Using the TI-83 Statistical Features

Size: px
Start display at page:

Download "Using the TI-83 Statistical Features"

Transcription

1 Entering data (working with lists) Consider the following small data sets: Using the TI-83 Statistical Features Data Set 1: {1, 2, 3, 4, 5} Data Set 2: {2, 3, 4, 4, 6} Press STAT to access the statistics menu. The default setting, EDIT 1:Edit... is highlighted. Press ENTER to create or change any one of the six built-in lists. Here s what comes up after you press ENTER. Enter Data Set 1 in L 1 by typing each number followed by ENTER. The function-like notation L1(6) in the lower left corner indicates the 6 th data value in the list. When you are finished your screen should look like this. To move to list L 2 press the right arrow key. Now enter Data Set 2. Clearing Old Data (quick way) Use the key to highlight the name of the list. Press CLEAR and then ENTER or. Working with the Data Press STAT to highlight the CALCulations menu. 1

2 STAT CALC menu 1: 1-Var Stats Calculates descriptive statistics for data with one measured variable. 4: LinReg(ax+b) For two-variable data (ordered pairs), calculates a linear regression or equation. There are two forms to choose from 4:y=ax+b or 8:y=a+bx. 8: LinReg(a+bx) When DiagnosticOn (in the catalog menu) is set, r and r 2 are also displayed. Let s look at both of these: 1-Var Stats: If you have one-variable data (one set of numbers) we can calculate summary statistics by accessing the default 1:1-Var Stats. Pressing ENTER will copy this command to the home screen. Now you need to tell the calculator the name of the list that contains your data. Press 2 nd L1 (above the 1 key). Your screen should look like this: Now, press ENTER again to perform the 1-Variable calculations using the data from list L 1. Here s a list of what is displayed. : mean (sample or population) Σx : sum of the data values Σx 2 : sum of squares (square each number, then add) s x : sample standard deviation σ x : population standard deviation n : number of values in the data set The arrow in the lower left corner of the screen indicates that there is more. Press 5 times to see what s left MinX : the lowest value in the data set Q1 : first quartile (25% of the data is less than or equal to this value) Med : median (50% of the data is less than or equal to this value) Q3 : third quartile (75% of the data is less than or equal to this value) maxx : the highest value in the data set For practice, repeat the process for list L 2. Here are the two screens you should see after performing the 1-Variable calculations. 2

3 Linear Regression If you have two-variable data (ordered pairs) we can calculate the linear regression equation, correlation coefficient (r), and coefficient of determination (r 2 ) by accessing either 4:LinReg(ax+b) or 8:LinReg(a+bx). Pressing 4 or 8 will copy this command to the home screen. Now you need to tell the calculator the name of the lists that contains your data. Press 2 nd L1 (above the 1 key) for the location of the x data, press, and 2 nd L2 (above the 2 key) for the location of the y data.. Your screen should look like this: Now, press ENTER again to perform the Linear Regression calculations using the data from list L 1 and L 2. Plotting the Data Next we will take a look at the six data graphs available on the TI-83 (scatter plot, xyline, histogram, modified box plot, box plot, normal probability plot). To access the plots, press 2 nd STAT PLOT (above Y=). Here is the screen you should see. You may work with three different plots from up to three data sets at a time. Here s a summary of the different types of plots you will probably use. Histogram Plots one variable data. Xscl determines the width of each bar, beginning at Xmin. A value that occurs on the edge of a bar is counted in the bar to the right. Boxplot Plots one variable data. The whiskers extend from the minimum data value to the first quartile (Q 1 ) and from the third quartile (Q 3 ) to the maximum data value. The box is defined by Q 1, median (Med), and Q 3. Box plots are plotted with respect to Xmin and Xmax and ignore Ymin and Ymax. 3

4 Scatter Plots two variable data. Use ZoomStat (Zoom #9) to adjust Xmin, Xmax, Ymin, and Ymax automatically. Let s look at an example of each. Histogram: Use the data in L 2. From the STAT PLOT menu press ENTER to access Plot 1. Use the arrows to move the cursor around to either turn this graph ON or OFF and select the graph type. Xlist is where we name the list containing the data on the horizontal axis. Freq is 1 (to count each number in the Xlist one time) or the name of another list which contains the frequencies. Press WINDOW to setup the intervals the graph will use. Xmin is where the first interval begins. The width of each interval is determined by Xscl. Ymax must be larger than the highest frequency of any interval. Press GRAPH to view the plot. Press TRACE and see what happens! Boxplot: Use the data in L 1. From the STAT PLOT menu press 2 to access Plot 2. Xlist is where we name the list containing the data. Freq is 1 (to count each number in the Xlist one time) or the name of another list which contains the frequencies. You can either use WINDOW to setup the window or press ZOOM 9:ZoomStat to adjust the window automatically. Be sure to turn Plot 1 OFF first. Press GRAPH to view the plot. Press TRACE and see what happens! Scatter: Use the data in L 1 to represent the x variable data and L 2 to represent the y variable data. Xlist is the name of the list containing the data represented on the x axis and Ylist is the name of the list containing the data represented on the y axis. Mark represents the symbol that will be used to show the position of the dots (ordered pairs) on the graph. You can either use WINDOW to setup the window or press ZOOM 9:ZoomStat to adjust the window automatically. Press GRAPH to view the plot. Later you may also want to graph a regression equation with the plot. All you have to do is enter the equation in the Y= menu and press GRAPH. 4

5 Statistical Tests and Confidence Intervals STAT TESTS menu. Press STAT to highlight TESTS. 1: Z-Test... One sample z test. Performs a hypothesis test for a single unknown population mean µ, when σ is known. It tests H o : µ=µ o against one of the alternatives H a : µuµ o, H a : µ<µ o, H a : µ>µ o. 2: T-Test... One sample t test. Performs a hypothesis test for a single unknown population mean µ, when σ is unknown. It tests H o : µ=µ o against one of the alternatives H a : µuµ o, H a : µ<µ o, H a : µ>µ o. 3: 2-SampZTest... Two sample z test. Performs a hypothesis test for the equality of the two population means (µ 1 and µ 2 ) based on independent samples when both population standard deviations σ 1 and σ 2 are known. It tests H o : µ 1 =µ 2 against one of the alternatives H a : µ 1 Uµ 2, H a : µ 1 <µ 2, H a : µ 1 >µ 2. 4: 2-SampTTest... Two sample t test. Performs a hypothesis test for the equality of the two population means (µ 1 and µ 2 ) based on independent samples when neither population standard deviations σ 1 or σ 2 is known. It tests H o : µ 1 =µ 2 against one of the alternatives H a : µ 1 Uµ 2, H a : µ 1 <µ 2, H a : µ 1 >µ 2. 5: 1-PropZTest... One sample proportion z test. Performs a hypothesis test for an unknown proportion of successes (prop). X = Number of successes in the sample. N = Number of observations in the sample. It tests H o : prop=p o against one of the alternatives H a : propup o, H a : prop<p o, H a : prop>p o. 6: 2-PropZTest... Two sample proportion z test. Performs a hypothesis test to compare the proportion of successes (p 1 and p 2 ) from two populations. X1 = Number of successes in sample 1. X2 = Number of successes in sample 2. N1 = Number of observations in sample 1. N2= Number of observations in sample 2. It tests H o : p 1 =p 2 against one of the alternatives H a : p 1 Up 2, H a : p 1 <p 2, H a : p 1 >p 2. 5

6 7: Z-Interval... One sample z confidence interval. Computes a confidence interval for an unknown population mean µ when the population standard deviation σ is known. 8: T-Interval... One sample t confidence interval. Computes a confidence interval for an unknown population mean µ when the population standard deviation σ is unknown. 9: 2-SampZInt... Two sample z confidence interval. Computes a confidence interval for the difference between two population means (µ 1 - µ 2 ) when both population standard deviations (σ 1 and σ 2 ) are known. 0: 2-SampTInt... Two sample t confidence interval. Computes a confidence interval for the difference between two population means (µ 1 - µ 2 ) when both population standard deviations (σ 1 and σ 2 ) are unknown. A: 1-PropZInt... One sample proportion z confidence interval. Computes a confidence interval for an unknown proportion of successes. X = Number of successes in the sample. N = Number of observations in the sample. B: 2-PropZInt... Two sample proportion z confidence interval. Computes a confidence interval for the difference between two population proportions (p 1 - p 2 ). X1 = Number of successes in sample 1. X2 = Number of successes in sample 2. N1 = Number of observations in sample 1. N2= Number of observations in sample 2. C: χ 2 -Test... Test of Independence between two qualitative variables. It tests H o : two variables are independent against H a : the two variables are related. Before conducting the test, enter the observed counts in matrix [A]. The calculator will compute the expected counts and store them in matrix [B]. E: LinRegTTest... Linear regression t test. Computes a linear regression and a t test on the slope β and the correlation coefficient ρ for the equation y = α+βx. It tests H o : β=0 (ρ=0) against one of the alternatives H a : βu0 (ρu0), H a : β<0 (ρ<0), H a : β>0 (ρ>0). Here are some examples. Z-Test: Since the default 1:Z-Test is highlighted, just press ENTER. Use the arrows to choose either Data (you must enter the data in a list) or Stats (you will be asked for and n). See the two screens below. 6

7 Type in the requested information pressing to move to the next line. On the line with µ select the direction of the test you wish to perform. Use to highlight the appropriate choice and press ENTER to activate it. Press and choose either Calculate or Draw and press ENTER. If you choose the Draw option be sure you have turned all plots off. Calculate: Draw: T-Interval: Press STAT to highlight TESTS, then press 8 for T-Interval. Use the arrows to choose either Data (you must enter the data in a list) or Stats (you will be asked for, s x, and n). See the two screens below. Type in the requested information pressing to move to the next line. When you get to Calculate, press ENTER to compute the confidence interval. 7

8 Probability Combinations and Permutations are located in the MATH menu. To use these features you need to start from the home screen. Type in the value for n then press MATH to highlight PRB Press either 2 (for permutation) or 3 (for combination). The command is copied to the home screen. Now type in the value for r and press ENTER. DISTR menu DISTR 1: normalpdf( Computes the probability for the normal distribution at a specified x value. The defaults are mean µ = 0 and standard deviation σ = 1. This is mainly used to plot the normal distribution. In the Y= menu select normalpdf( Y 1 =normalpdf(x,µ,σ) [fill in the values for µ and σ] 2: normalcdf( Computes the normal distribution probability between lowerbound and upperbound for the specified mean µ and standard deviation σ. Use -1E99 to specify -" and 1E99 to specify ". normalcdf(lowerbound,upperbound,µ,σ) 8

9 0: binompdf( Computes a probability at x for the binomial distribution with n trials and probability of success p on each trial. If you do not specify x, a list of probabilities from 0 to n is returned. Binompdf(n,p,x) A: binomcdf( Computes a cumulative probability at x for the binomial distribution with n trials and probability of success p on each trial. If you do not specify x, a list of cumulative probabilities from 0 to n is returned. Binomcdf(n,p,x) DISTR DRAW menu 1: ShadeNorm( Draws the normal distribution with mean µ and standard deviation σ and shades the area between lowerbound and upperbound.. Use -1E99 to specify -" and 1E99 to specify ". Be sure to set your window before you execute the ShadeNorm command. ShadeNorm(lowerbound,upperbound,µ,σ). 9

Statistics TI-83 Usage Handout

Statistics TI-83 Usage Handout Statistics TI-83 Usage Handout This handout includes instructions for performing several different functions on a TI-83 calculator for use in Statistics. The Contents table below lists the topics covered

More information

The instructions on this page also work for the TI-83 Plus and the TI-83 Plus Silver Edition.

The instructions on this page also work for the TI-83 Plus and the TI-83 Plus Silver Edition. The instructions on this page also work for the TI-83 Plus and the TI-83 Plus Silver Edition. The position of the graphically represented keys can be found by moving your mouse on top of the graphic. Turn

More information

Continuous Random Variables and the Normal Distribution

Continuous Random Variables and the Normal Distribution Chapter 6 Continuous Random Variables and the Normal Distribution Continuous random variables are used to approximate probabilities where there are many possible outcomes or an infinite number of possible

More information

The Normal Probability Distribution

The Normal Probability Distribution 102 The Normal Probability Distribution C H A P T E R 7 Section 7.2 4Example 1 (pg. 71) Finding Area Under a Normal Curve In this exercise, we will calculate the area to the left of 5 inches using a normal

More information

Graphing Calculator Appendix

Graphing Calculator Appendix Appendix GC GC-1 This appendix contains some keystroke suggestions for many graphing calculator operations that are featured in this text. The keystrokes are for the TI-83/ TI-83 Plus calculators. The

More information

Manual for the TI-83, TI-84, and TI-89 Calculators

Manual for the TI-83, TI-84, and TI-89 Calculators Manual for the TI-83, TI-84, and TI-89 Calculators to accompany Mendenhall/Beaver/Beaver s Introduction to Probability and Statistics, 13 th edition James B. Davis Contents Chapter 1 Introduction...4 Chapter

More information

Normal Probability Distributions

Normal Probability Distributions C H A P T E R Normal Probability Distributions 5 Section 5.2 Example 3 (pg. 248) Normal Probabilities Assume triglyceride levels of the population of the United States are normally distributed with a mean

More information

(i.e. the rate of change of y with respect to x)

(i.e. the rate of change of y with respect to x) Section 1.3 - Linear Functions and Math Models Example 1: Questions we d like to answer: 1. What is the slope of the line? 2. What is the equation of the line? 3. What is the y-intercept? 4. What is the

More information

3. Continuous Probability Distributions

3. Continuous Probability Distributions 3.1 Continuous probability distributions 3. Continuous Probability Distributions K The normal probability distribution A continuous random variable X is said to have a normal distribution if it has a probability

More information

STATISTICAL DISTRIBUTIONS AND THE CALCULATOR

STATISTICAL DISTRIBUTIONS AND THE CALCULATOR STATISTICAL DISTRIBUTIONS AND THE CALCULATOR 1. Basic data sets a. Measures of Center - Mean ( ): average of all values. Characteristic: non-resistant is affected by skew and outliers. - Median: Either

More information

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get MATH 111: REVIEW FOR FINAL EXAM SUMMARY STATISTICS Spring 2005 exam: 1(A), 2(E), 3(C), 4(D) Comments: This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var

More information

Unit 2: Statistics Probability

Unit 2: Statistics Probability Applied Math 30 3-1: Distributions Probability Distribution: - a table or a graph that displays the theoretical probability for each outcome of an experiment. - P (any particular outcome) is between 0

More information

Ti 83/84. Descriptive Statistics for a List of Numbers

Ti 83/84. Descriptive Statistics for a List of Numbers Ti 83/84 Descriptive Statistics for a List of Numbers Quiz scores in a (fictitious) class were 10.5, 13.5, 8, 12, 11.3, 9, 9.5, 5, 15, 2.5, 10.5, 7, 11.5, 10, and 10.5. It s hard to get much of a sense

More information

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19)

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x

More information

Discrete Random Variables and Their Probability Distributions

Discrete Random Variables and Their Probability Distributions Chapter 5 Discrete Random Variables and Their Probability Distributions Mean and Standard Deviation of a Discrete Random Variable Computing the mean and standard deviation of a discrete random variable

More information

Statistics (This summary is for chapters 18, 29 and section H of chapter 19)

Statistics (This summary is for chapters 18, 29 and section H of chapter 19) Statistics (This summary is for chapters 18, 29 and section H of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x n =

More information

Chapter 5 Summarizing Bivariate Data

Chapter 5 Summarizing Bivariate Data Chapter 5 Summarizing Bivariate Data 5.0 Introduction In Chapter 5 we address some graphic and numerical descriptions of data when two measures are taken from an individual. In the typical situation we

More information

FINITE MATH LECTURE NOTES. c Janice Epstein 1998, 1999, 2000 All rights reserved.

FINITE MATH LECTURE NOTES. c Janice Epstein 1998, 1999, 2000 All rights reserved. FINITE MATH LECTURE NOTES c Janice Epstein 1998, 1999, 2000 All rights reserved. August 27, 2001 Chapter 1 Straight Lines and Linear Functions In this chapter we will learn about lines - how to draw them

More information

Use the data you collected and plot the points to create scattergrams or scatter plots.

Use the data you collected and plot the points to create scattergrams or scatter plots. Key terms: bivariate data, scatterplot (also called scattergram), correlation (positive, negative, or none as well as strong or weak), regression equation, interpolation, extrapolation, and correlation

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

σ e, which will be large when prediction errors are Linear regression model

σ e, which will be large when prediction errors are Linear regression model Linear regression model we assume that two quantitative variables, x and y, are linearly related; that is, the population of (x, y) pairs are related by an ideal population regression line y = α + βx +

More information

TI-83 Plus Workshop. Al Maturo,

TI-83 Plus Workshop. Al Maturo, Solving Equations with one variable. Enter the equation into: Y 1 = x x 6 Y = x + 5x + 3 Y 3 = x 3 5x + 1 TI-83 Plus Workshop Al Maturo, AMATURO@las.ch We shall refer to this in print as f(x). We shall

More information

Chapter 6: Continuous Probability Distributions

Chapter 6: Continuous Probability Distributions Chapter 6: Continuous Probability Distributions Chapter 5 dealt with probability distributions arising from discrete random variables. Mostly that chapter focused on the binomial experiment. There are

More information

Elementary Statistics Blue Book. The Normal Curve

Elementary Statistics Blue Book. The Normal Curve Elementary Statistics Blue Book How to work smarter not harder The Normal Curve 68.2% 95.4% 99.7 % -4-3 -2-1 0 1 2 3 4 Z Scores John G. Blom May 2011 01 02 TI 30XA Key Strokes 03 07 TI 83/84 Key Strokes

More information

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 5-5 The Poisson Distribution

More information

AP Stats: 3B ~ Least Squares Regression and Residuals. Objectives:

AP Stats: 3B ~ Least Squares Regression and Residuals. Objectives: Objectives: INTERPRET the slope and y intercept of a least-squares regression line USE the least-squares regression line to predict y for a given x CALCULATE and INTERPRET residuals and their standard

More information

Math Tech IIII, Mar 13

Math Tech IIII, Mar 13 Math Tech IIII, Mar 13 The Binomial Distribution III Book Sections: 4.2 Essential Questions: What do I need to know about the binomial distribution? Standards: DA-5.6 What Makes a Binomial Experiment?

More information

The Least Squares Regression Line

The Least Squares Regression Line The Least Squares Regression Line Section 5.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office hours: T Th 1:30 pm - 3:30 pm 620 PGH & 5:30 pm - 7:00 pm CASA Department of Mathematics University of Houston

More information

23.1 Probability Distributions

23.1 Probability Distributions 3.1 Probability Distributions Essential Question: What is a probability distribution for a discrete random variable, and how can it be displayed? Explore Using Simulation to Obtain an Empirical Probability

More information

How Wealthy Are Europeans?

How Wealthy Are Europeans? How Wealthy Are Europeans? Grades: 7, 8, 11, 12 (course specific) Description: Organization of data of to examine measures of spread and measures of central tendency in examination of Gross Domestic Product

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

Categorical. A general name for non-numerical data; the data is separated into categories of some kind.

Categorical. A general name for non-numerical data; the data is separated into categories of some kind. Chapter 5 Categorical A general name for non-numerical data; the data is separated into categories of some kind. Nominal data Categorical data with no implied order. Eg. Eye colours, favourite TV show,

More information

Chapter 3: Probability Distributions and Statistics

Chapter 3: Probability Distributions and Statistics Chapter 3: Probability Distributions and Statistics Section 3.-3.3 3. Random Variables and Histograms A is a rule that assigns precisely one real number to each outcome of an experiment. We usually denote

More information

Analyzing Accumulated Change: More Applications of Integrals & 7.1 Differences of Accumulated Changes

Analyzing Accumulated Change: More Applications of Integrals & 7.1 Differences of Accumulated Changes Chapter 7 Analyzing Accumulated Change: More Applications of Integrals & 7.1 Differences of Accumulated Changes This chapter helps you effectively use your calculatorõs numerical integrator with various

More information

Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Math 166: Topics in Contemporary Mathematics II Ruomeng Lan Texas A&M University October 15, 2014 Ruomeng Lan (TAMU) Math 166 October 15, 2014 1 / 12 Mean, Median and Mode Definition: 1. The average or

More information

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1 Chapter 1 1.1 Definitions Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1. Data Any collection of numbers, characters, images, or other items that provide information about something. 2.

More information

Chapter 14 - Random Variables

Chapter 14 - Random Variables Chapter 14 - Random Variables October 29, 2014 There are many scenarios where probabilities are used to determine risk factors. Examples include Insurance, Casino, Lottery, Business, Medical, and other

More information

2 Exploring Univariate Data

2 Exploring Univariate Data 2 Exploring Univariate Data A good picture is worth more than a thousand words! Having the data collected we examine them to get a feel for they main messages and any surprising features, before attempting

More information

Binomial Distribution. Normal Approximation to the Binomial

Binomial Distribution. Normal Approximation to the Binomial Binomial Distribution Normal Approximation to the Binomial /29 Homework Read Sec 6-6. Discussion Question pg 337 Do Ex 6-6 -4 2 /29 Objectives Objective: Use the normal approximation to calculate 3 /29

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

Probability & Statistics Modular Learning Exercises

Probability & Statistics Modular Learning Exercises Probability & Statistics Modular Learning Exercises About The Actuarial Foundation The Actuarial Foundation, a 501(c)(3) nonprofit organization, develops, funds and executes education, scholarship and

More information

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE AP STATISTICS Name: FALL SEMESTSER FINAL EXAM STUDY GUIDE Period: *Go over Vocabulary Notecards! *This is not a comprehensive review you still should look over your past notes, homework/practice, Quizzes,

More information

22.2 Shape, Center, and Spread

22.2 Shape, Center, and Spread Name Class Date 22.2 Shape, Center, and Spread Essential Question: Which measures of center and spread are appropriate for a normal distribution, and which are appropriate for a skewed distribution? Eplore

More information

Math Tech IIII, Mar 6

Math Tech IIII, Mar 6 Math Tech IIII, Mar 6 The Binomial Distribution II Book Sections: 4.2 Essential Questions: How can I compute the probability of any event? What do I need to know about the binomial distribution? Standards:

More information

DATA HANDLING Five-Number Summary

DATA HANDLING Five-Number Summary DATA HANDLING Five-Number Summary The five-number summary consists of the minimum and maximum values, the median, and the upper and lower quartiles. The minimum and the maximum are the smallest and greatest

More information

starting on 5/1/1953 up until 2/1/2017.

starting on 5/1/1953 up until 2/1/2017. An Actuary s Guide to Financial Applications: Examples with EViews By William Bourgeois An actuary is a business professional who uses statistics to determine and analyze risks for companies. In this guide,

More information

Chapter 8. Binomial and Geometric Distributions

Chapter 8. Binomial and Geometric Distributions Chapter 8 Binomial and Geometric Distributions Lesson 8-1, Part 1 Binomial Distribution What is a Binomial Distribution? Specific type of discrete probability distribution The outcomes belong to two categories

More information

Estimation of the Mean and Proportion

Estimation of the Mean and Proportion Chapter 8 Estimation of the Mean and Proportion In statistics, we collect samples to know more about a population. If the sample is representative of the population, the sample mean or proportion should

More information

Today s plan: Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation.

Today s plan: Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation. 1 Today s plan: Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation. 2 Once we know the central location of a data set, we want to know how close things are to the center. 2 Once we know

More information

Binomial Probabilities The actual probability that P ( X k ) the formula n P X k p p. = for any k in the range {0, 1, 2,, n} is given by. n n!

Binomial Probabilities The actual probability that P ( X k ) the formula n P X k p p. = for any k in the range {0, 1, 2,, n} is given by. n n! Introduction We are often more interested in experiments in which there are two outcomes of interest (success/failure, make/miss, yes/no, etc.). In this chapter we study two types of probability distributions

More information

Lecture 35 Section Wed, Mar 26, 2008

Lecture 35 Section Wed, Mar 26, 2008 on Lecture 35 Section 10.2 Hampden-Sydney College Wed, Mar 26, 2008 Outline on 1 2 3 4 5 on 6 7 on We will familiarize ourselves with the t distribution. Then we will see how to use it to test a hypothesis

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

Lecture 39 Section 11.5

Lecture 39 Section 11.5 on Lecture 39 Section 11.5 Hampden-Sydney College Mon, Nov 10, 2008 Outline 1 on 2 3 on 4 on Exercise 11.27, page 715. A researcher was interested in comparing body weights for two strains of laboratory

More information

DATA SUMMARIZATION AND VISUALIZATION

DATA SUMMARIZATION AND VISUALIZATION APPENDIX DATA SUMMARIZATION AND VISUALIZATION PART 1 SUMMARIZATION 1: BUILDING BLOCKS OF DATA ANALYSIS 294 PART 2 PART 3 PART 4 VISUALIZATION: GRAPHS AND TABLES FOR SUMMARIZING AND ORGANIZING DATA 296

More information

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain.

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain. Binomial and Normal Distributions Objective 1: Determining if an Experiment is a Binomial Experiment For an experiment to be considered a binomial experiment, four things must hold: 1. The experiment is

More information

Activity Two: Investigating Slope and Y-Intercept in the Real World. Number of Tickets Cost 8 $ $11.00 $

Activity Two: Investigating Slope and Y-Intercept in the Real World. Number of Tickets Cost 8 $ $11.00 $ Activity Two: Investigating Slope and Y-Intercept in the Real World Directions: Use what you have learned about the concepts of slope and y-intercept to solve: A. A Day at the Fair You and your friends

More information

Chapter 6 Confidence Intervals

Chapter 6 Confidence Intervals Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) VOCABULARY: Point Estimate A value for a parameter. The most point estimate of the population parameter is the

More information

Chapter 5 Normal Probability Distributions

Chapter 5 Normal Probability Distributions Chapter 5 Normal Probability Distributions Section 5-1 Introduction to Normal Distributions and the Standard Normal Distribution A The normal distribution is the most important of the continuous probability

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Chapter 8: The Binomial and Geometric Distributions 8.1 Binomial Distributions 8.2 Geometric Distributions 1 Let me begin with an example My best friends from Kent School had three daughters. What is the

More information

Discrete Probability Distributions

Discrete Probability Distributions 90 Discrete Probability Distributions Discrete Probability Distributions C H A P T E R 6 Section 6.2 4Example 2 (pg. 00) Constructing a Binomial Probability Distribution In this example, 6% of the human

More information

Discrete Probability Distributions

Discrete Probability Distributions Page 1 of 6 Discrete Probability Distributions In order to study inferential statistics, we need to combine the concepts from descriptive statistics and probability. This combination makes up the basics

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

Chapter 6 Simple Correlation and

Chapter 6 Simple Correlation and Contents Chapter 1 Introduction to Statistics Meaning of Statistics... 1 Definition of Statistics... 2 Importance and Scope of Statistics... 2 Application of Statistics... 3 Characteristics of Statistics...

More information

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions ELE 525: Random Processes in Information Systems Hisashi Kobayashi Department of Electrical Engineering

More information

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables

Chapter 6: Random Variables. Ch. 6-3: Binomial and Geometric Random Variables Chapter : Random Variables Ch. -3: Binomial and Geometric Random Variables X 0 2 3 4 5 7 8 9 0 0 P(X) 3???????? 4 4 When the same chance process is repeated several times, we are often interested in whether

More information

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables Chapter 5 Probability Distributions Section 5-2 Random Variables 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation for the Binomial Distribution Random

More information

The Binomial Distribution

The Binomial Distribution MATH 382 The Binomial Distribution Dr. Neal, WKU Suppose there is a fixed probability p of having an occurrence (or success ) on any single attempt, and a sequence of n independent attempts is made. Then

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

GETTING STARTED. To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop

GETTING STARTED. To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop Minitab 14 1 GETTING STARTED To OPEN MINITAB: Click Start>Programs>Minitab14>Minitab14 or Click Minitab 14 on your Desktop The Minitab session will come up like this 2 To SAVE FILE 1. Click File>Save Project

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution PSY 464 Advanced Experimental Design Describing and Exploring Data The Normal Distribution 1 Overview/Outline Questions-problems? Exploring/Describing data Organizing/summarizing data Graphical presentations

More information

STAT 157 HW1 Solutions

STAT 157 HW1 Solutions STAT 157 HW1 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/10/spring/stats157.dir/ Problem 1. 1.a: (6 points) Determine the Relative Frequency and the Cumulative Relative Frequency (fill

More information

Lab#3 Probability

Lab#3 Probability 36-220 Lab#3 Probability Week of September 19, 2005 Please write your name below, tear off this front page and give it to a teaching assistant as you leave the lab. It will be a record of your participation

More information

Essential Question: What is a probability distribution for a discrete random variable, and how can it be displayed?

Essential Question: What is a probability distribution for a discrete random variable, and how can it be displayed? COMMON CORE N 3 Locker LESSON Distributions Common Core Math Standards The student is expected to: COMMON CORE S-IC.A. Decide if a specified model is consistent with results from a given data-generating

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

Seven Steps of Constructing Projects

Seven Steps of Constructing Projects I. Who are you? Seven Steps of Constructing Projects Agenda Assuming no responsibility, If you could immerse yourself for 4 hours doing something you love but never have 4 hours to do WHAT WOULD YOU DO?

More information

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS

PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS PROBABILITY AND STATISTICS CHAPTER 4 NOTES DISCRETE PROBABILITY DISTRIBUTIONS I. INTRODUCTION TO RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS A. Random Variables 1. A random variable x represents a value

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size Confidence Intervals and Sample Size Chapter 6 shows us how we can use the Central Limit Theorem (CLT) to 1. estimate a population parameter (such as the mean or proportion) using a sample, and. determine

More information

3500. What types of numbers do not make sense for x? What types of numbers do not make sense for y? Graph y = 250 x+

3500. What types of numbers do not make sense for x? What types of numbers do not make sense for y? Graph y = 250 x+ Name Date TI-84+ GC 19 Choosing an Appropriate Window for Applications Objective: Choose appropriate window for applications Example 1: A small company makes a toy. The price of one toy x (in dollars)

More information

Chapter 5 Project: Broiler Chicken Production. Name Name

Chapter 5 Project: Broiler Chicken Production. Name Name Chapter 5 Project: Broiler Chicken Production Name Name 1. Background information The graph and data that form the basis of this project were taken from a very useful web site sponsored by the National

More information

WEB APPENDIX 8A 7.1 ( 8.9)

WEB APPENDIX 8A 7.1 ( 8.9) WEB APPENDIX 8A CALCULATING BETA COEFFICIENTS The CAPM is an ex ante model, which means that all of the variables represent before-the-fact expected values. In particular, the beta coefficient used in

More information

Contents Part I Descriptive Statistics 1 Introduction and Framework Population, Sample, and Observations Variables Quali

Contents Part I Descriptive Statistics 1 Introduction and Framework Population, Sample, and Observations Variables Quali Part I Descriptive Statistics 1 Introduction and Framework... 3 1.1 Population, Sample, and Observations... 3 1.2 Variables.... 4 1.2.1 Qualitative and Quantitative Variables.... 5 1.2.2 Discrete and Continuous

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

RBC Advisor Workstation Research: Graphing Job Aid Use with Clients Interpret and Customize the graph

RBC Advisor Workstation Research: Graphing Job Aid Use with Clients Interpret and Customize the graph Investment Growth Graph Get a quick snapshot of the historical performance of a clients funds not available on the Spotlight list or Substitution chart Compare a fund to it s benchmark to explain performance

More information

Section 15.0: The Normal Distribution

Section 15.0: The Normal Distribution Section 15.0: The Normal Distribution The Normal distribution is the most widely recognized of all probability distributions. It is a continuous distribution, which means its graph has no gaps. The shape

More information

Diploma in Financial Management with Public Finance

Diploma in Financial Management with Public Finance Diploma in Financial Management with Public Finance Cohort: DFM/09/FT Jan Intake Examinations for 2009 Semester II MODULE: STATISTICS FOR FINANCE MODULE CODE: QUAN 1103 Duration: 2 Hours Reading time:

More information

You should already have a worksheet with the Basic Plus Plan details in it as well as another plan you have chosen from ehealthinsurance.com.

You should already have a worksheet with the Basic Plus Plan details in it as well as another plan you have chosen from ehealthinsurance.com. In earlier technology assignments, you identified several details of a health plan and created a table of total cost. In this technology assignment, you ll create a worksheet which calculates the total

More information

Chapter 14. Descriptive Methods in Regression and Correlation. Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 14, Slide 1

Chapter 14. Descriptive Methods in Regression and Correlation. Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 14, Slide 1 Chapter 14 Descriptive Methods in Regression and Correlation Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 14, Slide 1 Section 14.1 Linear Equations with One Independent Variable Copyright

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information

Spreadsheet Directions

Spreadsheet Directions The Best Summer Job Offer Ever! Spreadsheet Directions Before beginning, answer questions 1 through 4. Now let s see if you made a wise choice of payment plan. Complete all the steps outlined below in

More information

Converting to the Standard Normal rv: Exponential PDF and CDF for x 0 Chapter 7: expected value of x

Converting to the Standard Normal rv: Exponential PDF and CDF for x 0 Chapter 7: expected value of x Key Formula Sheet ASU ECN 22 ASWCC Chapter : no key formulas Chapter 2: Relative Frequency=freq of the class/n Approx Class Width: =(largest value-smallest value) /number of classes Chapter 3: sample and

More information

appstats5.notebook September 07, 2016 Chapter 5

appstats5.notebook September 07, 2016 Chapter 5 Chapter 5 Describing Distributions Numerically Chapter 5 Objective: Students will be able to use statistics appropriate to the shape of the data distribution to compare of two or more different data sets.

More information

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers

Diploma Part 2. Quantitative Methods. Examiner s Suggested Answers Diploma Part 2 Quantitative Methods Examiner s Suggested Answers Question 1 (a) The binomial distribution may be used in an experiment in which there are only two defined outcomes in any particular trial

More information

Student Activity: Show Me the Money!

Student Activity: Show Me the Money! 1.2 The Y-Intercept: Student Activity Student Activity: Show Me the Money! Overview: Objective: Terms: Materials: Procedures: Students connect recursive operations with graphs. Algebra I TEKS b.3.b Given

More information

Sampling Distributions

Sampling Distributions Section 8.1 119 Sampling Distributions Section 8.1 C H A P T E R 8 4Example 2 (pg. 378) Sampling Distribution of the Sample Mean The heights of 3-year-old girls are normally distributed with μ=38.72 and

More information

BARUCH COLLEGE MATH 2205 SPRING MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski

BARUCH COLLEGE MATH 2205 SPRING MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski BARUCH COLLEGE MATH 05 SPRING 006 MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski The final examination for Math 05 will consist of two parts.

More information

Chapter 6 Analyzing Accumulated Change: Integrals in Action

Chapter 6 Analyzing Accumulated Change: Integrals in Action Chapter 6 Analyzing Accumulated Change: Integrals in Action 6. Streams in Business and Biology You will find Excel very helpful when dealing with streams that are accumulated over finite intervals. Finding

More information

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii)

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii) Contents (ix) Contents Preface... (vii) CHAPTER 1 An Overview of Statistical Applications 1.1 Introduction... 1 1. Probability Functions and Statistics... 1..1 Discrete versus Continuous Functions... 1..

More information