam March 18, 2010 (80 Minutes) 4. Microeconomic Theory III Final Exam March 8, (8 Minutes). ( points) This question assesses your understanding of expected utility theory. (a) In the following pair of games, check whether the players

More information

Game Theory Fall 2003

Game Theory Fall 2003 Game Theory Fall 2003 Problem Set 5 [1] Consider an infinitely repeated game with a finite number of actions for each player and a common discount factor δ. Prove that if δ is close enough to zero then

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2017 These notes have been used and commented on before. If you can still spot any errors or have any suggestions for improvement, please

More information

Econ 711 Homework 1 Solutions

Econ 711 Homework 1 Solutions Econ 711 Homework 1 s January 4, 014 1. 1 Symmetric, not complete, not transitive. Not a game tree. Asymmetric, not complete, transitive. Game tree. 1 Asymmetric, not complete, transitive. Not a game tree.

More information

G5212: Game Theory. Mark Dean. Spring 2017

G5212: Game Theory. Mark Dean. Spring 2017 G5212: Game Theory Mark Dean Spring 2017 Modelling Dynamics Up until now, our games have lacked any sort of dynamic aspect We have assumed that all players make decisions at the same time Or at least no

More information

MA200.2 Game Theory II, LSE

MA200.2 Game Theory II, LSE MA200.2 Game Theory II, LSE Problem Set 1 These questions will go over basic game-theoretic concepts and some applications. homework is due during class on week 4. This [1] In this problem (see Fudenberg-Tirole

More information

On Existence of Equilibria. Bayesian Allocation-Mechanisms

On Existence of Equilibria. Bayesian Allocation-Mechanisms On Existence of Equilibria in Bayesian Allocation Mechanisms Northwestern University April 23, 2014 Bayesian Allocation Mechanisms In allocation mechanisms, agents choose messages. The messages determine

More information

A Short Tutorial on Game Theory

A Short Tutorial on Game Theory Outline A Short Tutorial on Game Theory EE228a, Fall 2002 Dept. of EECS, U.C. Berkeley Introduction Complete-Information Strategic Games Static Games Repeated Games Stackelberg Games Cooperative Games

More information

Microeconomics II. CIDE, MsC Economics. List of Problems

Microeconomics II. CIDE, MsC Economics. List of Problems Microeconomics II CIDE, MsC Economics List of Problems 1. There are three people, Amy (A), Bart (B) and Chris (C): A and B have hats. These three people are arranged in a room so that B can see everything

More information

1 Games in Strategic Form

1 Games in Strategic Form 1 Games in Strategic Form A game in strategic form or normal form is a triple Γ (N,{S i } i N,{u i } i N ) in which N = {1,2,...,n} is a finite set of players, S i is the set of strategies of player i,

More information

How Fair is Your Protocol? A Utility-based Approach to Protocol Optimality

How Fair is Your Protocol? A Utility-based Approach to Protocol Optimality How Fair is Your Protocol? A Utility-based Approach to Protocol Optimality ABSTRACT Juan Garay Yahoo Labs garay@yahoo-inc.com Björn Tackmann UC San Diego btackmann@eng.ucsd.edu The security of distributed

More information

Game Theory I. Author: Neil Bendle Marketing Metrics Reference: Chapter Neil Bendle and Management by the Numbers, Inc.

Game Theory I. Author: Neil Bendle Marketing Metrics Reference: Chapter Neil Bendle and Management by the Numbers, Inc. Game Theory I This module provides an introduction to game theory for managers and includes the following topics: matrix basics, zero and non-zero sum games, and dominant strategies. Author: Neil Bendle

More information

On Forchheimer s Model of Dominant Firm Price Leadership

On Forchheimer s Model of Dominant Firm Price Leadership On Forchheimer s Model of Dominant Firm Price Leadership Attila Tasnádi Department of Mathematics, Budapest University of Economic Sciences and Public Administration, H-1093 Budapest, Fővám tér 8, Hungary

More information

Name. Answers Discussion Final Exam, Econ 171, March, 2012

Name. Answers Discussion Final Exam, Econ 171, March, 2012 Name Answers Discussion Final Exam, Econ 171, March, 2012 1) Consider the following strategic form game in which Player 1 chooses the row and Player 2 chooses the column. Both players know that this is

More information

CUR 412: Game Theory and its Applications, Lecture 9

CUR 412: Game Theory and its Applications, Lecture 9 CUR 412: Game Theory and its Applications, Lecture 9 Prof. Ronaldo CARPIO May 22, 2015 Announcements HW #3 is due next week. Ch. 6.1: Ultimatum Game This is a simple game that can model a very simplified

More information

Topics in Contract Theory Lecture 1

Topics in Contract Theory Lecture 1 Leonardo Felli 7 January, 2002 Topics in Contract Theory Lecture 1 Contract Theory has become only recently a subfield of Economics. As the name suggest the main object of the analysis is a contract. Therefore

More information

CS711: Introduction to Game Theory and Mechanism Design

CS711: Introduction to Game Theory and Mechanism Design CS711: Introduction to Game Theory and Mechanism Design Teacher: Swaprava Nath Domination, Elimination of Dominated Strategies, Nash Equilibrium Domination Normal form game N, (S i ) i N, (u i ) i N Definition

More information

Game Theory. Wolfgang Frimmel. Repeated Games

Game Theory. Wolfgang Frimmel. Repeated Games Game Theory Wolfgang Frimmel Repeated Games 1 / 41 Recap: SPNE The solution concept for dynamic games with complete information is the subgame perfect Nash Equilibrium (SPNE) Selten (1965): A strategy

More information

Lecture 1: Normal Form Games: Refinements and Correlated Equilibrium

Lecture 1: Normal Form Games: Refinements and Correlated Equilibrium Lecture 1: Normal Form Games: Refinements and Correlated Equilibrium Albert Banal-Estanol April 2006 Lecture 1 2 Albert Banal-Estanol Trembling hand perfect equilibrium: Motivation, definition and examples

More information

ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100

ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100 Name:... ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100 For full credit, please be formal, precise, concise and tidy. If your answer is illegible and not well organized, if

More information

Finitely repeated simultaneous move game.

Finitely repeated simultaneous move game. Finitely repeated simultaneous move game. Consider a normal form game (simultaneous move game) Γ N which is played repeatedly for a finite (T )number of times. The normal form game which is played repeatedly

More information

HW Consider the following game:

HW Consider the following game: HW 1 1. Consider the following game: 2. HW 2 Suppose a parent and child play the following game, first analyzed by Becker (1974). First child takes the action, A 0, that produces income for the child,

More information

Basic Game-Theoretic Concepts. Game in strategic form has following elements. Player set N. (Pure) strategy set for player i, S i.

Basic Game-Theoretic Concepts. Game in strategic form has following elements. Player set N. (Pure) strategy set for player i, S i. Basic Game-Theoretic Concepts Game in strategic form has following elements Player set N (Pure) strategy set for player i, S i. Payoff function f i for player i f i : S R, where S is product of S i s.

More information

MA300.2 Game Theory 2005, LSE

MA300.2 Game Theory 2005, LSE MA300.2 Game Theory 2005, LSE Answers to Problem Set 2 [1] (a) This is standard (we have even done it in class). The one-shot Cournot outputs can be computed to be A/3, while the payoff to each firm can

More information

PAULI MURTO, ANDREY ZHUKOV. If any mistakes or typos are spotted, kindly communicate them to

PAULI MURTO, ANDREY ZHUKOV. If any mistakes or typos are spotted, kindly communicate them to GAME THEORY PROBLEM SET 1 WINTER 2018 PAULI MURTO, ANDREY ZHUKOV Introduction If any mistakes or typos are spotted, kindly communicate them to andrey.zhukov@aalto.fi. Materials from Osborne and Rubinstein

More information

Introduction to Game Theory

Introduction to Game Theory Introduction to Game Theory Part 2. Dynamic games of complete information Chapter 1. Dynamic games of complete and perfect information Ciclo Profissional 2 o Semestre / 2011 Graduação em Ciências Econômicas

More information

Beliefs and Sequential Rationality

Beliefs and Sequential Rationality Beliefs and Sequential Rationality A system of beliefs µ in extensive form game Γ E is a specification of a probability µ(x) [0,1] for each decision node x in Γ E such that x H µ(x) = 1 for all information

More information

Francesco Nava Microeconomic Principles II EC202 Lent Term 2010

Francesco Nava Microeconomic Principles II EC202 Lent Term 2010 Answer Key Problem Set 1 Francesco Nava Microeconomic Principles II EC202 Lent Term 2010 Please give your answers to your class teacher by Friday of week 6 LT. If you not to hand in at your class, make

More information

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2 6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2 Daron Acemoglu and Asu Ozdaglar MIT October 14, 2009 1 Introduction Outline Review Examples of Pure Strategy Nash Equilibria Mixed Strategies

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 3 1. Consider the following strategic

More information

Two Equivalent Conditions

Two Equivalent Conditions Two Equivalent Conditions The traditional theory of present value puts forward two equivalent conditions for asset-market equilibrium: Rate of Return The expected rate of return on an asset equals the

More information

Answers to Problem Set 4

Answers to Problem Set 4 Answers to Problem Set 4 Economics 703 Spring 016 1. a) The monopolist facing no threat of entry will pick the first cost function. To see this, calculate profits with each one. With the first cost function,

More information

University of Hong Kong ECON6036 Stephen Chiu. Extensive Games with Perfect Information II. Outline

University of Hong Kong ECON6036 Stephen Chiu. Extensive Games with Perfect Information II. Outline University of Hong Kong ECON6036 Stephen Chiu Extensive Games with Perfect Information II 1 Outline Interpretation of strategy Backward induction One stage deviation principle Rubinstein alternative bargaining

More information

Elements of Economic Analysis II Lecture X: Introduction to Game Theory

Elements of Economic Analysis II Lecture X: Introduction to Game Theory Elements of Economic Analysis II Lecture X: Introduction to Game Theory Kai Hao Yang 11/14/2017 1 Introduction and Basic Definition of Game So far we have been studying environments where the economic

More information

m 11 m 12 Non-Zero Sum Games Matrix Form of Zero-Sum Games R&N Section 17.6

m 11 m 12 Non-Zero Sum Games Matrix Form of Zero-Sum Games R&N Section 17.6 Non-Zero Sum Games R&N Section 17.6 Matrix Form of Zero-Sum Games m 11 m 12 m 21 m 22 m ij = Player A s payoff if Player A follows pure strategy i and Player B follows pure strategy j 1 Results so far

More information

Subgame Perfect Cooperation in an Extensive Game

Subgame Perfect Cooperation in an Extensive Game Subgame Perfect Cooperation in an Extensive Game Parkash Chander * and Myrna Wooders May 1, 2011 Abstract We propose a new concept of core for games in extensive form and label it the γ-core of an extensive

More information