Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 59

Size: px
Start display at page:

Download "Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 59"

Transcription

1 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 59

2 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting the period in time in which x occurs. We shall treat x t as a random variable; hence, a time-series is a sequence of random variables ordered in time. Such a sequence is known as a stochastic process. The probability structure of a sequence of random variables is determined by the joint distribution of a stochastic process. The simplest possible probability model for such a joint distribution is: x t = α + ɛ t, ɛ t n.i.d. 0, σ 2 ɛ i.e., x t is normally independently distributed over time with constant variance and mean equal to α. In other words, x t is the sum of a constant and a white-noise process. If a white-noise process were a proper model for financial time-series, forecasting would not be very interesting as the best forecast for the moments of the relevant time series would be their unconditional moments. () Chapter 5 Univariate time-series analysis 2 / 59,

3 Better models The model: x t = α + ɛ t, ɛ t n.i.d. 0, σ 2 ɛ, ˆ α = 1 T ˆ 2 T 1 T x t, σɛ = x t ˆα T t=1 t=1 2 Reflect the traditional approach to portfolio allocation, but it does not reflect the data. At high frequency the variance is not constant and predictable, at low frequency returns are persistent and predictable. To construct more realistic models, we concentrate on univariate models first to consider then multivariate models. () Chapter 5 Univariate time-series analysis 3 / 59

4 Better models GER Stock Market Returns monthly ret monthly ret sim WN x 10 3 GER 10Y Bond YTM 5 10Y YTM 10Y YTM sim WN While the CER gives a plausible representation for the 1-month returns, the behaviour over time of the YTM of the 10-Year bond does not resemble at all that of the simulated data. () Chapter 5 Univariate time-series analysis 4 / 59

5 ARMA modelling A more general and more flexible class of models emerges when combinations of ɛ t are used to model x t. We concentrate on a class of models created by taking linear combinations of the white noise, the autoregressive moving average (ARMA) models: AR(1) : x t = ρx t 1 + ɛ t, MA(1) : x t = ɛ t + θɛ t 1, AR(p) : x t = ρ 1 x t 1 + ρ 2 x t ρ p x t p + ɛ t, MA(q) : x t = ɛ t + θ 1 ɛ t θ q ɛ t q, ARMA(p, q) : x t = ρ 1 x t ρ p x t p + θ 1 ɛ t θ q ɛ t q. () Chapter 5 Univariate time-series analysis 5 / 59

6 Analysing time-series models To illustrate empirically all fundamentals we consider a specific member of the ARMA family, the AR model with drift, x t = ρ 0 + ρ 1 x t 1 + ɛ t, (1) ɛ t n.i.d. 0, σ 2 ɛ. Given that each realization of our stochastic process is a random variable, the first relevant fundamental is the density of each observation. In particular, we distinguish between conditional and unconditional densities. () Chapter 5 Univariate time-series analysis 6 / 59

7 Conditional and Unconditional Densities The unconditional density is obtained under the hypothesis that no observation on the time-series is available, while conditional densities are based on the observation of some realization of random variables. In the case of time-series, we derive unconditional density by putting ourselves at the moment preceding the observation of any realization of the time-series. At that moment the information set contains only the knowledge of the process generating the observations. As observations become available, we can compute conditional densities. () Chapter 5 Univariate time-series analysis 7 / 59

8 Conditional Densities Consider the AR(1) model. The moments of the density of x t conditional upon x t 1 are immediately obtained from the relevant process: E (x t j x t 1 ) = ρ 0 + ρ 1 x t 1, Var (x t j x t 1 ) = σ 2 ɛ, Cov (x t j x t 1 ), x t j j x t j 1 = 0 for each j. To derive the moments of the density of x t conditional upon x t need to substitute x t 2 from (1) for x t 1 : 2, we E (x t j x t 2 ) = ρ 0 + ρ 0 ρ 1 + ρ 2 1 x t 2, Var (x t j x t 2 ) = σ 2 ɛ 1 + ρ 2 1, Cov (x t j x t 2 ), x t j j x t j 2 = ρ 1 σ 2 ɛ, for j = 1, Cov (x t j x t 2 ), x t j j x t j 2 = 0, for j > 1. () Chapter 5 Univariate time-series analysis 8 / 59

9 Unconditional Densities Unconditional moments are derived by substituting recursively from to express x t as a function of information available at time t 0, the moment before we start observing realizations of our process. E (x t ) = ρ ρ 1 + ρ 2 1 Var (x t ) = σ 2 ɛ 1 + ρ ρ ρt ρ2t 2 1 γ (j) = Cov x t, x t j = ρ j 1 Var (x t), ρ (j) = + ρ t 1 x 0,, Cov x t, x t p Var (xt ) Var (x t 1 ) = ρ j 1 Var (x t) p Var (xt ) Var (x t 1 ). j Note that γ (j) and ρ (j) are functions of j, known respectively as the autocovariance function and the autocorrelation function. () Chapter 5 Univariate time-series analysis 9 / 59

10 Insert Clicker 1 here () Chapter 5 Univariate time-series analysis 10 / 59

11 Stationarity A stochastic process is strictly stationary if its joint density function does not depend on time. More formally, a stochastic process is stationary if, for each j 1, j 2,..., j n, the joint distribution, f x t, x t+j1, x t+j2, x t+jn, does not depend on t. A stochastic process is covariance stationary if its two first unconditional moments do not depend on time, i.e. if the following relations are satisfied for each h, i, j: E (x t ) = E (x t+h ) = µ, E x 2 t = E x 2 t+h = µ 2, E x t+i x t+j = µ ij. () Chapter 5 Univariate time-series analysis 11 / 59

12 Insert Clicker 2 here () Chapter 5 Univariate time-series analysis 12 / 59

13 Stationarity In the case of our AR(1) process, the condition for stationarity is jρ 1 j < 1. When such a condition is satisfied, we have: Cov x t, x t E (x t ) = E (x t+h ) = ρ 0 1 ρ 1, Var (x t ) = Var (x t+h ) = σ2 ɛ 1 ρ 2, 1 j = ρ j 1 Var (x t). On the other hand, when jρ 1 j = 1, the process is obviously non-stationary: Cov x t, x t E (x t ) = ρ 0 t + x 0, Var (x t ) = σ 2 ɛt, j = σ 2 ɛ (t j). () Chapter 5 Univariate time-series analysis 13 / 59

14 General ARMA processes The Wold decomposition theorem warrants that any stationary stochastic process can be expressed as the sum of a deterministic and a stochastic moving-average component: x t = ɛ t + b 1 ɛ t 1 + b 2 ɛ t b n ɛ t n = 1 + b 1 L + b 2 L b n L n ɛ t = b(l)ɛ t, Represent the polynomial b(l) as the ratio of two polynomials of lower order: x t = b (L) ɛ t = a (L) c (L) ɛ t, c (L) x t = a (L) ɛ t. (2) This is an ARMA process. Stationary requires that the roots of c (L) lie outside the unit circle. Invertibility of the MA component require that the roots of a (L) lie outside the unit circle. () Chapter 5 Univariate time-series analysis 14 / 59

15 General ARMA processes Consider the simplest case, the ARMA(1,1) process: x t = c 1 x t 1 + ɛ t + a 1 ɛ t 1, (1 c 1 L) x t = (1 + a 1 L) ɛ t. The above equation is equivalent to: x t = 1 + a 1L 1 c 1 L ɛ t = (1 + a 1 L) = 1 + c 1 L + (c 1 L) ɛ t h 1 + (a 1 + c 1 ) L + c 1 (a 1 + c 1 ) L 2 + c 2 1 (a 1 + c 1 ) L i ɛ t. Which shows that the ratio of two finite lag polynomials allows us to model an infinite lag polynomial. () Chapter 5 Univariate time-series analysis 15 / 59

16 General ARMA processes We then have, Var (x t ) = = Cov (x t, x t 1 ) = = Hence, h i 1 + (a 1 + c 1 ) 2 + c 2 1 (a 1 + c 1 ) σ 2 ɛ " # 1 + (a 1 + c 1 ) 2 1 c 2 σ 2 ɛ, 1 h i (a 1 + c 1 ) + c 1 (a 1 + c 1 ) + c 2 1 (a 1 + c 1 ) +... " # (a 1 + c 1 ) + c 1 (a 1 + c 1 ) 2 1 c 2 σ 2 ɛ. 1 ρ (1) = Cov (x t,x t 1 ) Var (x t ) = (1 + a 1c 1 ) (a 1 + c 1 ) 1 + c a 1c 1. σ 2 ɛ () Chapter 5 Univariate time-series analysis 16 / 59

17 General ARMA processes For example, suppose c (L) x t = a (L) ɛ t and you want to find x t = d (L) ɛ t. Parameters in d (L) are most easily found by writing c (L) d (L) = a (L) and by matching terms in L j. For an illustration suppose a (L) = 1 + a 1 L, c (L) = 1 + c 1 L. Multiplying out d (L) we have (1 + c 1 L) 1 + d 1 L + d 2 L d n L n = 1 + a 1 L Matching powers of L, d 1 = a 1 c 1 c 1 d 1 + d 2 = 0 c 1 d 2 + d 3 = 0 c 1 d n 1 + d n = 0 x t = ɛ t + (a 1 c 1 ) ɛ t 1 c 1 (a 1 c 1 ) ɛ t ( c 1 ) n 1 (a 1 c 1 ) ɛ t n () Chapter 5 Univariate time-series analysis 17 / 59

18 Insert Clicker 3 here () Chapter 5 Univariate time-series analysis 18 / 59

19 Persistence and the linear model Persistence of time-series destroys one of the crucial properties for implementing valid estimation and inference in the linear model. In the context of the linear model y = Xβ + ɛ. The following property is required to implement valid estimation and inference E (ɛ j X) = 0. (3) Hypothesis (3) implies that E (ɛ i j x 1,...x i,..., x n ) = 0, (i = 1,..., n). Think of the simplest time-series model for a generic variable y: y t = a 0 + a 1 y t 1 + ɛ t. Clearly, if a 1 6= 0, then, although it is still true that E (ɛ t j y t 1 ) = 0, E (ɛ t 1 j y t 1 ) 6= 0 and (3) breaks down. () Chapter 5 Univariate time-series analysis 19 / 59

20 How serious is the problem? To assess intuitively the consequences of persistence, we construct a small Monte-Carlo simulation on the short sample properties of the OLS estimator of the parameters in an AR(1) process. A Monte-Carlo simulation is based on the generation of a sample from a known data generating process (DGP). First we generate a set of random numbers from a given distribution (here a normally independent white-noise disturbance) for a sample size of interest (say 200 observations) and then construct the process of interest (in our case, an AR(1) process). When a sample of observations on the process of interest is available, then we can estimate the relevant parameters and compare their fitted values with the known true value. the Monte-Carlo simulation is a sort of controlled experiment. To overcome the potential dependence of the set of random numbers drawn on the sequence of simulated white-noise residuals, the DGP is replicated many times. () Chapter 5 Univariate time-series analysis 20 / 59

21 From the figure we note that the estimate of a 1 is heavily biased in small samples, but the bias decreases as the sample gets larger, and disappears eventually. One can show analytically that the average of 2 the OLS estimate of a is a 1 () Chapter 5 Univariate. time-series analysis 21 / 59 How serious is the problem? We report the averages across replications in the following figure A1MEAN TRUEA1 Figure: Small sample bias

22 Asymptotic theory Stationary time-series feature time-independent distributions, as a consequence, the effect of any specific innovation disappears as time elapses. We show in this section that the intuition of the simple Monte-Carlo simulation can be extended and asymptotic theory can be used to perform valid estimation and inference when modelling stationary time-series. Consider a sequence fx T g of random variables with the associated sequence of distribution functions ff T g = F 1,..., F T, we give the following definitions of convergence for X T. () Chapter 5 Univariate time-series analysis 22 / 59

23 Convergence Given a random variable X with distribution function F, X T converges in distribution to X if the following equality is satisfied: lim T! P fx T < x 0 g = P fx < x 0 g, for all x 0, where the function F(x) is continuous. Given a random variable X with distribution function F, X T converges in probability to X if, for each ɛ > 0, the following relation holds: lim P fjx T Xj < ɛg = 1. T! Note that convergence in probability implies convergence in distribution. () Chapter 5 Univariate time-series analysis 23 / 59

24 Central limit theorem Given a sequence fx T g of identically and independently distributed random variables with mean µ and finite variance σ 2, define _ X = 1 T T i=1 ω = p T X i, _X σ µ ω converges in distribution to a standard normal. For any random variable X T, such that p lim X T = a, where a is a constant, given a function g() continuous at a, p lim g (X T ) = g (a).. () Chapter 5 Univariate time-series analysis 24 / 59

25 Cramer s theorem Given two random variables X T and Y T, such that Y T converges in distribution to Y and X T converges in probability to a constant a, the following relationships hold: X T + Y T converges in distribution to (a + Y); Y T /a T converges in distribution to (Y/a); Y T a T converges in distribution to (Y a). Note that all theorems introduced so far extend to vectors of random variables. () Chapter 5 Univariate time-series analysis 25 / 59

26 Mann-Wald Consider a vector z t (k 1) of random variables which satisfies the following property: p lim T 1 T z t zt 0 = Q, t=1 where Q is a positive definite matrix. Consider also a sequence ɛ t of random variables, identically and independently distributed with zero mean and finite variance, σ 2, for which finite moments of each order are defined. If E (z t ɛ t ) = 0, then r p lim T 1 T 1 z t ɛ t = 0, T t=1 T t=1 d z t ɛ t! N 0, σ 2 Q. () Chapter 5 Univariate time-series analysis 26 / 59

27 Insert Clicker 4 here () Chapter 5 Univariate time-series analysis 27 / 59

28 Models for stationary time-series Consider the following time-series model: y t = γy t 1 + ɛ t, where y t is a stationary variable and jγj < 1. As already shown, E (y t ɛ t i ) 6= 0 and the OLS estimator of γ is biased. By applying the Mann Wald result, we can derive the asymptotic distribution of the OLS estimator of γ, bγ: h bγ! d N γ, σ 2 Q 1i, and all the finite sample results available for cross-section can be extended to stationary time-series just by considering large-sample theory. () Chapter 5 Univariate time-series analysis 28 / 59

29 The Maximum Likelihood Method The likelihood function is the joint probability distribution of the data, treated as a function of the unknown coefficients The maximum likelihood estimator (MLE) consists of value of the coefficients that maximize the likelihood function The MLE selects the value of parameters to maximize the probability of drawing the data that have been effectively observed () Chapter 5 Univariate time-series analysis 29 / 59

30 MLE of an MA process Consider an MA process for a return r t+1 : r t+1 = θ 0 + ε t+1 + θ 1 ε t The time series of the residuals can be computed as ε t+1 = r t+1 θ 0 θ 1 ε t ε 0 = 0 If ε t+1 is normally distributed, than we have! 1 f (ε t+1 ) = (2πσ 2 ε ) 1/2 exp ε2 t+1 2σ 2 ε () Chapter 5 Univariate time-series analysis 30 / 59

31 MLE of an MA process If the ε t+1 are independent over time the likelihood function can be written as follows f (ε 1, ε 2,...ε t+1 ) = T Π i=1 f (ε i ) = Π T 1 exp ε2 i=1 (2πσ 2 1/2 ε ) i 2σ 2 ε! The MLE chooses θ 0, θ 1, σ 2 ε to maximize the probability that the estimated model has generated the observed data-set. The optimum is not always found analically, iterative search is the standard method. () Chapter 5 Univariate time-series analysis 31 / 59

32 MLE of an AR process Consider a vector x t containing observations on time-series variables at time t. A sample of T time-series observations on all the variables is represented as: 2 3 x 1 X 1. T = x T In general, estimation is performed by considering the joint sample density function, known also as the likelihood function, which can be expressed as D X 1 T j X 0, θ. The likelihood function is defined on the parameter space ˆ, given the observation of the observed sample X 1 T and of a set of initial conditions X 0. One can interpret such initial conditions as the pre-sample observations on the relevant variables (which are usually unavailable). () Chapter 5 Univariate time-series analysis 32 / 59

33 MLE of an AR process In case of independent observations the likelihood function can be written as the product of the density functions for each observation. However, this is not the relevant case for time-series, as time-series observations are in general sequentially correlated. In the case of time-series, the sample density is constructed using the concept of sequential conditioning. The likelihood function, conditioned with respect to initial conditions, can always be written as the product of a marginal density and a conditional density: Obviously, D X 1 T j X 0, θ = D (x 1 j X 0, θ) D X 2 T j X 1, θ. D X 2 T j X 0, θ = D (x 2 j X 1, θ) D X 3 T j X 2, θ, and, by recursive substitution: D X 1 T j X 0, θ = T D (x t j X t 1, θ). t=1 () Chapter 5 Univariate time-series analysis 33 / 59

34 MLE of an AR process Having obtained D X 1 T j X 0, θ, we can in theory derive D X 1 T, θ by integrating with respect to X 0 the density conditional on pre-sample observations. In practice this could be intractable analytically, as D (X 0 ) is not known. The hypothesis of stationarity becomes crucial at this stage, as stationarity restricts the memory of time-series and limits the effects of pre-sample observations to the first observations in the sample. This is why, in the case of stationary processes, one can simply ignore initial conditions. Clearly, the larger the sample, the better, as the weight of lost information becomes smaller. Moreover, note that even by omitting initial conditions, we have: D X 1 T T j X 0, θ = D (x 1 j X 0, θ) D (x t j X t 1, θ). Therefore, the likelihood function is separated in the product on T 1 conditional distributions and one unconditional distribution. In the case of non-stationarity, the unconditional distribution is undefined. On the other hand, in the case of stationarity, the DGP is completely () Chapter 5 Univariate time-series analysis 34 / 59 t=2

35 Insert Clicker 5 here () Chapter 5 Univariate time-series analysis 35 / 59

36 To give more empirical content to our case, let us consider again the case of the univariate first-order autoregressive process, X t j X t 1 N λx t 1, σ 2, (4) D X 1 T j λ, σ 2 = D X 1 j λ, σ 2 T t=2 D X t j X t 1, λ, σ 2. (5) From (5), the likelihood function clearly involves T 1 conditional densities and one unconditional density. The conditional densities are given by (4), the unconditional density can be derived only in the case of stationarity: x t = λx t 1 + u t, u t N.I.D 0, σ 2. () Chapter 5 Univariate time-series analysis 36 / 59

37 We can obtain by recursive substitution: x t = u t + λu t λ n 1 u 1 + λ n x 0. Only if jλj < 1, the effect of the initial condition disappears and we can write the unconditional density of x t as: D x t j λ, σ 2 σ = 2 N 0, 1 λ 2. Under stationarity we can derive the exact likelihood function: D X 1 T j λ, σ 2 = (2π) T 2 σ T 1 λ exp " 1 2σ 2 1 λ 2 x T t=2 (x t λx t 1 ) 2!# and estimates of the parameters of interest are derived by maximizing this function. Note that bλ cannot be derived analytically, using the exact likelihood function; but it requires conditioning the likelihood and operating a grid search. () Chapter 5 Univariate time-series analysis 37 / 59,

38 Putting ARMA models at work There are four main steps in the Box-Jenkins approach: PRE WHITENING: make sure that the time series is stationary.. MODEL SELECTION: Information criteria are a useful tool to this end. The Akaike s information criteria (AIC) and the.schwarz Bayesian Criterion (SBC) are the most commonly used criteria: AIC = 2 log(l) + 2(p + q) SBC = 2 log(l) + log(n)(p + q) MODEL CHECKING: residual tests. Make sure that residuals are not autocorrelated and check whether their distribution is normal, also ex-post evaluation technique based on RMSE and MAE are implemented (Diebold-Mariano, Giacomini-White). FORECASTING, the selected model is typically simulated forward after estimation of the estimation of parameters to produce forecasts for the variable of interests at the relevant horizon. () Chapter 5 Univariate time-series analysis 38 / 59

39 An Illustration To illustrate how ARMA model can be put at work consider the case of forecasting the YTM of 10-year German bonds from 1994:1 onward, given the availability of data over the period Estimation can be performed in MATLAB by using the appropriate specification in the GARCH procedure. The ML estimation delivers the following results: y 10 t = ( ) ( ) y10 t 1 + ( )0.5 (3.2616e 08) 0.5 ˆ u t () Chapter 5 Univariate time-series analysis 39 / 59

40 Realized YTM Simulated YTM Upper Bound Lower Bound An Illustration x GER10Y YTM Actual Predicted x 10 3 Forecasting 10Y YTM () Chapter 5 Univariate time-series analysis 40 / 59

41 Insert Clicker 6 here () Chapter 5 Univariate time-series analysis 41 / 59

42 Trends Forecasting using an ARMA models exploits two features of the data: mean-reversion and persistence. Unfortunately many financial time series do not feature mean reversion as they behave like non-stationary time series. Non-stationarity of time-series is a possible manifestation of a trend. Consider, for example, the random walk process with a drift:consider, for example, the random walk process with a drift: Recursive substitution yields x t = a 0 + x t 1 + ɛ t, ɛ t n.i.d. 0, σ 2 ɛ. t 1 x t = x 0 + a 0 t + ɛ t i, which shows that the non-stationary series contains both a deterministic (a 0 t) and a stochastic i=0 t 1 ɛ t i trend. () Chapter 5 Univariate time-series i=0 analysis 42 / 59

43 Integrated Series An easy way to make a non-stationary series stationary is differencing: x t = x t x t 1 = (1 L) x t = a 0 + ɛ t. In general, if a time-series needs to be differenced d times to become stationary, then it is integrated of order d or I(d). Our random walk is I(1). When the d-th difference of a time-series x, d x t, can be represented by an ARMA(p, q) model, we say that x t is an integrated moving-average process of order p, d, q and denote it as ARIMA(p, d, q). () Chapter 5 Univariate time-series analysis 43 / 59

44 Deterministic vs Stochastic Trends Compare the behaviour of an integrated process with that of a trend stationary process. Trend stationary processes feature only a deterministic trend: z t = α + βt + ɛ t. The z t process is non-stationary, but the non-stationarity is removed simply by regressing z t on the deterministic trend. Unlike this, for integrated processes like (??) the removal of the deterministic trend does not deliver a stationary time-series. Deterministic trends have no memory while integrated variables have an infinite one. Both integrated variable and deterministic trend exhibit systematic variations, but in the latter case the variation is predictable, whereas in the other one it is not. () Chapter 5 Univariate time-series analysis 44 / 59

45 Insert Clicker 7 here () Chapter 5 Univariate time-series analysis 45 / 59

46 Univariate decompositions of time-series Beveridge and Nelson (1981) provide an elegant way of decomposing a non-stationary time-series into a permanent and a temporary (cyclical) component by applying ARIMA methods. For any non-stationary time-series x t integrated of the first order, the Wold decomposition theorem could be applied to its first difference, to deliver the following representation: x t = µ + C (L) ɛ t, ɛ t n.i.d. 0, σ 2 ɛ, where C (L) is a polynomial of order q in the lag operator. Consider now the polynomial D (L), defined as: D (L) = C (L) C (1). () Chapter 5 Univariate time-series analysis 46 / 59

47 Univariate decompositions of time-series Given that C (1) is a constant, also D (L) will be of order q. Clearly, therefore, 1 is a root of D (L), and D (1) = 0, D (L) = C (L) (1 L), where C (L) is a polynomial of order q 1. By equating (??) to (??), we have: C (L) = C (L) (1 L) + C (1), () Chapter 5 Univariate time-series analysis 47 / 59

48 Univariate decompositions of time-series By integrating, we have: x t = µ + C (L) ɛ t + C (1) ɛ t. x t = C (L) ɛ t + µt + C (1) z t = C t + TR t, where z t is a process for which z t = ɛ t. C t is the cyclical component and TR t is the trend component made of a deterministic and a stochastic trend. Note that the trend component can be represented as: TR t = TR t 1 + µ + C (1) ɛ t. () Chapter 5 Univariate time-series analysis 48 / 59

49 decomposition of an IMA(1,1) process Consider the process: In this case: x t = ɛ t + θɛ t 1, 0 < θ < 1. C (L) = 1 + θl, C (1) = 1 + θ, C (L) = C (L) C (1) = 1 L θ. The Beveridge and Nelson decomposition gives the following result: x t = C t + TR t = θɛ t + (1 + θ) z t. () Chapter 5 Univariate time-series analysis 49 / 59

50 decomposition of an ARIMA(1,1) process Consider the process: x t = ρ x t 1 + ɛ t + θɛ t 1. Here: C (L) = 1 + θl 1 ρl, C (1) = 1 + θ 1 ρ, C (L) = C (L) C (1) 1 L = θ + ρ (1 ρ) (1 ρl), and the Beveridge and Nelson decomposition yields: x t = C t + TR t = θ + ρ (1 ρ) (1 ρl) ɛ t θ 1 ρ z t. () Chapter 5 Univariate time-series analysis 50 / 59

51 BN decomposition in practice The practical derivation of a Beveridge and Nelson decomposition for any ARIMA process is easily derived by applying a methodology suggested by Cuddington and Winters (1987). For any I(1) process, the stochastic trend can be represented as: TR t = TR t 1 + µ + C (1) ɛ t. The decomposition can then be applied in the following steps: 1 identify the appropriate ARIMA model and estimate ɛ t and all the parameters in µ and C (1); 2 given an initial value for TR 0, use (??) to generate the permanent component of the time-series; 3 generate the cyclical component as the difference between the observed value in each period and the permanent component. The above procedure gives the permanent component up to a constant. If the precision of this procedure is unsatisfactory, one can use further conditions to identify the decomposition more precisely. For example, one can impose the condition that the sample mean of () Chapter 5 Univariate time-series analysis 51 / 59

52 Nelson decomposition - The properties of the permanent and temporary components of an integrated time-series delivered by the Beveridge Nelson decomposition are worth some comments. the innovations in the permanent and the transitory components are perfectly negatively correlated; the trend component is more volatile than the actual time-series as the negative correlation between the permanent and the transitory components acts to smooth the original time-series. Note that in general the variance of innovations might have an economic interpretation and theory might suggest different patterns of correlations between innovations in the permanent and transitory components that do differ from a perfectly negative correlation. In general, different restrictions on the correlation between the trend and the cycle components lead to the identification of different stochastic trends for integrated time-series. () Chapter 5 Univariate time-series analysis 52 / 59

53 Nelson decomposition To see this point more explicitly we can compare the Beveridge Nelson trend with the trend extracted using an alternative technique which has been recently very successful in time-series analysis: the Hodrick Prescott filter. the Hodrick Prescott filter is derived by minimizing the following expression: T t=1 (x t TR t ) 2 + λ T 1 t=2 h (TR t+1 TR t ) 2 (TR t TR t 1 ) 2i. The penalty parameter λ controls the smoothness of the series, by controlling the ratio of the variance of the cyclical component and the variance of the series. The larger the λ, the smoother the TR t approaches a linear trend. In practical applications λ is set to 100 for annual data, 1600 for quarterly data and for monthly data. () Chapter 5 Univariate time-series analysis 53 / 59

54 Nelson decomposition Figure 8 reports the Beveridge Nelson trend and the Hodrick Prescott trend (with λ = 14400) for the data generated in the previous section. 40 BN trend HP trend IMA Trends () Chapter 5 Univariate time-series analysis 54 / 59

55 Insert Clicker 8 here () Chapter 5 Univariate time-series analysis 55 / 59

56 Asset Allocation with a simple TVER model: the SOP method Total stock market returns in local currency can be expressed as follows: 1 + H s t+1 P t+1 + D t+1 P t = P t+1 + D t+1 P t = P t+1 + D t+1 = P t+1 + D t+1 P t+1 P t P t P t P t+1 P t = 1 + D t+1 Pt+1 P t+1 P t taking logs: h s t+1 ' (p t+1 p t ) + D t+1 P t+1 () Chapter 5 Univariate time-series analysis 56 / 59

57 Asset Allocation with a simple TVER model In case of investment in a foreign currency we have a third term capturing exchange rate fluctuations. h s,l t+1 ' (p t+1 p t ) + D t+1 P t+1 + (e t+1 e t ) Asset allocation with the simplest TVER model can be applied by specifying univariate time series model to predict each part of the total return. The investor uses monthly data available over the period to find the tangency portfolio for an investment over the period The risky assets available for portfolio allocation are German, US and UK shares and the German 10-Year government bond. The risk free asset is the German short-term rate. () Chapter 5 Univariate time-series analysis 57 / 59

58 Asset Allocation with a simple TVER model German stock market returns: r GER t,t+36 = p GER t+36 p GER t E t p GER t+36 p GER t E t 36 j=1 36 D GER t+j j=1 P GER t+j D GER t+j P GER t+j! p GER t+36 p GER t = E t p GER t+36 p GER t + 36 i=j = β GER 0 + β GER 1 p GER t = E t 36 = 35 i=0 i=1 D GER t j P GER t j D GER t+j P GER t+j! D GER t+j P GER t+j + u 1,t u 2,t p GER t j j=1! () Chapter 5 Univariate time-series analysis 58 / 59

59 Asset Allocation with a simple TVER model US and UK stock market returns : p i t+36 r i t,t+36 = p i t E t p i t+36 p i t 36 D i t+i i=1 P i t+i p i t+36 p i t + = E t p i t+36 p i t = β i 0 + βi 1 p i t = 35 D i t j=0 P i t j j 36 D i t+j j=1 P i t+j + u i 1,t u i 2,t+36 β i 36 2 β i p i t 1 j=1 e i t+36 = e i t + u i 3,t+36, i = UK, US + e i t+36 e t The simple CER model is maintained for the German bond returns: j! () Chapter 5 Univariate time-series analysis 59 / 59

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Econometrics II. Seppo Pynnönen. Spring Department of Mathematics and Statistics, University of Vaasa, Finland

Econometrics II. Seppo Pynnönen. Spring Department of Mathematics and Statistics, University of Vaasa, Finland Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2018 Part IV Financial Time Series As of Feb 5, 2018 1 Financial Time Series Asset Returns Simple returns Log-returns Portfolio

More information

Course information FN3142 Quantitative finance

Course information FN3142 Quantitative finance Course information 015 16 FN314 Quantitative finance This course is aimed at students interested in obtaining a thorough grounding in market finance and related empirical methods. Prerequisite If taken

More information

Amath 546/Econ 589 Univariate GARCH Models

Amath 546/Econ 589 Univariate GARCH Models Amath 546/Econ 589 Univariate GARCH Models Eric Zivot April 24, 2013 Lecture Outline Conditional vs. Unconditional Risk Measures Empirical regularities of asset returns Engle s ARCH model Testing for ARCH

More information

Empirical Analysis of the US Swap Curve Gough, O., Juneja, J.A., Nowman, K.B. and Van Dellen, S.

Empirical Analysis of the US Swap Curve Gough, O., Juneja, J.A., Nowman, K.B. and Van Dellen, S. WestminsterResearch http://www.westminster.ac.uk/westminsterresearch Empirical Analysis of the US Swap Curve Gough, O., Juneja, J.A., Nowman, K.B. and Van Dellen, S. This is a copy of the final version

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Volatility Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) Volatility 01/13 1 / 37 Squared log returns for CRSP daily GPD (TCD) Volatility 01/13 2 / 37 Absolute value

More information

Conditional Heteroscedasticity

Conditional Heteroscedasticity 1 Conditional Heteroscedasticity May 30, 2010 Junhui Qian 1 Introduction ARMA(p,q) models dictate that the conditional mean of a time series depends on past observations of the time series and the past

More information

ARCH and GARCH models

ARCH and GARCH models ARCH and GARCH models Fulvio Corsi SNS Pisa 5 Dic 2011 Fulvio Corsi ARCH and () GARCH models SNS Pisa 5 Dic 2011 1 / 21 Asset prices S&P 500 index from 1982 to 2009 1600 1400 1200 1000 800 600 400 200

More information

Estimation of dynamic term structure models

Estimation of dynamic term structure models Estimation of dynamic term structure models Greg Duffee Haas School of Business, UC-Berkeley Joint with Richard Stanton, Haas School Presentation at IMA Workshop, May 2004 (full paper at http://faculty.haas.berkeley.edu/duffee)

More information

Modelling Returns: the CER and the CAPM

Modelling Returns: the CER and the CAPM Modelling Returns: the CER and the CAPM Carlo Favero Favero () Modelling Returns: the CER and the CAPM 1 / 20 Econometric Modelling of Financial Returns Financial data are mostly observational data: they

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Consider

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. 12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of Variance

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 14th February 2006 Part VII Session 7: Volatility Modelling Session 7: Volatility Modelling

More information

Financial Econometrics Notes. Kevin Sheppard University of Oxford

Financial Econometrics Notes. Kevin Sheppard University of Oxford Financial Econometrics Notes Kevin Sheppard University of Oxford Monday 15 th January, 2018 2 This version: 22:52, Monday 15 th January, 2018 2018 Kevin Sheppard ii Contents 1 Probability, Random Variables

More information

Institute of Actuaries of India Subject CT6 Statistical Methods

Institute of Actuaries of India Subject CT6 Statistical Methods Institute of Actuaries of India Subject CT6 Statistical Methods For 2014 Examinations Aim The aim of the Statistical Methods subject is to provide a further grounding in mathematical and statistical techniques

More information

Predictive Regressions: A Present-Value Approach (van Binsbe. (van Binsbergen and Koijen, 2009)

Predictive Regressions: A Present-Value Approach (van Binsbe. (van Binsbergen and Koijen, 2009) Predictive Regressions: A Present-Value Approach (van Binsbergen and Koijen, 2009) October 5th, 2009 Overview Key ingredients: Results: Draw inference from the Campbell and Shiller (1988) present value

More information

Introduction Dickey-Fuller Test Option Pricing Bootstrapping. Simulation Methods. Chapter 13 of Chris Brook s Book.

Introduction Dickey-Fuller Test Option Pricing Bootstrapping. Simulation Methods. Chapter 13 of Chris Brook s Book. Simulation Methods Chapter 13 of Chris Brook s Book Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 April 26, 2017 Christopher

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

Discussion Paper No. DP 07/05

Discussion Paper No. DP 07/05 SCHOOL OF ACCOUNTING, FINANCE AND MANAGEMENT Essex Finance Centre A Stochastic Variance Factor Model for Large Datasets and an Application to S&P data A. Cipollini University of Essex G. Kapetanios Queen

More information

Forecasting: an introduction. There are a variety of ad hoc methods as well as a variety of statistically derived methods.

Forecasting: an introduction. There are a variety of ad hoc methods as well as a variety of statistically derived methods. Forecasting: an introduction Given data X 0,..., X T 1. Goal: guess, or forecast, X T or X T+r. There are a variety of ad hoc methods as well as a variety of statistically derived methods. Illustration

More information

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5]

High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] 1 High-Frequency Data Analysis and Market Microstructure [Tsay (2005), chapter 5] High-frequency data have some unique characteristics that do not appear in lower frequencies. At this class we have: Nonsynchronous

More information

Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics

Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics Eric Zivot April 29, 2013 Lecture Outline The Leverage Effect Asymmetric GARCH Models Forecasts from Asymmetric GARCH Models GARCH Models with

More information

Chapter 6 Forecasting Volatility using Stochastic Volatility Model

Chapter 6 Forecasting Volatility using Stochastic Volatility Model Chapter 6 Forecasting Volatility using Stochastic Volatility Model Chapter 6 Forecasting Volatility using SV Model In this chapter, the empirical performance of GARCH(1,1), GARCH-KF and SV models from

More information

Statistical Models and Methods for Financial Markets

Statistical Models and Methods for Financial Markets Tze Leung Lai/ Haipeng Xing Statistical Models and Methods for Financial Markets B 374756 4Q Springer Preface \ vii Part I Basic Statistical Methods and Financial Applications 1 Linear Regression Models

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

This homework assignment uses the material on pages ( A moving average ).

This homework assignment uses the material on pages ( A moving average ). Module 2: Time series concepts HW Homework assignment: equally weighted moving average This homework assignment uses the material on pages 14-15 ( A moving average ). 2 Let Y t = 1/5 ( t + t-1 + t-2 +

More information

Week 7 Quantitative Analysis of Financial Markets Simulation Methods

Week 7 Quantitative Analysis of Financial Markets Simulation Methods Week 7 Quantitative Analysis of Financial Markets Simulation Methods Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 November

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis

Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis Kunya Bowornchockchai International Science Index, Mathematical and Computational Sciences waset.org/publication/10003789

More information

Modelling financial data with stochastic processes

Modelling financial data with stochastic processes Modelling financial data with stochastic processes Vlad Ardelean, Fabian Tinkl 01.08.2012 Chair of statistics and econometrics FAU Erlangen-Nuremberg Outline Introduction Stochastic processes Volatility

More information

STAT758. Final Project. Time series analysis of daily exchange rate between the British Pound and the. US dollar (GBP/USD)

STAT758. Final Project. Time series analysis of daily exchange rate between the British Pound and the. US dollar (GBP/USD) STAT758 Final Project Time series analysis of daily exchange rate between the British Pound and the US dollar (GBP/USD) Theophilus Djanie and Harry Dick Thompson UNR May 14, 2012 INTRODUCTION Time Series

More information

Risk Management and Time Series

Risk Management and Time Series IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Risk Management and Time Series Time series models are often employed in risk management applications. They can be used to estimate

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

The Econometrics of Financial Returns

The Econometrics of Financial Returns The Econometrics of Financial Returns Carlo Favero December 2017 Favero () The Econometrics of Financial Returns December 2017 1 / 55 The Econometrics of Financial Returns Predicting the distribution of

More information

Lecture 5a: ARCH Models

Lecture 5a: ARCH Models Lecture 5a: ARCH Models 1 2 Big Picture 1. We use ARMA model for the conditional mean 2. We use ARCH model for the conditional variance 3. ARMA and ARCH model can be used together to describe both conditional

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

List of tables List of boxes List of screenshots Preface to the third edition Acknowledgements

List of tables List of boxes List of screenshots Preface to the third edition Acknowledgements Table of List of figures List of tables List of boxes List of screenshots Preface to the third edition Acknowledgements page xii xv xvii xix xxi xxv 1 Introduction 1 1.1 What is econometrics? 2 1.2 Is

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (42 pts) Answer briefly the following questions. 1. Questions

More information

University of New South Wales Semester 1, Economics 4201 and Homework #2 Due on Tuesday 3/29 (20% penalty per day late)

University of New South Wales Semester 1, Economics 4201 and Homework #2 Due on Tuesday 3/29 (20% penalty per day late) University of New South Wales Semester 1, 2011 School of Economics James Morley 1. Autoregressive Processes (15 points) Economics 4201 and 6203 Homework #2 Due on Tuesday 3/29 (20 penalty per day late)

More information

Idiosyncratic risk, insurance, and aggregate consumption dynamics: a likelihood perspective

Idiosyncratic risk, insurance, and aggregate consumption dynamics: a likelihood perspective Idiosyncratic risk, insurance, and aggregate consumption dynamics: a likelihood perspective Alisdair McKay Boston University June 2013 Microeconomic evidence on insurance - Consumption responds to idiosyncratic

More information

LONG MEMORY IN VOLATILITY

LONG MEMORY IN VOLATILITY LONG MEMORY IN VOLATILITY How persistent is volatility? In other words, how quickly do financial markets forget large volatility shocks? Figure 1.1, Shephard (attached) shows that daily squared returns

More information

Dependence Structure and Extreme Comovements in International Equity and Bond Markets

Dependence Structure and Extreme Comovements in International Equity and Bond Markets Dependence Structure and Extreme Comovements in International Equity and Bond Markets René Garcia Edhec Business School, Université de Montréal, CIRANO and CIREQ Georges Tsafack Suffolk University Measuring

More information

The Economic and Social BOOTSTRAPPING Review, Vol. 31, No. THE 4, R/S October, STATISTIC 2000, pp

The Economic and Social BOOTSTRAPPING Review, Vol. 31, No. THE 4, R/S October, STATISTIC 2000, pp The Economic and Social BOOTSTRAPPING Review, Vol. 31, No. THE 4, R/S October, STATISTIC 2000, pp. 351-359 351 Bootstrapping the Small Sample Critical Values of the Rescaled Range Statistic* MARWAN IZZELDIN

More information

Financial Time Series Analysis (FTSA)

Financial Time Series Analysis (FTSA) Financial Time Series Analysis (FTSA) Lecture 6: Conditional Heteroscedastic Models Few models are capable of generating the type of ARCH one sees in the data.... Most of these studies are best summarized

More information

Stochastic Volatility (SV) Models

Stochastic Volatility (SV) Models 1 Motivations Stochastic Volatility (SV) Models Jun Yu Some stylised facts about financial asset return distributions: 1. Distribution is leptokurtic 2. Volatility clustering 3. Volatility responds to

More information

INFORMATION EFFICIENCY HYPOTHESIS THE FINANCIAL VOLATILITY IN THE CZECH REPUBLIC CASE

INFORMATION EFFICIENCY HYPOTHESIS THE FINANCIAL VOLATILITY IN THE CZECH REPUBLIC CASE INFORMATION EFFICIENCY HYPOTHESIS THE FINANCIAL VOLATILITY IN THE CZECH REPUBLIC CASE Abstract Petr Makovský If there is any market which is said to be effective, this is the the FOREX market. Here we

More information

LECTURE NOTES 10 ARIEL M. VIALE

LECTURE NOTES 10 ARIEL M. VIALE LECTURE NOTES 10 ARIEL M VIALE 1 Behavioral Asset Pricing 11 Prospect theory based asset pricing model Barberis, Huang, and Santos (2001) assume a Lucas pure-exchange economy with three types of assets:

More information

Financial Econometrics Lecture 5: Modelling Volatility and Correlation

Financial Econometrics Lecture 5: Modelling Volatility and Correlation Financial Econometrics Lecture 5: Modelling Volatility and Correlation Dayong Zhang Research Institute of Economics and Management Autumn, 2011 Learning Outcomes Discuss the special features of financial

More information

Modeling Credit Risk of Loan Portfolios in the Presence of Autocorrelation (Part 2)

Modeling Credit Risk of Loan Portfolios in the Presence of Autocorrelation (Part 2) Practitioner Seminar in Financial and Insurance Mathematics ETH Zürich Modeling Credit Risk of Loan Portfolios in the Presence of Autocorrelation (Part 2) Christoph Frei UBS and University of Alberta March

More information

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay Solutions to Midterm Problem A: (30 pts) Answer briefly the following questions. Each question has

More information

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng Financial Econometrics Jeffrey R. Russell Midterm 2014 Suggested Solutions TA: B. B. Deng Unless otherwise stated, e t is iid N(0,s 2 ) 1. (12 points) Consider the three series y1, y2, y3, and y4. Match

More information

Lecture 5. Predictability. Traditional Views of Market Efficiency ( )

Lecture 5. Predictability. Traditional Views of Market Efficiency ( ) Lecture 5 Predictability Traditional Views of Market Efficiency (1960-1970) CAPM is a good measure of risk Returns are close to unpredictable (a) Stock, bond and foreign exchange changes are not predictable

More information

Return Decomposition over the Business Cycle

Return Decomposition over the Business Cycle Return Decomposition over the Business Cycle Tolga Cenesizoglu March 1, 2016 Cenesizoglu Return Decomposition & the Business Cycle March 1, 2016 1 / 54 Introduction Stock prices depend on investors expectations

More information

Financial Time Series and Their Characterictics

Financial Time Series and Their Characterictics Financial Time Series and Their Characterictics Mei-Yuan Chen Department of Finance National Chung Hsing University Feb. 22, 2013 Contents 1 Introduction 1 1.1 Asset Returns..............................

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Analyzing Oil Futures with a Dynamic Nelson-Siegel Model

Analyzing Oil Futures with a Dynamic Nelson-Siegel Model Analyzing Oil Futures with a Dynamic Nelson-Siegel Model NIELS STRANGE HANSEN & ASGER LUNDE DEPARTMENT OF ECONOMICS AND BUSINESS, BUSINESS AND SOCIAL SCIENCES, AARHUS UNIVERSITY AND CENTER FOR RESEARCH

More information

Forecasting Stock Index Futures Price Volatility: Linear vs. Nonlinear Models

Forecasting Stock Index Futures Price Volatility: Linear vs. Nonlinear Models The Financial Review 37 (2002) 93--104 Forecasting Stock Index Futures Price Volatility: Linear vs. Nonlinear Models Mohammad Najand Old Dominion University Abstract The study examines the relative ability

More information

INTERTEMPORAL ASSET ALLOCATION: THEORY

INTERTEMPORAL ASSET ALLOCATION: THEORY INTERTEMPORAL ASSET ALLOCATION: THEORY Multi-Period Model The agent acts as a price-taker in asset markets and then chooses today s consumption and asset shares to maximise lifetime utility. This multi-period

More information

GRANULARITY ADJUSTMENT FOR DYNAMIC MULTIPLE FACTOR MODELS : SYSTEMATIC VS UNSYSTEMATIC RISKS

GRANULARITY ADJUSTMENT FOR DYNAMIC MULTIPLE FACTOR MODELS : SYSTEMATIC VS UNSYSTEMATIC RISKS GRANULARITY ADJUSTMENT FOR DYNAMIC MULTIPLE FACTOR MODELS : SYSTEMATIC VS UNSYSTEMATIC RISKS Patrick GAGLIARDINI and Christian GOURIÉROUX INTRODUCTION Risk measures such as Value-at-Risk (VaR) Expected

More information

Mathematical Annex 5 Models with Rational Expectations

Mathematical Annex 5 Models with Rational Expectations George Alogoskoufis, Dynamic Macroeconomic Theory, 2015 Mathematical Annex 5 Models with Rational Expectations In this mathematical annex we examine the properties and alternative solution methods for

More information

Forecasting Financial Markets. Time Series Analysis

Forecasting Financial Markets. Time Series Analysis Forecasting Financial Markets Time Series Analysis Copyright 1999-2011 Investment Analytics Copyright 1999-2011 Investment Analytics Forecasting Financial Markets Time Series Analysis Slide: 1 Overview

More information

User Guide of GARCH-MIDAS and DCC-MIDAS MATLAB Programs

User Guide of GARCH-MIDAS and DCC-MIDAS MATLAB Programs User Guide of GARCH-MIDAS and DCC-MIDAS MATLAB Programs 1. Introduction The GARCH-MIDAS model decomposes the conditional variance into the short-run and long-run components. The former is a mean-reverting

More information

Macroeconometrics - handout 5

Macroeconometrics - handout 5 Macroeconometrics - handout 5 Piotr Wojcik, Katarzyna Rosiak-Lada pwojcik@wne.uw.edu.pl, klada@wne.uw.edu.pl May 10th or 17th, 2007 This classes is based on: Clarida R., Gali J., Gertler M., [1998], Monetary

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information

A Note on the Oil Price Trend and GARCH Shocks

A Note on the Oil Price Trend and GARCH Shocks A Note on the Oil Price Trend and GARCH Shocks Jing Li* and Henry Thompson** This paper investigates the trend in the monthly real price of oil between 1990 and 2008 with a generalized autoregressive conditional

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

Assicurazioni Generali: An Option Pricing Case with NAGARCH

Assicurazioni Generali: An Option Pricing Case with NAGARCH Assicurazioni Generali: An Option Pricing Case with NAGARCH Assicurazioni Generali: Business Snapshot Find our latest analyses and trade ideas on bsic.it Assicurazioni Generali SpA is an Italy-based insurance

More information

Optimal Hedge Ratio and Hedging Effectiveness of Stock Index Futures Evidence from India

Optimal Hedge Ratio and Hedging Effectiveness of Stock Index Futures Evidence from India Optimal Hedge Ratio and Hedging Effectiveness of Stock Index Futures Evidence from India Executive Summary In a free capital mobile world with increased volatility, the need for an optimal hedge ratio

More information

Identifying Long-Run Risks: A Bayesian Mixed-Frequency Approach

Identifying Long-Run Risks: A Bayesian Mixed-Frequency Approach Identifying : A Bayesian Mixed-Frequency Approach Frank Schorfheide University of Pennsylvania CEPR and NBER Dongho Song University of Pennsylvania Amir Yaron University of Pennsylvania NBER February 12,

More information

Subject CS2A Risk Modelling and Survival Analysis Core Principles

Subject CS2A Risk Modelling and Survival Analysis Core Principles ` Subject CS2A Risk Modelling and Survival Analysis Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who

More information

Online Appendix to Bond Return Predictability: Economic Value and Links to the Macroeconomy. Pairwise Tests of Equality of Forecasting Performance

Online Appendix to Bond Return Predictability: Economic Value and Links to the Macroeconomy. Pairwise Tests of Equality of Forecasting Performance Online Appendix to Bond Return Predictability: Economic Value and Links to the Macroeconomy This online appendix is divided into four sections. In section A we perform pairwise tests aiming at disentangling

More information

Financial Times Series. Lecture 6

Financial Times Series. Lecture 6 Financial Times Series Lecture 6 Extensions of the GARCH There are numerous extensions of the GARCH Among the more well known are EGARCH (Nelson 1991) and GJR (Glosten et al 1993) Both models allow for

More information

Online Appendix to Grouped Coefficients to Reduce Bias in Heterogeneous Dynamic Panel Models with Small T

Online Appendix to Grouped Coefficients to Reduce Bias in Heterogeneous Dynamic Panel Models with Small T Online Appendix to Grouped Coefficients to Reduce Bias in Heterogeneous Dynamic Panel Models with Small T Nathan P. Hendricks and Aaron Smith October 2014 A1 Bias Formulas for Large T The heterogeneous

More information

Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?

Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? DOI 0.007/s064-006-9073-z ORIGINAL PAPER Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? Jules H. van Binsbergen Michael W. Brandt Received:

More information

Estimating and Accounting for the Output Gap with Large Bayesian Vector Autoregressions

Estimating and Accounting for the Output Gap with Large Bayesian Vector Autoregressions Estimating and Accounting for the Output Gap with Large Bayesian Vector Autoregressions James Morley 1 Benjamin Wong 2 1 University of Sydney 2 Reserve Bank of New Zealand The view do not necessarily represent

More information

Estimating the Natural Rate of Unemployment in Hong Kong

Estimating the Natural Rate of Unemployment in Hong Kong Estimating the Natural Rate of Unemployment in Hong Kong Petra Gerlach-Kristen Hong Kong Institute of Economics and Business Strategy May, Abstract This paper uses unobserved components analysis to estimate

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Other Miscellaneous Topics and Applications of Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

Notes on Macroeconomic Theory II

Notes on Macroeconomic Theory II Notes on Macroeconomic Theory II Chao Wei Department of Economics George Washington University Washington, DC 20052 January 2007 1 1 Deterministic Dynamic Programming Below I describe a typical dynamic

More information

Fiscal and Monetary Policies: Background

Fiscal and Monetary Policies: Background Fiscal and Monetary Policies: Background Behzad Diba University of Bern April 2012 (Institute) Fiscal and Monetary Policies: Background April 2012 1 / 19 Research Areas Research on fiscal policy typically

More information

Indian Institute of Management Calcutta. Working Paper Series. WPS No. 797 March Implied Volatility and Predictability of GARCH Models

Indian Institute of Management Calcutta. Working Paper Series. WPS No. 797 March Implied Volatility and Predictability of GARCH Models Indian Institute of Management Calcutta Working Paper Series WPS No. 797 March 2017 Implied Volatility and Predictability of GARCH Models Vivek Rajvanshi Assistant Professor, Indian Institute of Management

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Introductory Econometrics for Finance

Introductory Econometrics for Finance Introductory Econometrics for Finance SECOND EDITION Chris Brooks The ICMA Centre, University of Reading CAMBRIDGE UNIVERSITY PRESS List of figures List of tables List of boxes List of screenshots Preface

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 6. Volatility Models and (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 10/02/2012 Outline 1 Volatility

More information

Strategies for High Frequency FX Trading

Strategies for High Frequency FX Trading Strategies for High Frequency FX Trading - The choice of bucket size Malin Lunsjö and Malin Riddarström Department of Mathematical Statistics Faculty of Engineering at Lund University June 2017 Abstract

More information

Value at Risk and Self Similarity

Value at Risk and Self Similarity Value at Risk and Self Similarity by Olaf Menkens School of Mathematical Sciences Dublin City University (DCU) St. Andrews, March 17 th, 2009 Value at Risk and Self Similarity 1 1 Introduction The concept

More information

ANALYSIS OF FINANCIAL MARKETS: TECHNICAL ANALYSIS AGAINST TIME SERIES

ANALYSIS OF FINANCIAL MARKETS: TECHNICAL ANALYSIS AGAINST TIME SERIES Undergraduate Thesis MAJOR IN MATHEMATICS Department of Probability, Logic and Statistics University of Barcelona ANALYSIS OF FINANCIAL MARKETS: TECHNICAL ANALYSIS AGAINST TIME SERIES Arnau Guardia Berdiell

More information

The mean-variance portfolio choice framework and its generalizations

The mean-variance portfolio choice framework and its generalizations The mean-variance portfolio choice framework and its generalizations Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2014 Outline and objectives The backward, three-step solution

More information

Stock Price Co-Movement and the Foundations of Pairs. Trading

Stock Price Co-Movement and the Foundations of Pairs. Trading Stock Price Co-Movement and the Foundations of Pairs Trading Adam Farago and Erik Hjalmarsson Both authors are at the Department of Economics and the Centre for Finance, University of Gothenburg. Contact

More information

GMM Estimation. 1 Introduction. 2 Consumption-CAPM

GMM Estimation. 1 Introduction. 2 Consumption-CAPM GMM Estimation 1 Introduction Modern macroeconomic models are typically based on the intertemporal optimization and rational expectations. The Generalized Method of Moments (GMM) is an econometric framework

More information

Internet Appendix for Asymmetry in Stock Comovements: An Entropy Approach

Internet Appendix for Asymmetry in Stock Comovements: An Entropy Approach Internet Appendix for Asymmetry in Stock Comovements: An Entropy Approach Lei Jiang Tsinghua University Ke Wu Renmin University of China Guofu Zhou Washington University in St. Louis August 2017 Jiang,

More information

Explaining the Last Consumption Boom-Bust Cycle in Ireland

Explaining the Last Consumption Boom-Bust Cycle in Ireland Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Policy Research Working Paper 6525 Explaining the Last Consumption Boom-Bust Cycle in

More information

Brooks, Introductory Econometrics for Finance, 3rd Edition

Brooks, Introductory Econometrics for Finance, 3rd Edition P1.T2. Quantitative Analysis Brooks, Introductory Econometrics for Finance, 3rd Edition Bionic Turtle FRM Study Notes Sample By David Harper, CFA FRM CIPM and Deepa Raju www.bionicturtle.com Chris Brooks,

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

Research Article The Volatility of the Index of Shanghai Stock Market Research Based on ARCH and Its Extended Forms

Research Article The Volatility of the Index of Shanghai Stock Market Research Based on ARCH and Its Extended Forms Discrete Dynamics in Nature and Society Volume 2009, Article ID 743685, 9 pages doi:10.1155/2009/743685 Research Article The Volatility of the Index of Shanghai Stock Market Research Based on ARCH and

More information

1 Explaining Labor Market Volatility

1 Explaining Labor Market Volatility Christiano Economics 416 Advanced Macroeconomics Take home midterm exam. 1 Explaining Labor Market Volatility The purpose of this question is to explore a labor market puzzle that has bedeviled business

More information

Actuarial Society of India EXAMINATIONS

Actuarial Society of India EXAMINATIONS Actuarial Society of India EXAMINATIONS 7 th June 005 Subject CT6 Statistical Models Time allowed: Three Hours (0.30 am 3.30 pm) INSTRUCTIONS TO THE CANDIDATES. Do not write your name anywhere on the answer

More information

Fast Convergence of Regress-later Series Estimators

Fast Convergence of Regress-later Series Estimators Fast Convergence of Regress-later Series Estimators New Thinking in Finance, London Eric Beutner, Antoon Pelsser, Janina Schweizer Maastricht University & Kleynen Consultants 12 February 2014 Beutner Pelsser

More information

Key Moments in the Rouwenhorst Method

Key Moments in the Rouwenhorst Method Key Moments in the Rouwenhorst Method Damba Lkhagvasuren Concordia University CIREQ September 14, 2012 Abstract This note characterizes the underlying structure of the autoregressive process generated

More information