Hedging volumetric risks using put options in commodity markets

Size: px
Start display at page:

Download "Hedging volumetric risks using put options in commodity markets"

Transcription

1 Hedging volumetric risks using put options in commodity markets Alexander Kulikov joint work with Andrey Selivanov Gazprom Export LLC Moscow Institute of Physics and Technology

2 Outline Definitions and motivation NA approach and Tail approaches Case of constant volume and solution of different optimization problems Example for random volume

3 Suppose that our income is VS, V random volume, S random price.

4 Suppose that our income is VS, V random volume, S random price. Motivation: how to choose hedge with value function g(s) such that X = VS + g(s) is optimal, i.e.

5 Suppose that our income is VS, V random volume, S random price. Motivation: how to choose hedge with value function g(s) such that X = VS + g(s) is optimal, i.e. U(X ) max, U utility function; EX ασ(x ) max; VaR(X ) min (ess inf X max).

6

7 Value function of optimal hedge g(p) in the case of utility maximization ([OD06]) using CARA and joint lognormal distribution:

8 Distribution of income X in presence of hedge ([OD06]):

9 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Hedging using put options, and Tail

10 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Let us hedge using buying a number of put options. So the income of our portfolio will be as follows: Questions: X = VS + h((k S) + P(K)), h 0. how to maximize ), )? optimal h? optimal K? optimal pair (h, K)?

11 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Definition 2.1. ([?]) Suppose λ (0, 1]. Consider the set { D λ = Q : dq } dp 1/λ. Let us construct the function u λ (X ) = inf Q D λ E Q X, X L 0. This is a coherent utility function. The corresponding coherent risk measure is called Tail V@R of level λ.

12 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Suppose V 1 and S has lognormal distribution. Then due to [V11] we have that the optimal h for the fixed K is as follows: h (K) =, λ > Φ(ln(K P(K))), h (K) = 1, λ min(φ(ln(k P(K))), Φ(ln K) Φ(ln(K P(K)))). Theorem 2.4. Suppose h 0. Also suppose that here and further NA condition is fulfilled for the model with options. Then there exists λ 0 > 0 such that for λ < λ 0 the optimal hedge is as follows: (h, K ) = (1, ). So in this case it is optimal to sell the forward on basic asset.

13 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Suppose h 0. Suppose V 1 and S U[0, 1]. Solution for the fixed K is as follows:

14 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume As a result we have that for λ min(1 K P(K 0 ), 1 P(1), P(1)), where the optimal hedge is as follows: K 0 : P (K 0 ) = 1/2, (h, K ) = (1, 1), q λ = 1 P(1). So in this case it is optimal to sell the forward on basic asset.

15 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Theorems and conclusions

16 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Theorem 3.1. Suppose V is a nonnegative random variable and S is a random variable such that for all x supps we have that (x, ess inf V ) supp(s, V ). Then for all K and for measure of risk essential infinum we have the optimal hedge as follows: h (K) = ess inf V, ess inf X (K) = K P(K). And also we have that the optimal K = ess sup S. So in this case it is optimal to sell the infinum number of forwards on basic asset.

17 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Theorem 3.2. Suppose V is a nonnegative random variable such that P(V = ess inf V ) > 0 and S is a random variable such that supps = supp(s V = ess inf V ) Then for all K there exists λ 0 such that for λ < λ 0 the optimal hedge is as follows: h = ess inf V, ess inf X (K) = K P(K). And also we have λ 0 such that for λ < λ 0 the optimal K = ess sup S. So in this case it is optimal to sell the infinum number of forwards on basic asset.

18 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Example with random volume

19 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume Consider the following example: Let V U[1, b], S U[0, 1] and they are independent. Then due to the Theorem 3.1. we have that for all K and for measure of risk essential infinum we have the optimal hedge as follows: h (K) = ess inf V, ess inf X (K) = K P(K). And also we have that the optimal K = 1. So in this case it is optimal to sell the infinum number of forwards on basic asset. Let us for fixed K define λ(k)(a, h) = P(VS + h((k S) + P(K)) a).

20 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume The picture for λ(k)(a, h)

21 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume The picture for λ(k)(a 0, h) for small a 0 K P(K) is as follows: So for λ = λ 0, q λ (h) = a 0, h = h 0 1.

22 Case of constant volume and lognormal distribution Case of constant volume and uniform distribution Theorems Random volume The picture for λ(k)(a 1, h) for large a is as follows: So for λ = λ 1, q λ (h) = a 1, h =.

23 Results Hedging using put options: under investigation. options with different K s: X = VS + i h i ((K i S) + C(K i ))

24 Results Hedging using put options: under investigation. options with different K s: X = VS + i h i ((K i S) + C(K i )) position with some assets: X = V (S 1 + S 2 ) + i h i ((K i S i ) + C i (K i )) importance of the choice of K i : P(S i < q i ) = 1% P(S 1 < q 1, S 2 < q 2 ) 0.1% options on sum S1 + S 2

25 Results Hedging using put options: under investigation. options with different K s: X = VS + i h i ((K i S) + C(K i )) position with some assets: X = V (S 1 + S 2 ) + i h i ((K i S i ) + C i (K i )) importance of the choice of K i : P(S i < q i ) = 1% P(S 1 < q 1, S 2 < q 2 ) 0.1% options on sum S1 + S 2 hedging using expected shortfall.

26 Results Various optimization problems for hedging quantity risk. Hedging using and put options in the case of non random volume. Some results and theorems for non random case. Example of random volume and numeric and graphical solutions for hedging quantity risk in this case (there are nontrivial ones).

27 Results Thank you for your attention

28 Results Artzner P., Delbaen F., Eber J.-M., Heath D. Thinking coherently. Risk, 10 (1997), No. 11, p Y. Oum, S. Oren, S. Deng. with standard power options in a competitive wholesale electricity market. Naval Res. Logist. 53 (2006), No. 7, p N. Valedinskaya. Value at risk minimization for a model with options and volumetric risk. Diploma project at Moscow State University in 2010/11.

Optimal Portfolio Liquidation with Dynamic Coherent Risk

Optimal Portfolio Liquidation with Dynamic Coherent Risk Optimal Portfolio Liquidation with Dynamic Coherent Risk Andrey Selivanov 1 Mikhail Urusov 2 1 Moscow State University and Gazprom Export 2 Ulm University Analysis, Stochastics, and Applications. A Conference

More information

Optimizing S-shaped utility and risk management

Optimizing S-shaped utility and risk management Optimizing S-shaped utility and risk management Ineffectiveness of VaR and ES constraints John Armstrong (KCL), Damiano Brigo (Imperial) Quant Summit March 2018 Are ES constraints effective against rogue

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

Supply Contracts with Financial Hedging

Supply Contracts with Financial Hedging Supply Contracts with Financial Hedging René Caldentey Martin Haugh Stern School of Business NYU Integrated Risk Management in Operations and Global Supply Chain Management: Risk, Contracts and Insurance

More information

Risk Measures, Stochastic Orders and Comonotonicity

Risk Measures, Stochastic Orders and Comonotonicity Risk Measures, Stochastic Orders and Comonotonicity Jan Dhaene Risk Measures, Stochastic Orders and Comonotonicity p. 1/50 Sums of r.v. s Many problems in risk theory involve sums of r.v. s: S = X 1 +

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Mean-variance analysis 1/ 51 Introduction How does one optimally choose among multiple risky assets? Due to diversi cation, which depends on assets return covariances, the attractiveness

More information

A generalized coherent risk measure: The firm s perspective

A generalized coherent risk measure: The firm s perspective Finance Research Letters 2 (2005) 23 29 www.elsevier.com/locate/frl A generalized coherent risk measure: The firm s perspective Robert A. Jarrow a,b,, Amiyatosh K. Purnanandam c a Johnson Graduate School

More information

Risk Measures for Derivative Securities: From a Yin-Yang Approach to Aerospace Space

Risk Measures for Derivative Securities: From a Yin-Yang Approach to Aerospace Space Risk Measures for Derivative Securities: From a Yin-Yang Approach to Aerospace Space Tak Kuen Siu Department of Applied Finance and Actuarial Studies, Faculty of Business and Economics, Macquarie University,

More information

The homework is due on Wednesday, September 7. Each questions is worth 0.8 points. No partial credits.

The homework is due on Wednesday, September 7. Each questions is worth 0.8 points. No partial credits. Homework : Econ500 Fall, 0 The homework is due on Wednesday, September 7. Each questions is worth 0. points. No partial credits. For the graphic arguments, use the graphing paper that is attached. Clearly

More information

Optimizing S-shaped utility and risk management: ineffectiveness of VaR and ES constraints

Optimizing S-shaped utility and risk management: ineffectiveness of VaR and ES constraints Optimizing S-shaped utility and risk management: ineffectiveness of VaR and ES constraints John Armstrong Dept. of Mathematics King s College London Joint work with Damiano Brigo Dept. of Mathematics,

More information

Risk Measures and Optimal Risk Transfers

Risk Measures and Optimal Risk Transfers Risk Measures and Optimal Risk Transfers Université de Lyon 1, ISFA April 23 2014 Tlemcen - CIMPA Research School Motivations Study of optimal risk transfer structures, Natural question in Reinsurance.

More information

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals A. Eichhorn and W. Römisch Humboldt-University Berlin, Department of Mathematics, Germany http://www.math.hu-berlin.de/~romisch

More information

Notes on Dixit-Stiglitz Size Distribution Model Econ 8601

Notes on Dixit-Stiglitz Size Distribution Model Econ 8601 Notes on Dixit-Stiglitz Size Distribution Model Econ 86. Model Consider the following partial equilibrium model of an industry. The final good in the industry is a composite of differentiated products.

More information

Guarantee valuation in Notional Defined Contribution pension systems

Guarantee valuation in Notional Defined Contribution pension systems Guarantee valuation in Notional Defined Contribution pension systems Jennifer Alonso García (joint work with Pierre Devolder) Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA) Université

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

A class of coherent risk measures based on one-sided moments

A class of coherent risk measures based on one-sided moments A class of coherent risk measures based on one-sided moments T. Fischer Darmstadt University of Technology November 11, 2003 Abstract This brief paper explains how to obtain upper boundaries of shortfall

More information

Kim Weston (Carnegie Mellon University) Market Stability and Indifference Prices. 1st Eastern Conference on Mathematical Finance.

Kim Weston (Carnegie Mellon University) Market Stability and Indifference Prices. 1st Eastern Conference on Mathematical Finance. 1st Eastern Conference on Mathematical Finance March 216 Based on Stability of Utility Maximization in Nonequivalent Markets, Finance & Stochastics (216) Basic Problem Consider a financial market consisting

More information

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

LECTURE 4: BID AND ASK HEDGING

LECTURE 4: BID AND ASK HEDGING LECTURE 4: BID AND ASK HEDGING 1. Introduction One of the consequences of incompleteness is that the price of derivatives is no longer unique. Various strategies for dealing with this exist, but a useful

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

Capital Allocation Principles

Capital Allocation Principles Capital Allocation Principles Maochao Xu Department of Mathematics Illinois State University mxu2@ilstu.edu Capital Dhaene, et al., 2011, Journal of Risk and Insurance The level of the capital held by

More information

Indices of Acceptability as Performance Measures. Dilip B. Madan Robert H. Smith School of Business

Indices of Acceptability as Performance Measures. Dilip B. Madan Robert H. Smith School of Business Indices of Acceptability as Performance Measures Dilip B. Madan Robert H. Smith School of Business An Introduction to Conic Finance A Mini Course at Eurandom January 13 2011 Outline Operationally defining

More information

Instantaneous rate of change (IRC) at the point x Slope of tangent

Instantaneous rate of change (IRC) at the point x Slope of tangent CHAPTER 2: Differentiation Do not study Sections 2.1 to 2.3. 2.4 Rates of change Rate of change (RC) = Two types Average rate of change (ARC) over the interval [, ] Slope of the line segment Instantaneous

More information

Inventory Analysis and Management. Single-Period Stochastic Models

Inventory Analysis and Management. Single-Period Stochastic Models Single-Period Stochastic Models 61 Newsvendor Models: Optimality of the Base-Stock Policy A newsvendor problem is a single-period stochastic inventory problem First assume that there is no initial inventory,

More information

arxiv:math/ v1 [math.pr] 2 May 2006

arxiv:math/ v1 [math.pr] 2 May 2006 CAPM, REWARDS, AND EMPIRICAL ASSET PRICING WITH COHERENT RISK Alexander S. Cherny, Dilip B. Madan arxiv:math/0605065v [math.pr] 2 May 2006 Moscow State University Faculty of Mechanics and Mathematics Department

More information

Optimal Investment with Deferred Capital Gains Taxes

Optimal Investment with Deferred Capital Gains Taxes Optimal Investment with Deferred Capital Gains Taxes A Simple Martingale Method Approach Frank Thomas Seifried University of Kaiserslautern March 20, 2009 F. Seifried (Kaiserslautern) Deferred Capital

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 5 Discrete Probability Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap 5-1 Learning

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 8 The portfolio selection problem The portfolio

More information

Financial Economics 4: Portfolio Theory

Financial Economics 4: Portfolio Theory Financial Economics 4: Portfolio Theory Stefano Lovo HEC, Paris What is a portfolio? Definition A portfolio is an amount of money invested in a number of financial assets. Example Portfolio A is worth

More information

2 The binomial pricing model

2 The binomial pricing model 2 The binomial pricing model 2. Options and other derivatives A derivative security is a financial contract whose value depends on some underlying asset like stock, commodity (gold, oil) or currency. The

More information

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Ross Baldick Copyright c 2016 Ross Baldick www.ece.utexas.edu/ baldick/classes/394v/ee394v.html Title Page 1 of 33

More information

Answer Key for M. A. Economics Entrance Examination 2017 (Main version)

Answer Key for M. A. Economics Entrance Examination 2017 (Main version) Answer Key for M. A. Economics Entrance Examination 2017 (Main version) July 4, 2017 1. Person A lexicographically prefers good x to good y, i.e., when comparing two bundles of x and y, she strictly prefers

More information

Pricing and hedging in incomplete markets

Pricing and hedging in incomplete markets Pricing and hedging in incomplete markets Chapter 10 From Chapter 9: Pricing Rules: Market complete+nonarbitrage= Asset prices The idea is based on perfect hedge: H = V 0 + T 0 φ t ds t + T 0 φ 0 t ds

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Presentation, Interpretation, and Use of Stress Test Results

Presentation, Interpretation, and Use of Stress Test Results Presentation, Interpretation, and Use of Thomas Breuer thomas.breuer@fhv.at Advanced Stress Testing Techniques RISK Training London, 18 May, 2007 Agenda Action triggered Value at Risk is not coherent Bank

More information

Universal Portfolios

Universal Portfolios CS28B/Stat24B (Spring 2008) Statistical Learning Theory Lecture: 27 Universal Portfolios Lecturer: Peter Bartlett Scribes: Boriska Toth and Oriol Vinyals Portfolio optimization setting Suppose we have

More information

RISK MINIMIZING PORTFOLIO OPTIMIZATION AND HEDGING WITH CONDITIONAL VALUE-AT-RISK

RISK MINIMIZING PORTFOLIO OPTIMIZATION AND HEDGING WITH CONDITIONAL VALUE-AT-RISK RISK MINIMIZING PORTFOLIO OPTIMIZATION AND HEDGING WITH CONDITIONAL VALUE-AT-RISK by Jing Li A dissertation submitted to the faculty of the University of North Carolina at Charlotte in partial fulfillment

More information

Risk measures: Yet another search of a holy grail

Risk measures: Yet another search of a holy grail Risk measures: Yet another search of a holy grail Dirk Tasche Financial Services Authority 1 dirk.tasche@gmx.net Mathematics of Financial Risk Management Isaac Newton Institute for Mathematical Sciences

More information

1 Economical Applications

1 Economical Applications WEEK 4 Reading [SB], 3.6, pp. 58-69 1 Economical Applications 1.1 Production Function A production function y f(q) assigns to amount q of input the corresponding output y. Usually f is - increasing, that

More information

The mathematical definitions are given on screen.

The mathematical definitions are given on screen. Text Lecture 3.3 Coherent measures of risk and back- testing Dear all, welcome back. In this class we will discuss one of the main drawbacks of Value- at- Risk, that is to say the fact that the VaR, as

More information

Optimization Models in Financial Mathematics

Optimization Models in Financial Mathematics Optimization Models in Financial Mathematics John R. Birge Northwestern University www.iems.northwestern.edu/~jrbirge Illinois Section MAA, April 3, 2004 1 Introduction Trends in financial mathematics

More information

1 Optimal Taxation of Labor Income

1 Optimal Taxation of Labor Income 1 Optimal Taxation of Labor Income Until now, we have assumed that government policy is exogenously given, so the government had a very passive role. Its only concern was balancing the intertemporal budget.

More information

Lecture 7: Ex-ante Vs Ex-post Contracts

Lecture 7: Ex-ante Vs Ex-post Contracts Lecture 7: Ex-ante Vs Ex-post Contracts Ram Singh Department of Economics February 4, 2015 Ram Singh (Delhi School of Economics) Adverse Selection February 4, 2015 1 / 12 Ex-ante contracting with risk

More information

Using Stress Test Results

Using Stress Test Results Using Stress Test Thomas Breuer thomas.breuer@fhv.at Advanced Stress Testing Techniques Risk Training London, 25 April, 2006 Agenda Action triggered Risk Risk of a portfolio is determined by its profit/loss

More information

Practice Exam Questions 2

Practice Exam Questions 2 Practice Exam Questions 2 1. There is a household who maximizes discounted utility u(c 1 )+δu(c 2 ) and faces budget constraints, w = L+s+c 1 and rl+s = c 2, where c 1 is consumption in period 1 and c

More information

Why Bankers Should Learn Convex Analysis

Why Bankers Should Learn Convex Analysis Jim Zhu Western Michigan University Kalamazoo, Michigan, USA March 3, 2011 A tale of two financial economists Edward O. Thorp and Myron Scholes Influential works: Beat the Dealer(1962) and Beat the Market(1967)

More information

ADVANCED OPERATIONAL RISK MODELLING IN BANKS AND INSURANCE COMPANIES

ADVANCED OPERATIONAL RISK MODELLING IN BANKS AND INSURANCE COMPANIES Small business banking and financing: a global perspective Cagliari, 25-26 May 2007 ADVANCED OPERATIONAL RISK MODELLING IN BANKS AND INSURANCE COMPANIES C. Angela, R. Bisignani, G. Masala, M. Micocci 1

More information

COMP331/557. Chapter 6: Optimisation in Finance: Cash-Flow. (Cornuejols & Tütüncü, Chapter 3)

COMP331/557. Chapter 6: Optimisation in Finance: Cash-Flow. (Cornuejols & Tütüncü, Chapter 3) COMP331/557 Chapter 6: Optimisation in Finance: Cash-Flow (Cornuejols & Tütüncü, Chapter 3) 159 Cash-Flow Management Problem A company has the following net cash flow requirements (in 1000 s of ): Month

More information

Modeling Flexibilities in Power Purchase Agreements: a Real Option Approach

Modeling Flexibilities in Power Purchase Agreements: a Real Option Approach Modeling Flexibilities in Power Purchase Agreements: a Real Option Approach Rafael Igrejas a,*, Leonardo Lima Gomes a, Luiz E. Brandão a. Abstract Power purchase and sale contracts in Brazil, have been

More information

Robust Portfolio Choice and Indifference Valuation

Robust Portfolio Choice and Indifference Valuation and Indifference Valuation Mitja Stadje Dep. of Econometrics & Operations Research Tilburg University joint work with Roger Laeven July, 2012 http://alexandria.tue.nl/repository/books/733411.pdf Setting

More information

Optimal Incentive Contract with Costly and Flexible Monitoring

Optimal Incentive Contract with Costly and Flexible Monitoring Optimal Incentive Contract with Costly and Flexible Monitoring Anqi Li 1 Ming Yang 2 1 Department of Economics, Washington University in St. Louis 2 Fuqua School of Business, Duke University January 2016

More information

Answers to June 11, 2012 Microeconomics Prelim

Answers to June 11, 2012 Microeconomics Prelim Answers to June, Microeconomics Prelim. Consider an economy with two consumers, and. Each consumer consumes only grapes and wine and can use grapes as an input to produce wine. Grapes used as input cannot

More information

Allocation of Risk Capital via Intra-Firm Trading

Allocation of Risk Capital via Intra-Firm Trading Allocation of Risk Capital via Intra-Firm Trading Sean Hilden Department of Mathematical Sciences Carnegie Mellon University December 5, 2005 References 1. Artzner, Delbaen, Eber, Heath: Coherent Measures

More information

Statistical Methods in Financial Risk Management

Statistical Methods in Financial Risk Management Statistical Methods in Financial Risk Management Lecture 1: Mapping Risks to Risk Factors Alexander J. McNeil Maxwell Institute of Mathematical Sciences Heriot-Watt University Edinburgh 2nd Workshop on

More information

Optimal Investment for Worst-Case Crash Scenarios

Optimal Investment for Worst-Case Crash Scenarios Optimal Investment for Worst-Case Crash Scenarios A Martingale Approach Frank Thomas Seifried Department of Mathematics, University of Kaiserslautern June 23, 2010 (Bachelier 2010) Worst-Case Portfolio

More information

Optimal investment and contingent claim valuation in illiquid markets

Optimal investment and contingent claim valuation in illiquid markets and contingent claim valuation in illiquid markets Teemu Pennanen King s College London Ari-Pekka Perkkiö Technische Universität Berlin 1 / 35 In most models of mathematical finance, there is at least

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Managing Default Contagion in Financial Networks

Managing Default Contagion in Financial Networks Managing Default Contagion in Financial Networks Nils Detering University of California, Santa Barbara with Thilo Meyer-Brandis, Konstantinos Panagiotou, Daniel Ritter (all LMU) CFMAR 10th Anniversary

More information

Measures of Contribution for Portfolio Risk

Measures of Contribution for Portfolio Risk X Workshop on Quantitative Finance Milan, January 29-30, 2009 Agenda Coherent Measures of Risk Spectral Measures of Risk Capital Allocation Euler Principle Application Risk Measurement Risk Attribution

More information

Capital requirements, market, credit, and liquidity risk

Capital requirements, market, credit, and liquidity risk Capital requirements, market, credit, and liquidity risk Ernst Eberlein Department of Mathematical Stochastics and Center for Data Analysis and (FDM) University of Freiburg Joint work with Dilip Madan

More information

MESURES DE RISQUE DYNAMIQUES DYNAMIC RISK MEASURES

MESURES DE RISQUE DYNAMIQUES DYNAMIC RISK MEASURES from BMO martingales MESURES DE RISQUE DYNAMIQUES DYNAMIC RISK MEASURES CNRS - CMAP Ecole Polytechnique March 1, 2007 1/ 45 OUTLINE from BMO martingales 1 INTRODUCTION 2 DYNAMIC RISK MEASURES Time Consistency

More information

based on two joint papers with Sara Biagini Scuola Normale Superiore di Pisa, Università degli Studi di Perugia

based on two joint papers with Sara Biagini Scuola Normale Superiore di Pisa, Università degli Studi di Perugia Marco Frittelli Università degli Studi di Firenze Winter School on Mathematical Finance January 24, 2005 Lunteren. On Utility Maximization in Incomplete Markets. based on two joint papers with Sara Biagini

More information

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria Asymmetric Information: Walrasian Equilibria and Rational Expectations Equilibria 1 Basic Setup Two periods: 0 and 1 One riskless asset with interest rate r One risky asset which pays a normally distributed

More information

Multi-period mean variance asset allocation: Is it bad to win the lottery?

Multi-period mean variance asset allocation: Is it bad to win the lottery? Multi-period mean variance asset allocation: Is it bad to win the lottery? Peter Forsyth 1 D.M. Dang 1 1 Cheriton School of Computer Science University of Waterloo Guangzhou, July 28, 2014 1 / 29 The Basic

More information

Section 3.1 Relative extrema and intervals of increase and decrease.

Section 3.1 Relative extrema and intervals of increase and decrease. Section 3.1 Relative extrema and intervals of increase and decrease. 4 3 Problem 1: Consider the function: f ( x) x 8x 400 Obtain the graph of this function on your graphing calculator using [-10, 10]

More information

Optimizing Portfolios

Optimizing Portfolios Optimizing Portfolios An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Investors may wish to adjust the allocation of financial resources including a mixture

More information

A new approach for valuing a portfolio of illiquid assets

A new approach for valuing a portfolio of illiquid assets PRIN Conference Stochastic Methods in Finance Torino - July, 2008 A new approach for valuing a portfolio of illiquid assets Giacomo Scandolo - Università di Firenze Carlo Acerbi - AbaxBank Milano Liquidity

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

Optimal Static Hedging of Currency Risk Using FX Forwards

Optimal Static Hedging of Currency Risk Using FX Forwards GJMS Special Issue for Recent Advances in Mathematical Sciences and Applications-13 GJMS Vol 2. 2 11 18 Optimal Static Hedging of Currency Risk Using FX Forwards Anil Bhatia 1, Sanjay Bhat 2, and Vijaysekhar

More information

COHERENT VAR-TYPE MEASURES. 1. VaR cannot be used for calculating diversification

COHERENT VAR-TYPE MEASURES. 1. VaR cannot be used for calculating diversification COHERENT VAR-TYPE MEASURES GRAEME WEST 1. VaR cannot be used for calculating diversification If f is a risk measure, the diversification benefit of aggregating portfolio s A and B is defined to be (1)

More information

Regime-dependent robust risk measures with application in portfolio selection

Regime-dependent robust risk measures with application in portfolio selection Regime-dependent robust risk measures Regime-dependent robust risk measures with application in portfolio selection, P.R.China TEL:86-29-82663741, E-mail: zchen@mail.xjtu.edu.cn (Joint work with Jia Liu)

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Setting Up Linear Programming Problems

Setting Up Linear Programming Problems Setting Up Linear Programming Problems A company produces handmade skillets in two sizes, big and giant. To produce one big skillet requires 3 lbs of iron and 6 minutes of labor. To produce one giant skillet

More information

Microeconomics I - Midterm

Microeconomics I - Midterm Microeconomics I - Midterm Undergraduate Degree in Business Administration and Economics April 11, 2013-2 hours Catarina Reis Marta Francisco, Francisca Rebelo, João Sousa Please answer each group in a

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

Uncertain Covariance Models

Uncertain Covariance Models Uncertain Covariance Models RISK FORECASTS THAT KNOW HOW ACCURATE THEY ARE AND WHERE AU G 1 8, 2 0 1 5 Q WA FA F E W B O S TO N A N I S H R. S H A H, C FA A N I S H R S @ I N V E S T M E N TG R A D E M

More information

Lecture 3 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia.

Lecture 3 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia. Principles and Lecture 3 of 4-part series Spring School on Risk, Insurance and Finance European University at St. Petersburg, Russia 2-4 April 2012 University of Connecticut, USA page 1 Outline 1 2 3 4

More information

Risk Aggregation with Dependence Uncertainty

Risk Aggregation with Dependence Uncertainty Risk Aggregation with Dependence Uncertainty Carole Bernard (Grenoble Ecole de Management) Hannover, Current challenges in Actuarial Mathematics November 2015 Carole Bernard Risk Aggregation with Dependence

More information

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008 (presentation follows Thomas Ferguson s and Applications) November 6, 2008 1 / 35 Contents: Introduction Problems Markov Models Monotone Stopping Problems Summary 2 / 35 The Secretary problem You have

More information

On Utility Based Pricing of Contingent Claims in Incomplete Markets

On Utility Based Pricing of Contingent Claims in Incomplete Markets On Utility Based Pricing of Contingent Claims in Incomplete Markets J. Hugonnier 1 D. Kramkov 2 W. Schachermayer 3 March 5, 2004 1 HEC Montréal and CIRANO, 3000 Chemin de la Côte S te Catherine, Montréal,

More information

Portfolio optimization problem with default risk

Portfolio optimization problem with default risk Portfolio optimization problem with default risk M.Mazidi, A. Delavarkhalafi, A.Mokhtari mazidi.3635@gmail.com delavarkh@yazduni.ac.ir ahmokhtari20@gmail.com Faculty of Mathematics, Yazd University, P.O.

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

SOLVENCY AND CAPITAL ALLOCATION

SOLVENCY AND CAPITAL ALLOCATION SOLVENCY AND CAPITAL ALLOCATION HARRY PANJER University of Waterloo JIA JING Tianjin University of Economics and Finance Abstract This paper discusses a new criterion for allocation of required capital.

More information

Risk Reward Optimisation for Long-Run Investors: an Empirical Analysis

Risk Reward Optimisation for Long-Run Investors: an Empirical Analysis GoBack Risk Reward Optimisation for Long-Run Investors: an Empirical Analysis M. Gilli University of Geneva and Swiss Finance Institute E. Schumann University of Geneva AFIR / LIFE Colloquium 2009 München,

More information

PROBLEM SET 3 SOLUTIONS. 1. Question 1

PROBLEM SET 3 SOLUTIONS. 1. Question 1 PROBLEM SET 3 SOLUTIONS RICH LANGFORD 1.1. Recall that 1. Question 1 CV = E(P x,, U) E(,, U) = By the envelope theorem, we know that E p dp. E(p,, U) p = (h x, h y, p,, U) p = p (ph x + h y + λ(u u(h x,

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Forecast Horizons for Production Planning with Stochastic Demand

Forecast Horizons for Production Planning with Stochastic Demand Forecast Horizons for Production Planning with Stochastic Demand Alfredo Garcia and Robert L. Smith Department of Industrial and Operations Engineering Universityof Michigan, Ann Arbor MI 48109 December

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Replication under Price Impact and Martingale Representation Property

Replication under Price Impact and Martingale Representation Property Replication under Price Impact and Martingale Representation Property Dmitry Kramkov joint work with Sergio Pulido (Évry, Paris) Carnegie Mellon University Workshop on Equilibrium Theory, Carnegie Mellon,

More information

European Contingent Claims

European Contingent Claims European Contingent Claims Seminar: Financial Modelling in Life Insurance organized by Dr. Nikolic and Dr. Meyhöfer Zhiwen Ning 13.05.2016 Zhiwen Ning European Contingent Claims 13.05.2016 1 / 23 outline

More information

Risk-Averse Decision Making and Control

Risk-Averse Decision Making and Control Marek Petrik University of New Hampshire Mohammad Ghavamzadeh Adobe Research February 4, 2017 Introduction to Risk Averse Modeling Outline Introduction to Risk Averse Modeling (Average) Value at Risk Coherent

More information

Risk measure pricing and hedging in incomplete markets

Risk measure pricing and hedging in incomplete markets Risk measure pricing and hedging in incomplete markets Mingxin Xu Department of Mathematics and Statistics, University of North Carolina, 9201 University City Boulevard, Charlotte, NC 28223, USA (e-mail:

More information

Comparative Analyses of Expected Shortfall and Value-at-Risk (2): Expected Utility Maximization and Tail Risk

Comparative Analyses of Expected Shortfall and Value-at-Risk (2): Expected Utility Maximization and Tail Risk MONETARY AND ECONOMIC STUDIES/APRIL 2002 Comparative Analyses of Expected Shortfall and Value-at-Risk (2): Expected Utility Maximization and Tail Risk Yasuhiro Yamai and Toshinao Yoshiba We compare expected

More information

Thursday, March 3

Thursday, March 3 5.53 Thursday, March 3 -person -sum (or constant sum) game theory -dimensional multi-dimensional Comments on first midterm: practice test will be on line coverage: every lecture prior to game theory quiz

More information

Linear Capital Taxation and Tax Smoothing

Linear Capital Taxation and Tax Smoothing Florian Scheuer 5/1/2014 Linear Capital Taxation and Tax Smoothing 1 Finite Horizon 1.1 Setup 2 periods t = 0, 1 preferences U i c 0, c 1, l 0 sequential budget constraints in t = 0, 1 c i 0 + pbi 1 +

More information