ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100

Size: px
Start display at page:

Download "ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100"

Transcription

1 Name:... ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100 For full credit, please be formal, precise, concise and tidy. If your answer is illegible and not well organized, if your arguments are informal and imprecise, you will lose points. Show all your algebra! Question 1 (20 points): Consider the following two person game. Player 1 is row player, Player 2 is column player. L C R T 3,3 1,2 5,1 M 2,3 2,4 6,0 B 1,2 0,5 1,5 a) (5 points) Does player 1 have a strictly dominated strategy? Explain formally by writing player 1 s best response to every possible strategy of player 2. Once you eliminate player 1 s strictly dominated strategy, does player 2 now have a strictly dominated strategy? Again explain formally. Answer: Player 1 s best reponses are BR 1 (L) = T BR 1 (C) = M BR 1 (R) = M Note that for player 1, Strategy B is strictly dominated by Strategy M. After eliminating B, we have Player 2 s best reponses are L C R T 3,3 1,2 5,1 M 2,3 2,4 6,0 BR 2 (T) = L BR 2 (M) = C Note that for player 2, Strategy R is strictly dominated by both Strategy C and Strategy L. 1

2 b) (5 points) After eliminating the strictly dominated strategies for each player, state all pure strategy NE of this game. Note: Just stating the pure strategy NE is suffi cient. Answer: (T,L) and (M,C) are pure NE. 2

3 b) (10 points) Find all mixed strategy NE of this game. We have L C T 3,3 1,2 M 2,3 2,4 3q + (1 q) = 2q + 2(1 q) 2q + 1 = 2 q = 1 2 and 3p + 3(1 p) = 2p + 4(1 p) 3 = 4 2p p = 1 2 The Mixed Strategy NE is Player 1 plays T with probability 1 2 and plays M with probability 1 2. Player 2 plays L with probability 1 2 and plays C with probability 1 2 3

4 Question 2 (20 points) Two research firms, Firm 1 and Firm 2 simultaneously choose how much time x i to spend on research to develop a new drug. Firm 1 chooses x 1 0 and Firm 2 chooses x 2 0. If Firm i spends x i > x j, that is, spends strictly more time on research than its rival, then Firm i gets 10 x i. If Firm i spends x i < x j, that is, spends strictly less time than its rival, all time spent on research is lost and Firm i receives a payoff of x i. If the two firms spend the exact same amount x i = x j, then each firm gets 5 x i. The two firms payoff functions are given by u 1 (x 1, x 2 ) = u 2 (x 1, x 2 ) = 10 x 1 if x 1 > x 2 5 x 1 if x 1 = x 2 x 1 if x 1 < x 2 10 x 2 if x 2 > x 1 5 x 2 if x 1 = x 2 x 1 if x 1 < x 2 a) (5 points) Is the strategy pair (x 1 = 5, x 2 = 5) a NE? Your argument needs to be formal. Answer: The strategy pair (x 1 = 5, x 2 = 5) is NOT a NE. In this proposed NE, player 1 s payoff is u 1 (x 1 = 5, x 2 = 5) = 5 5 = 0 Instead of playing x 1 = 5, player 1 can set any x 1 = 5 + ε where ε < 5 and get u 1 (x 1 = 5 + ε, x 2 = 5) = 10 (5 + ε) = 5 ε > 0 which is strictly better than his current payoff of 0. Since player 1 has a profitable deviation, this is not a NE. 4

5 b) (5 points) Is there any NE in which x 1 < x 2 < 5, that is Firm 1 spends strictly less time on research than Firm 2 and also both firms spend strictly less than 5? To receive any credit your argument needs to be formal, that is, you need to formally show if there is or there is not any such NE. Answer: Suppose there is a strategy profile in which x 1 = a < x 2 = b < 5 and this strategy profile is a NE. In this proposed NE, player 1 s payoff is u 1 (x 1 = a, x 2 = b) = a < 0 since a < b. But player 1 can instead play x 1 = b and get u 1 (x 1 = b, x 2 = b) = 5 b > 0. which is strictly better than his current payoff of a < 0. Since player 1 has a profitable deviation, there cannot be a NE where x 1 < x 2 < 5. 5

6 c) (10 points) Is any strategy pair with x 1 = x 2 where 0 x 1 = x 2 < 5 a NE? (That is, both firms spend the same time on research and both firms spend strictly less than 5). Your argument needs to be formal to receive any credit. Answer: First, suppose there is a strategy profile in which 0 < x 1 = x 2 = a < 5 and this strategy profile is a NE. In this proposed NE, player 1 s payoff is u 1 (x 1 = a, x 2 = a) = 5 a < 5. But player 1 can instead play x 1 = 5 and get u 1 (x 1 = 5, x 2 = a) = 10 5 = 5 > 5 a. which is strictly better than his current payoff of 5 a. Since player 1 has a profitable deviation, there cannot be a NE where 0 < x 1 = x 2 = a < 5. The only remaining possibility is the profile x 1 = x 2 = 0. In this proposed profile, player 1 s payoff is u 1 (x 1 = 0, x 2 = 0) = 5. But note that player 1 can instead play x 1 = ε > 0 and get u 1 (x 1 = ε, x 2 = 0) = 10 ε > 5 as long as ε < 5. Since player 1 has a profitable deviation, the profile x 1 = x 2 = 0 is not a NE. Therefore, there is no NE in which 0 x 1 = x 2 < 5. 6

7 Question 3 (30 points) Consider two farmers, Farmer 1 and Farmer 2 who choose the number of palm trees x i to plant in a common green field. If Farmer 1 plants x 1 trees and Farmer 2 plants x 2 trees, then there will a total number of X = x 1 + x 2 trees. If a total number of X trees are planted, then each palm tree can fetch a price P given by P = 600 X where X = x 1 + x 2 is the total number of palm trees. Note that the more palm trees planted, the lower the price each tree can fetch. Each palm tree costs the farmer c = $60. Therefore the profit of each farmer is given by π 1 (x 1, x 2 ) = (600 x 1 x 2 )x 1 60x 1 π 2 (x 1, x 2 ) = (600 x 1 x 2 )x 2 60x 2 Each farmer i simultaneusly chooses his own number of trees x i to maximize own profits π i. That is, Farmer 1 chooses x 1 to maximize π 1 (x 1, x 2 ) and Farmer 2 chooses x 2 to maximize π 2 (x 1, x 2 ). 7

8 a) (15 points) Derive Farmer 1 s best response x1 (x 2) and Farmer 2 s best response x2 (x 1).Find the equilibrium number of trees (x1, x 2 ) planted by the farmers. How many palm trees in total are planted, that is, what is X = x1 + x 2? What is the equilibrium profit of each farmer in this equilibrium? You need to show all your algebra. Answer: Choose x 1 to Maximize π 1 (x 1, x 2 ) = (600 x 1 x 2 )x 1 60g 1 FOC is 600 2x 1 x 2 60 = 0 which gives us x 1(x 2 ) = x 2 Similarly, choosing x 2 to Maximize π 2 (x 1, x 2 ) = (600 x 1 x 2 )x 2 60g 2 FOC is 600 2x 2 x 1 60 = 0 which gives us x 2(x 1 ) = x 1 The NE pair (x 1, x 2 ) solves x1 = x 2 x 1 = [ ] 2 2 x x 1 = x 1 = 180 Hence x 2 = x 2 = 180 We have P = = 240 π 1 = π 2 = (240 60) 180 = = 32, 400 8

9 9

10 b) (10 points) What is the total number of palm trees X M that would maximize the joint profits of the two farmers. Notice that the joint profits of the two farmers are given by π (X) = (600 X)X 60X How does the optimal number of total goats X M that maximizes π (X) above compare with the total number X = x1 + x 2 you found in part a? Do the farmers overplant or underplant when they choose x 1 and x 2 individually to maximize own profits. Note: To find X M, you need to maximize π (X) = (600 X)X 60X with respect to X. yields Answer: Maximizing π (X) = (600 X)X 60X 600 2X M 60 = 0 X M = 270 Since x 1 + x 2 = = 360 > X M = 270 farmers overuse the green when maximizing individually. 10

11 c) (5 points) Suppose the two farmers try to cooperate and each decide to plant exactly half of the joint profit maximizing number of trees X M you found in part (b). Is this cooperative outcome ) (x 1 = x 2 = XM 2 a Nash Equilibrium? Explain why or why not. Answer: No, strategy profile x 1 = x 2 = XM 2 = = 135 is not NE. When Farmer 2 sets x 2 = 135, Farmer 1 s best response is x 1 = x 2 = = >

12 Question 4 (15 points) Consider the following game between a homeowner and a contractor. In the first stage of the game, the contractor chooses his hourly wage w to maximize own payoff u c (w, L) = (w 20)L where L > 0 is the amount of service hours provided. L is chosen by the homeowner in the second stage of the game. After observing w chosen by the contractor, in the second stage the homeowner chooses the number of service hours L to maximize own payoff u h (w, H) = 100βL βl 2 wl where β > 0 is the skill level of the contractor. Find the backward induction equilibrium (w, L ) as a function of β. How does the contractor s equilibrium hourly wage w and homeowner s demand for contractor s service L depend on the contractor s skill level β? Answer: Choosing L to maximize yields the FOC u h (w, H) = 100βL βl 2 wl 100β 2βL w = 0 L (w) = 50 w 2β In the first stage the contractor chooses w to maximize u c (w, L) = (w 20)L (w) = 50w w2 2β + 10w β 1000 FOC is given by Hence 50 w β + 10 β = 0 w = 50β + 10 ( ) L (w 50β + 10 ) = 50 L (w ) = β β 12

13 Question 5 (10 points) Consider the following sequential move game. First, Player 1 chooses between L and R. If Player 1 chhoses L, the game ends. If Player 1 chooses R, in the second stage Player 2 chooses between In and Out. If Player 2 chooses Out, the game ends. If Player 2 plays In, it is again Player 1 s turn to move at the last stage and Player 1 chooses between T and B. The first payoff is Player 1 s payoff, the second payoff is Player 2 s payoff. Player 1 L R 4,2 Player 2 Out In 3,3 T Player 1 B 5,2 4,3 Describe the "backward induction equilibrium" of the game by stating the equilibrium strategy of each player at every decision node that the player has to choose an action. What is the backward induction equilibrium "outcome" of this game. Answer: The backward induction equilibrium is Player 1 plays L in the first stage If called to action Player 2 plays Out in the second stage If called to action Player 1 plays T in the last stage. The backward induction equilibrium outcome is Player 1 plays L in the first stage and the game ends with players getting a payoff (4,2). 13

14 Question 6 (5 points) Consider the game below and find the unique outcome that survives the Iterated Elimination of Strictly Dominated Strategies by filling in the blanks below. You just need to fill in the blanks in the statements below. Player 1 is the row player, Player 2 is the column player. L C R T 3,1 2,3 0,4 M 1,2 2,2 3,1 B 4,2 3,1 2,1 Step 1: Strategy T is strictly dominated by Strategy B for Player 1 hence can be eliminated. L C R M 1,2 2,2 3,1 B 4,2 3,1 2,1 Step 2: Having eliminated Strategy T in the first step, now Strategy R is strictly dominated by Strategy L for Player.2 and hence can be eliminated. Step 3: Having eliminated Strategy R L C M 1,2 2,2 B 4,2 3,1 in the second step, now Strategy M is strictly dominated by Strategy B for Player 1 and hence can be eliminated. L C B 4,2 3,1 Step 4: The only pair of strategies that survive the Iterated Elimination of Strictly dominated Strategies is Strategy B for Player 1 and Strategy L for Player 2. 14

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 5 Games and Strategy (Ch. 4)

Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 5 Games and Strategy (Ch. 4) Introduction to Industrial Organization Professor: Caixia Shen Fall 2014 Lecture Note 5 Games and Strategy (Ch. 4) Outline: Modeling by means of games Normal form games Dominant strategies; dominated strategies,

More information

Lecture 6 Dynamic games with imperfect information

Lecture 6 Dynamic games with imperfect information Lecture 6 Dynamic games with imperfect information Backward Induction in dynamic games of imperfect information We start at the end of the trees first find the Nash equilibrium (NE) of the last subgame

More information

1 R. 2 l r 1 1 l2 r 2

1 R. 2 l r 1 1 l2 r 2 4. Game Theory Midterm I Instructions. This is an open book exam; you can use any written material. You have one hour and 0 minutes. Each question is 35 points. Good luck!. Consider the following game

More information

The Ohio State University Department of Economics Second Midterm Examination Answers

The Ohio State University Department of Economics Second Midterm Examination Answers Econ 5001 Spring 2018 Prof. James Peck The Ohio State University Department of Economics Second Midterm Examination Answers Note: There were 4 versions of the test: A, B, C, and D, based on player 1 s

More information

An introduction on game theory for wireless networking [1]

An introduction on game theory for wireless networking [1] An introduction on game theory for wireless networking [1] Ning Zhang 14 May, 2012 [1] Game Theory in Wireless Networks: A Tutorial 1 Roadmap 1 Introduction 2 Static games 3 Extensive-form games 4 Summary

More information

CUR 412: Game Theory and its Applications Final Exam Ronaldo Carpio Jan. 13, 2015

CUR 412: Game Theory and its Applications Final Exam Ronaldo Carpio Jan. 13, 2015 CUR 41: Game Theory and its Applications Final Exam Ronaldo Carpio Jan. 13, 015 Instructions: Please write your name in English. This exam is closed-book. Total time: 10 minutes. There are 4 questions,

More information

Prisoner s dilemma with T = 1

Prisoner s dilemma with T = 1 REPEATED GAMES Overview Context: players (e.g., firms) interact with each other on an ongoing basis Concepts: repeated games, grim strategies Economic principle: repetition helps enforcing otherwise unenforceable

More information

Game Theory with Applications to Finance and Marketing, I

Game Theory with Applications to Finance and Marketing, I Game Theory with Applications to Finance and Marketing, I Homework 1, due in recitation on 10/18/2018. 1. Consider the following strategic game: player 1/player 2 L R U 1,1 0,0 D 0,0 3,2 Any NE can be

More information

(a) (5 points) Suppose p = 1. Calculate all the Nash Equilibria of the game. Do/es the equilibrium/a that you have found maximize social utility?

(a) (5 points) Suppose p = 1. Calculate all the Nash Equilibria of the game. Do/es the equilibrium/a that you have found maximize social utility? GAME THEORY EXAM (with SOLUTIONS) January 20 P P2 P3 P4 INSTRUCTIONS: Write your answers in the space provided immediately after each question. You may use the back of each page. The duration of this exam

More information

Problem 3 Solutions. l 3 r, 1

Problem 3 Solutions. l 3 r, 1 . Economic Applications of Game Theory Fall 00 TA: Youngjin Hwang Problem 3 Solutions. (a) There are three subgames: [A] the subgame starting from Player s decision node after Player s choice of P; [B]

More information

Francesco Nava Microeconomic Principles II EC202 Lent Term 2010

Francesco Nava Microeconomic Principles II EC202 Lent Term 2010 Answer Key Problem Set 1 Francesco Nava Microeconomic Principles II EC202 Lent Term 2010 Please give your answers to your class teacher by Friday of week 6 LT. If you not to hand in at your class, make

More information

Solution to Tutorial 1

Solution to Tutorial 1 Solution to Tutorial 1 011/01 Semester I MA464 Game Theory Tutor: Xiang Sun August 4, 011 1 Review Static means one-shot, or simultaneous-move; Complete information means that the payoff functions are

More information

Solution to Tutorial /2013 Semester I MA4264 Game Theory

Solution to Tutorial /2013 Semester I MA4264 Game Theory Solution to Tutorial 1 01/013 Semester I MA464 Game Theory Tutor: Xiang Sun August 30, 01 1 Review Static means one-shot, or simultaneous-move; Complete information means that the payoff functions are

More information

Econ 711 Homework 1 Solutions

Econ 711 Homework 1 Solutions Econ 711 Homework 1 s January 4, 014 1. 1 Symmetric, not complete, not transitive. Not a game tree. Asymmetric, not complete, transitive. Game tree. 1 Asymmetric, not complete, transitive. Not a game tree.

More information

AS/ECON 2350 S2 N Answers to Mid term Exam July time : 1 hour. Do all 4 questions. All count equally.

AS/ECON 2350 S2 N Answers to Mid term Exam July time : 1 hour. Do all 4 questions. All count equally. AS/ECON 2350 S2 N Answers to Mid term Exam July 2017 time : 1 hour Do all 4 questions. All count equally. Q1. Monopoly is inefficient because the monopoly s owner makes high profits, and the monopoly s

More information

Exercises Solutions: Game Theory

Exercises Solutions: Game Theory Exercises Solutions: Game Theory Exercise. (U, R).. (U, L) and (D, R). 3. (D, R). 4. (U, L) and (D, R). 5. First, eliminate R as it is strictly dominated by M for player. Second, eliminate M as it is strictly

More information

Answers to Problem Set 4

Answers to Problem Set 4 Answers to Problem Set 4 Economics 703 Spring 016 1. a) The monopolist facing no threat of entry will pick the first cost function. To see this, calculate profits with each one. With the first cost function,

More information

In the Name of God. Sharif University of Technology. Graduate School of Management and Economics

In the Name of God. Sharif University of Technology. Graduate School of Management and Economics In the Name of God Sharif University of Technology Graduate School of Management and Economics Microeconomics (for MBA students) 44111 (1393-94 1 st term) - Group 2 Dr. S. Farshad Fatemi Game Theory Game:

More information

Games of Incomplete Information ( 資訊不全賽局 ) Games of Incomplete Information

Games of Incomplete Information ( 資訊不全賽局 ) Games of Incomplete Information 1 Games of Incomplete Information ( 資訊不全賽局 ) Wang 2012/12/13 (Lecture 9, Micro Theory I) Simultaneous Move Games An Example One or more players know preferences only probabilistically (cf. Harsanyi, 1976-77)

More information

Answer Key: Problem Set 4

Answer Key: Problem Set 4 Answer Key: Problem Set 4 Econ 409 018 Fall A reminder: An equilibrium is characterized by a set of strategies. As emphasized in the class, a strategy is a complete contingency plan (for every hypothetical

More information

Exercises Solutions: Oligopoly

Exercises Solutions: Oligopoly Exercises Solutions: Oligopoly Exercise - Quantity competition 1 Take firm 1 s perspective Total revenue is R(q 1 = (4 q 1 q q 1 and, hence, marginal revenue is MR 1 (q 1 = 4 q 1 q Marginal cost is MC

More information

Notes for Section: Week 4

Notes for Section: Week 4 Economics 160 Professor Steven Tadelis Stanford University Spring Quarter, 2004 Notes for Section: Week 4 Notes prepared by Paul Riskind (pnr@stanford.edu). spot errors or have questions about these notes.

More information

Chapter 11: Dynamic Games and First and Second Movers

Chapter 11: Dynamic Games and First and Second Movers Chapter : Dynamic Games and First and Second Movers Learning Objectives Students should learn to:. Extend the reaction function ideas developed in the Cournot duopoly model to a model of sequential behavior

More information

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts 6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts Asu Ozdaglar MIT February 9, 2010 1 Introduction Outline Review Examples of Pure Strategy Nash Equilibria

More information

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Midterm #1, February 3, 2017 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By

More information

Elements of Economic Analysis II Lecture XI: Oligopoly: Cournot and Bertrand Competition

Elements of Economic Analysis II Lecture XI: Oligopoly: Cournot and Bertrand Competition Elements of Economic Analysis II Lecture XI: Oligopoly: Cournot and Bertrand Competition Kai Hao Yang /2/207 In this lecture, we will apply the concepts in game theory to study oligopoly. In short, unlike

More information

MIDTERM ANSWER KEY GAME THEORY, ECON 395

MIDTERM ANSWER KEY GAME THEORY, ECON 395 MIDTERM ANSWER KEY GAME THEORY, ECON 95 SPRING, 006 PROFESSOR A. JOSEPH GUSE () There are positions available with wages w and w. Greta and Mary each simultaneously apply to one of them. If they apply

More information

Noncooperative Oligopoly

Noncooperative Oligopoly Noncooperative Oligopoly Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j s actions affect firm i s profits Example: price war

More information

Today. Applications of NE and SPNE Auctions English Auction Second-Price Sealed-Bid Auction First-Price Sealed-Bid Auction

Today. Applications of NE and SPNE Auctions English Auction Second-Price Sealed-Bid Auction First-Price Sealed-Bid Auction Today Applications of NE and SPNE Auctions English Auction Second-Price Sealed-Bid Auction First-Price Sealed-Bid Auction 2 / 26 Auctions Used to allocate: Art Government bonds Radio spectrum Forms: Sequential

More information

Microeconomics of Banking: Lecture 5

Microeconomics of Banking: Lecture 5 Microeconomics of Banking: Lecture 5 Prof. Ronaldo CARPIO Oct. 23, 2015 Administrative Stuff Homework 2 is due next week. Due to the change in material covered, I have decided to change the grading system

More information

Advanced Microeconomic Theory EC104

Advanced Microeconomic Theory EC104 Advanced Microeconomic Theory EC104 Problem Set 1 1. Each of n farmers can costlessly produce as much wheat as she chooses. Suppose that the kth farmer produces W k, so that the total amount of what produced

More information

Simon Fraser University Fall Econ 302 D200 Final Exam Solution Instructor: Songzi Du Wednesday December 16, 2015, 8:30 11:30 AM

Simon Fraser University Fall Econ 302 D200 Final Exam Solution Instructor: Songzi Du Wednesday December 16, 2015, 8:30 11:30 AM Simon Fraser University Fall 2015 Econ 302 D200 Final Exam Solution Instructor: Songzi Du Wednesday December 16, 2015, 8:30 11:30 AM NE = Nash equilibrium, SPE = subgame perfect equilibrium, PBE = perfect

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002

Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002 Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002 P1. Consider the following game. There are two piles of matches and two players. The game starts with Player 1 and thereafter the players

More information

is the best response of firm 1 to the quantity chosen by firm 2. Firm 2 s problem: Max Π 2 = q 2 (a b(q 1 + q 2 )) cq 2

is the best response of firm 1 to the quantity chosen by firm 2. Firm 2 s problem: Max Π 2 = q 2 (a b(q 1 + q 2 )) cq 2 Econ 37 Solution: Problem Set # Fall 00 Page Oligopoly Market demand is p a bq Q q + q.. Cournot General description of this game: Players: firm and firm. Firm and firm are identical. Firm s strategies:

More information

1 x i c i if x 1 +x 2 > 0 u i (x 1,x 2 ) = 0 if x 1 +x 2 = 0

1 x i c i if x 1 +x 2 > 0 u i (x 1,x 2 ) = 0 if x 1 +x 2 = 0 Game Theory - Midterm Examination, Date: ctober 14, 017 Total marks: 30 Duration: 10:00 AM to 1:00 PM Note: Answer all questions clearly using pen. Please avoid unnecessary discussions. In all questions,

More information

14.12 Game Theory - Midterm I 10/13/2011

14.12 Game Theory - Midterm I 10/13/2011 14.1 Game Theory - Midterm I 10/13/011 Prof. Muhamet Yildiz Instructions. This is a closed book exam. You have 90 minutes. You need to show your workwhen it is needed. All questions have equal weights.

More information

ECON 803: MICROECONOMIC THEORY II Arthur J. Robson Fall 2016 Assignment 9 (due in class on November 22)

ECON 803: MICROECONOMIC THEORY II Arthur J. Robson Fall 2016 Assignment 9 (due in class on November 22) ECON 803: MICROECONOMIC THEORY II Arthur J. Robson all 2016 Assignment 9 (due in class on November 22) 1. Critique of subgame perfection. 1 Consider the following three-player sequential game. In the first

More information

Strategic Production Game 1

Strategic Production Game 1 Lec5-6.doc Strategic Production Game Consider two firms, which have to make production decisions without knowing what the other is doing. For simplicity we shall suppose that the product is essentially

More information

m 11 m 12 Non-Zero Sum Games Matrix Form of Zero-Sum Games R&N Section 17.6

m 11 m 12 Non-Zero Sum Games Matrix Form of Zero-Sum Games R&N Section 17.6 Non-Zero Sum Games R&N Section 17.6 Matrix Form of Zero-Sum Games m 11 m 12 m 21 m 22 m ij = Player A s payoff if Player A follows pure strategy i and Player B follows pure strategy j 1 Results so far

More information

M.Phil. Game theory: Problem set II. These problems are designed for discussions in the classes of Week 8 of Michaelmas term. 1

M.Phil. Game theory: Problem set II. These problems are designed for discussions in the classes of Week 8 of Michaelmas term. 1 M.Phil. Game theory: Problem set II These problems are designed for discussions in the classes of Week 8 of Michaelmas term.. Private Provision of Public Good. Consider the following public good game:

More information

Agenda. Game Theory Matrix Form of a Game Dominant Strategy and Dominated Strategy Nash Equilibrium Game Trees Subgame Perfection

Agenda. Game Theory Matrix Form of a Game Dominant Strategy and Dominated Strategy Nash Equilibrium Game Trees Subgame Perfection Game Theory 1 Agenda Game Theory Matrix Form of a Game Dominant Strategy and Dominated Strategy Nash Equilibrium Game Trees Subgame Perfection 2 Game Theory Game theory is the study of a set of tools that

More information

MA200.2 Game Theory II, LSE

MA200.2 Game Theory II, LSE MA200.2 Game Theory II, LSE Answers to Problem Set [] In part (i), proceed as follows. Suppose that we are doing 2 s best response to. Let p be probability that player plays U. Now if player 2 chooses

More information

Economics 171: Final Exam

Economics 171: Final Exam Question 1: Basic Concepts (20 points) Economics 171: Final Exam 1. Is it true that every strategy is either strictly dominated or is a dominant strategy? Explain. (5) No, some strategies are neither dominated

More information

Game Theory: Global Games. Christoph Schottmüller

Game Theory: Global Games. Christoph Schottmüller Game Theory: Global Games Christoph Schottmüller 1 / 20 Outline 1 Global Games: Stag Hunt 2 An investment example 3 Revision questions and exercises 2 / 20 Stag Hunt Example H2 S2 H1 3,3 3,0 S1 0,3 4,4

More information

that internalizes the constraint by solving to remove the y variable. 1. Using the substitution method, determine the utility function U( x)

that internalizes the constraint by solving to remove the y variable. 1. Using the substitution method, determine the utility function U( x) For the next two questions, the consumer s utility U( x, y) 3x y 4xy depends on the consumption of two goods x and y. Assume the consumer selects x and y to maximize utility subject to the budget constraint

More information

G5212: Game Theory. Mark Dean. Spring 2017

G5212: Game Theory. Mark Dean. Spring 2017 G5212: Game Theory Mark Dean Spring 2017 Bargaining We will now apply the concept of SPNE to bargaining A bit of background Bargaining is hugely interesting but complicated to model It turns out that the

More information

Simon Fraser University Spring 2014

Simon Fraser University Spring 2014 Simon Fraser University Spring 2014 Econ 302 D200 Final Exam Solution This brief solution guide does not have the explanations necessary for full marks. NE = Nash equilibrium, SPE = subgame perfect equilibrium,

More information

LECTURE NOTES ON GAME THEORY. Player 2 Cooperate Defect Cooperate (10,10) (-1,11) Defect (11,-1) (0,0)

LECTURE NOTES ON GAME THEORY. Player 2 Cooperate Defect Cooperate (10,10) (-1,11) Defect (11,-1) (0,0) LECTURE NOTES ON GAME THEORY September 11, 01 Introduction: So far we have considered models of perfect competition and monopoly which are the two polar extreme cases of market outcome. In models of monopoly,

More information

d. Find a competitive equilibrium for this economy. Is the allocation Pareto efficient? Are there any other competitive equilibrium allocations?

d. Find a competitive equilibrium for this economy. Is the allocation Pareto efficient? Are there any other competitive equilibrium allocations? Answers to Microeconomics Prelim of August 7, 0. Consider an individual faced with two job choices: she can either accept a position with a fixed annual salary of x > 0 which requires L x units of labor

More information

Introduction to Multi-Agent Programming

Introduction to Multi-Agent Programming Introduction to Multi-Agent Programming 10. Game Theory Strategic Reasoning and Acting Alexander Kleiner and Bernhard Nebel Strategic Game A strategic game G consists of a finite set N (the set of players)

More information

PAULI MURTO, ANDREY ZHUKOV

PAULI MURTO, ANDREY ZHUKOV GAME THEORY SOLUTION SET 1 WINTER 018 PAULI MURTO, ANDREY ZHUKOV Introduction For suggested solution to problem 4, last year s suggested solutions by Tsz-Ning Wong were used who I think used suggested

More information

CUR 412: Game Theory and its Applications, Lecture 9

CUR 412: Game Theory and its Applications, Lecture 9 CUR 412: Game Theory and its Applications, Lecture 9 Prof. Ronaldo CARPIO May 22, 2015 Announcements HW #3 is due next week. Ch. 6.1: Ultimatum Game This is a simple game that can model a very simplified

More information

G5212: Game Theory. Mark Dean. Spring 2017

G5212: Game Theory. Mark Dean. Spring 2017 G5212: Game Theory Mark Dean Spring 2017 Modelling Dynamics Up until now, our games have lacked any sort of dynamic aspect We have assumed that all players make decisions at the same time Or at least no

More information

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours YORK UNIVERSITY Faculty of Graduate Studies Final Examination December 14, 2010 Economics 5010 AF3.0 : Applied Microeconomics S. Bucovetsky time=2.5 hours Do any 6 of the following 10 questions. All count

More information

The Nash equilibrium of the stage game is (D, R), giving payoffs (0, 0). Consider the trigger strategies:

The Nash equilibrium of the stage game is (D, R), giving payoffs (0, 0). Consider the trigger strategies: Problem Set 4 1. (a). Consider the infinitely repeated game with discount rate δ, where the strategic fm below is the stage game: B L R U 1, 1 2, 5 A D 2, 0 0, 0 Sketch a graph of the players payoffs.

More information

PRISONER S DILEMMA. Example from P-R p. 455; also 476-7, Price-setting (Bertrand) duopoly Demand functions

PRISONER S DILEMMA. Example from P-R p. 455; also 476-7, Price-setting (Bertrand) duopoly Demand functions ECO 300 Fall 2005 November 22 OLIGOPOLY PART 2 PRISONER S DILEMMA Example from P-R p. 455; also 476-7, 481-2 Price-setting (Bertrand) duopoly Demand functions X = 12 2 P + P, X = 12 2 P + P 1 1 2 2 2 1

More information

Econ 414 Midterm Exam

Econ 414 Midterm Exam Econ 44 Midterm Exam Name: There are three questions taken from the material covered so far in the course. All questions are equally weighted. If you have a question, please raise your hand and I will

More information

In reality; some cases of prisoner s dilemma end in cooperation. Game Theory Dr. F. Fatemi Page 219

In reality; some cases of prisoner s dilemma end in cooperation. Game Theory Dr. F. Fatemi Page 219 Repeated Games Basic lesson of prisoner s dilemma: In one-shot interaction, individual s have incentive to behave opportunistically Leads to socially inefficient outcomes In reality; some cases of prisoner

More information

S 2,2-1, x c C x r, 1 0,0

S 2,2-1, x c C x r, 1 0,0 Problem Set 5 1. There are two players facing each other in the following random prisoners dilemma: S C S, -1, x c C x r, 1 0,0 With probability p, x c = y, and with probability 1 p, x c = 0. With probability

More information

preferences of the individual players over these possible outcomes, typically measured by a utility or payoff function.

preferences of the individual players over these possible outcomes, typically measured by a utility or payoff function. Leigh Tesfatsion 26 January 2009 Game Theory: Basic Concepts and Terminology A GAME consists of: a collection of decision-makers, called players; the possible information states of each player at each

More information

ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves

ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves University of Illinois Spring 01 ECE 586BH: Problem Set 5: Problems and Solutions Multistage games, including repeated games, with observed moves Due: Reading: Thursday, April 11 at beginning of class

More information

Economic Management Strategy: Hwrk 1. 1 Simultaneous-Move Game Theory Questions.

Economic Management Strategy: Hwrk 1. 1 Simultaneous-Move Game Theory Questions. Economic Management Strategy: Hwrk 1 1 Simultaneous-Move Game Theory Questions. 1.1 Chicken Lee and Spike want to see who is the bravest. To do so, they play a game called chicken. (Readers, don t try

More information

CS711: Introduction to Game Theory and Mechanism Design

CS711: Introduction to Game Theory and Mechanism Design CS711: Introduction to Game Theory and Mechanism Design Teacher: Swaprava Nath Domination, Elimination of Dominated Strategies, Nash Equilibrium Domination Normal form game N, (S i ) i N, (u i ) i N Definition

More information

Lecture 9: Basic Oligopoly Models

Lecture 9: Basic Oligopoly Models Lecture 9: Basic Oligopoly Models Managerial Economics November 16, 2012 Prof. Dr. Sebastian Rausch Centre for Energy Policy and Economics Department of Management, Technology and Economics ETH Zürich

More information

Microeconomics II. CIDE, MsC Economics. List of Problems

Microeconomics II. CIDE, MsC Economics. List of Problems Microeconomics II CIDE, MsC Economics List of Problems 1. There are three people, Amy (A), Bart (B) and Chris (C): A and B have hats. These three people are arranged in a room so that B can see everything

More information

Their opponent will play intelligently and wishes to maximize their own payoff.

Their opponent will play intelligently and wishes to maximize their own payoff. Two Person Games (Strictly Determined Games) We have already considered how probability and expected value can be used as decision making tools for choosing a strategy. We include two examples below for

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

ECONS 424 STRATEGY AND GAME THEORY MIDTERM EXAM #2 ANSWER KEY

ECONS 424 STRATEGY AND GAME THEORY MIDTERM EXAM #2 ANSWER KEY ECONS 44 STRATEGY AND GAE THEORY IDTER EXA # ANSWER KEY Exercise #1. Hawk-Dove game. Consider the following payoff matrix representing the Hawk-Dove game. Intuitively, Players 1 and compete for a resource,

More information

CHAPTER 15 Sequential rationality 1-1

CHAPTER 15 Sequential rationality 1-1 . CHAPTER 15 Sequential rationality 1-1 Sequential irrationality Industry has incumbent. Potential entrant chooses to go in or stay out. If in, incumbent chooses to accommodate (both get modest profits)

More information

Extensive-Form Games with Imperfect Information

Extensive-Form Games with Imperfect Information May 6, 2015 Example 2, 2 A 3, 3 C Player 1 Player 1 Up B Player 2 D 0, 0 1 0, 0 Down C Player 1 D 3, 3 Extensive-Form Games With Imperfect Information Finite No simultaneous moves: each node belongs to

More information

Microeconomic Theory III Final Exam March 18, 2010 (80 Minutes)

Microeconomic Theory III Final Exam March 18, 2010 (80 Minutes) 4. Microeconomic Theory III Final Exam March 8, (8 Minutes). ( points) This question assesses your understanding of expected utility theory. (a) In the following pair of games, check whether the players

More information

14.01 Principles of Microeconomics, Fall 2007 Chia-Hui Chen November 26, Lecture 28. Oligopoly

14.01 Principles of Microeconomics, Fall 2007 Chia-Hui Chen November 26, Lecture 28. Oligopoly Stackelberg.0 Principles of Microeconomics, Fall 2007 Chia-Hui Chen November 26, 2007 Lecture 28 Oligopoly Outline. Chap 2, 3: Stackelberg 2. Chap 2, 3: Bertr 3. Chap 2, 3: Prisoner s Dilemma In the discussion

More information

Lecture 5 Leadership and Reputation

Lecture 5 Leadership and Reputation Lecture 5 Leadership and Reputation Reputations arise in situations where there is an element of repetition, and also where coordination between players is possible. One definition of leadership is that

More information

MATH 4321 Game Theory Solution to Homework Two

MATH 4321 Game Theory Solution to Homework Two MATH 321 Game Theory Solution to Homework Two Course Instructor: Prof. Y.K. Kwok 1. (a) Suppose that an iterated dominance equilibrium s is not a Nash equilibrium, then there exists s i of some player

More information

When one firm considers changing its price or output level, it must make assumptions about the reactions of its rivals.

When one firm considers changing its price or output level, it must make assumptions about the reactions of its rivals. Chapter 3 Oligopoly Oligopoly is an industry where there are relatively few sellers. The product may be standardized (steel) or differentiated (automobiles). The firms have a high degree of interdependence.

More information

1 Solutions to Homework 3

1 Solutions to Homework 3 1 Solutions to Homework 3 1.1 163.1 (Nash equilibria of extensive games) 1. 164. (Subgames) Karl R E B H B H B H B H B H B H There are 6 proper subgames, beginning at every node where or chooses an action.

More information

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 More on strategic games and extensive games with perfect information Block 2 Jun 11, 2017 Auctions results Histogram of

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2017 These notes have been used and commented on before. If you can still spot any errors or have any suggestions for improvement, please

More information

Game Theory: Minimax, Maximin, and Iterated Removal Naima Hammoud

Game Theory: Minimax, Maximin, and Iterated Removal Naima Hammoud Game Theory: Minimax, Maximin, and Iterated Removal Naima Hammoud March 14, 17 Last Lecture: expected value principle Colin A B Rose A - - B - Suppose that Rose knows Colin will play ½ A + ½ B Rose s Expectations

More information

Microeconomics III. Oligopoly prefacetogametheory (Mar 11, 2012) School of Economics The Interdisciplinary Center (IDC), Herzliya

Microeconomics III. Oligopoly prefacetogametheory (Mar 11, 2012) School of Economics The Interdisciplinary Center (IDC), Herzliya Microeconomics III Oligopoly prefacetogametheory (Mar 11, 01) School of Economics The Interdisciplinary Center (IDC), Herzliya Oligopoly is a market in which only a few firms compete with one another,

More information

Economics 335 March 2, 1999 Notes 6: Game Theory

Economics 335 March 2, 1999 Notes 6: Game Theory Economics 335 March 2, 1999 Notes 6: Game Theory I. Introduction A. Idea of Game Theory Game theory analyzes interactions between rational, decision-making individuals who may not be able to predict fully

More information

PAULI MURTO, ANDREY ZHUKOV. If any mistakes or typos are spotted, kindly communicate them to

PAULI MURTO, ANDREY ZHUKOV. If any mistakes or typos are spotted, kindly communicate them to GAME THEORY PROBLEM SET 1 WINTER 2018 PAULI MURTO, ANDREY ZHUKOV Introduction If any mistakes or typos are spotted, kindly communicate them to andrey.zhukov@aalto.fi. Materials from Osborne and Rubinstein

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 2 1. Consider a zero-sum game, where

More information

Introduction to Game Theory

Introduction to Game Theory Introduction to Game Theory Part 2. Dynamic games of complete information Chapter 1. Dynamic games of complete and perfect information Ciclo Profissional 2 o Semestre / 2011 Graduação em Ciências Econômicas

More information

Overuse of a Common Resource: A Two-player Example

Overuse of a Common Resource: A Two-player Example Overuse of a Common Resource: A Two-player Example There are two fishermen who fish a common fishing ground a lake, for example Each can choose either x i = 1 (light fishing; for example, use one boat),

More information

Finitely repeated simultaneous move game.

Finitely repeated simultaneous move game. Finitely repeated simultaneous move game. Consider a normal form game (simultaneous move game) Γ N which is played repeatedly for a finite (T )number of times. The normal form game which is played repeatedly

More information

Université du Maine Théorie des Jeux Yves Zenou Correction de l examen du 16 décembre 2013 (1 heure 30)

Université du Maine Théorie des Jeux Yves Zenou Correction de l examen du 16 décembre 2013 (1 heure 30) Université du Maine Théorie des Jeux Yves Zenou Correction de l examen du 16 décembre 2013 (1 heure 30) Problem (1) (8 points) Consider the following lobbying game between two firms. Each firm may lobby

More information

MIDTERM 1 SOLUTIONS 10/16/2008

MIDTERM 1 SOLUTIONS 10/16/2008 4. Game Theory MIDTERM SOLUTIONS 0/6/008 Prof. Casey Rothschild Instructions. Thisisanopenbookexam; you canuse anywritten material. You mayuse a calculator. You may not use a computer or any electronic

More information

ECONS 424 STRATEGY AND GAME THEORY HANDOUT ON PERFECT BAYESIAN EQUILIBRIUM- III Semi-Separating equilibrium

ECONS 424 STRATEGY AND GAME THEORY HANDOUT ON PERFECT BAYESIAN EQUILIBRIUM- III Semi-Separating equilibrium ECONS 424 STRATEGY AND GAME THEORY HANDOUT ON PERFECT BAYESIAN EQUILIBRIUM- III Semi-Separating equilibrium Let us consider the following sequential game with incomplete information. Two players are playing

More information

Game Theory: Additional Exercises

Game Theory: Additional Exercises Game Theory: Additional Exercises Problem 1. Consider the following scenario. Players 1 and 2 compete in an auction for a valuable object, for example a painting. Each player writes a bid in a sealed envelope,

More information

In the Name of God. Sharif University of Technology. Microeconomics 2. Graduate School of Management and Economics. Dr. S.

In the Name of God. Sharif University of Technology. Microeconomics 2. Graduate School of Management and Economics. Dr. S. In the Name of God Sharif University of Technology Graduate School of Management and Economics Microeconomics 2 44706 (1394-95 2 nd term) - Group 2 Dr. S. Farshad Fatemi Chapter 8: Simultaneous-Move Games

More information

Strategy -1- Strategy

Strategy -1- Strategy Strategy -- Strategy A Duopoly, Cournot equilibrium 2 B Mixed strategies: Rock, Scissors, Paper, Nash equilibrium 5 C Games with private information 8 D Additional exercises 24 25 pages Strategy -2- A

More information

Math 135: Answers to Practice Problems

Math 135: Answers to Practice Problems Math 35: Answers to Practice Problems Answers to problems from the textbook: Many of the problems from the textbook have answers in the back of the book. Here are the answers to the problems that don t

More information

Copyright 2008, Yan Chen

Copyright 2008, Yan Chen Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution Non-Commercial 3.0 License. http://creativecommons.org/licenses/by-nc/3.0/ Copyright 2008, Yan

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 3 1. Consider the following strategic

More information

Introduction to Game Theory

Introduction to Game Theory Chapter G Notes 1 Epstein, 2013 Introduction to Game Theory G.1 Decision Making Game theory is a mathematical model that provides a atic way to deal with decisions under circumstances where the alternatives

More information

The Ohio State University Department of Economics Econ 601 Prof. James Peck Extra Practice Problems Answers (for final)

The Ohio State University Department of Economics Econ 601 Prof. James Peck Extra Practice Problems Answers (for final) The Ohio State University Department of Economics Econ 601 Prof. James Peck Extra Practice Problems Answers (for final) Watson, Chapter 15, Exercise 1(part a). Looking at the final subgame, player 1 must

More information

Regret Minimization and Security Strategies

Regret Minimization and Security Strategies Chapter 5 Regret Minimization and Security Strategies Until now we implicitly adopted a view that a Nash equilibrium is a desirable outcome of a strategic game. In this chapter we consider two alternative

More information

Iterated Dominance and Nash Equilibrium

Iterated Dominance and Nash Equilibrium Chapter 11 Iterated Dominance and Nash Equilibrium In the previous chapter we examined simultaneous move games in which each player had a dominant strategy; the Prisoner s Dilemma game was one example.

More information