Multilevel Monte Carlo Path Simulation

Size: px
Start display at page:

Download "Multilevel Monte Carlo Path Simulation"

Transcription

1 Mutieve Monte Caro p. 1/32 Mutieve Monte Caro Path Simuation Mike Gies Oxford University Mathematica Institute Oxford-Man Institute of Quantitative Finance Workshop on Stochastic Computationa Methods with Appications in Finance, Insurance and the Life Sciences RICAM, November 17-21, 2008

2 Mutieve Monte Caro p. 2/32 Generic Probem Stochastic differentia equation with genera drift and voatiity terms: ds(t) = a(s,t) dt + b(s,t) dw(t) In many finance appications, we want to compute the expected vaue of an option dependent on the termina state P = f(s(t)) with a uniform Lipschitz bound, f(u) f(v ) c U V, U,V.

3 Mutieve Monte Caro p. 3/32 Standard MC Approach Euer discretisation with timestep h: Ŝ n+1 = Ŝn + a(ŝn,t n )h + b(ŝn,t n ) W n Simpest estimator for expected payoff is an average of N independent path simuations: Ŷ = N 1 N i=1 f(ŝ(i) T/h ) weak convergence O(h) error in expected payoff strong convergence O(h 1/2 ) error in individua path

4 Mutieve Monte Caro p. 4/32 Standard MC Approach Mean Square Error is O ( N 1 + h 2) first term comes from variance of estimator second term comes from bias due to weak convergence To make this O(ε 2 ) requires N = O(ε 2 ), h = O(ε) = cost = O(N h 1 ) = O(ε 3 ) Aim is to improve this cost to O ( ε 2 (og ε) 2), by combining simuations with different numbers of timesteps same accuracy as finest cacuations, but at a much ower computationa cost.

5 Mutieve Monte Caro p. 5/32 Mutieve MC Approach Consider mutipe sets of simuations with different timesteps h = 2 T, = 0, 1,...,L, and payoff P E[ P L ] = E[ P 0 ] + L =1 E[ P P 1 ] Expected vaue is same aim is to reduce variance of estimator for a fixed computationa cost. Key point: approximate E[ P P 1 ] using N simuations with P and P 1 obtained using same Brownian path. Ŷ = N 1 N i=1 ( (i) P ) (i) P 1

6 Mutieve MC Approach Discrete Brownian path at different eves P 0 P P 2 P 3 P 4 P 5 P P Mutieve Monte Caro p. 6/32

7 Mutieve Monte Caro p. 7/32 Mutieve MC Approach each eve adds more detai to Brownian path E[ P P 1 ] refects impact of that extra detai on the payoff different timescaes handed by different eves simiar to different waveengths being handed by different grids in mutigrid

8 Mutieve Monte Caro p. 8/32 Mutieve MC Approach Using independent paths for each eve, the variance of the combined estimator is V [ L =0 Ŷ ] = L =0 N 1 V, V V[ P P 1 ], and the computationa cost is proportiona to L =0 N h 1. Hence, the variance is minimised for a fixed computationa cost by choosing N to be proportiona to V h. The constant of proportionaity can be chosen so that the combined variance is O(ε 2 ).

9 Mutieve Monte Caro p. 9/32 Mutieve MC Approach For the Euer discretisation and the Lipschitz payoff function V[ P P] = O(h ) = V[ P P 1 ] = O(h ) and the optima N is asymptoticay proportiona to h. To make the combined variance O(ε 2 ) requires N = O(ε 2 Lh ). To make the bias O(ε) requires L = og 2 ε 1 + O(1) = h L = O(ε). Hence, we obtain an O(ε 2 ) MSE for a computationa cost which is O(ε 2 L 2 ) = O(ε 2 (og ε) 2 ).

10 Mutieve Monte Caro p. 10/32 Resuts Geometric Brownian motion: ds = r S dt + σ S dw, 0 < t < T, T =1, S(0)=1, r=0.05, σ=0.2 European ca option with discounted payoff exp( rt) max(s(t) K, 0) with K =1.

11 Mutieve Monte Caro p. 11/32 MLMC Resuts GBM: European ca, exp( rt) max(s(t) K, 0) og 2 variance 10 og 2 mean P P P P P P

12 Mutieve Monte Caro p. 12/32 MLMC Resuts GBM: European ca, exp( rt) max(s(t) K, 0) ε= ε= ε= ε= ε= N 10 6 ε 2 Cost Std MC MLMC ε

13 Mutieve Monte Caro p. 13/32 Mutieve MC Approach Theorem: Let P be a functiona of the soution of a stochastic o.d.e., and P the discrete approximation using a timestep h = M T. If there exist independent estimators Ŷ based on N Monte Caro sampes, and positive constants α 1 2,β,c 1,c 2,c 3 such that i) E[ P P] c 1 h α E[ P 0 ], = 0 ii) E[Ŷ] = E[ P P 1 ], > 0 iii) V[Ŷ] c 2 N 1 h β iv) C, the computationa compexity of Ŷ, is bounded by C c 3 N h 1

14 Mutieve Monte Caro p. 14/32 Mutieve MC Approach then there exists a positive constant c 4 such that for any ε<e 1 there are vaues L and N for which the muti-eve estimator has Mean Square Error MSE E L Ŷ = Ŷ, =0 [ (Ŷ E[P] ) 2 ] < ε 2 with a computationa compexity C with bound c 4 ε 2, β > 1, C c 4 ε 2 (og ε) 2, β = 1, c 4 ε 2 (1 β)/α, 0 < β < 1.

15 Mutieve Monte Caro p. 15/32 Mistein Scheme The theorem suggests use of Mistein approximation better strong convergence, same weak convergence Generic scaar SDE: ds(t) = a(s,t) dt + b(s,t) dw(t), 0<t<T. Mistein scheme: Ŝ n+1 = Ŝn + ah + b W n b b ( ) ( W n ) 2 h.

16 Mutieve Monte Caro p. 16/32 Mistein Scheme In scaar case: O(h) strong convergence O(ε 2 ) compexity for Lipschitz payoffs trivia O(ε 2 ) compexity for more compex cases using carefuy constructed estimators based on Brownian interpoation or extrapoation digita, with discontinuous payoff Asian, based on average ookback and barrier, based on min/max

17 Mutieve Monte Caro p. 17/32 MLMC Resuts GBM: European ca, exp( rt) max(s(t) K, 0) og 2 variance og 2 mean P P P P 1 P P

18 Mutieve Monte Caro p. 18/32 MLMC Resuts GBM: European ca, exp( rt) max(s(t) K, 0) 10 8 ε= ε= ε= ε= ε= Std MC MLMC N 10 6 ε 2 Cost ε

19 Mutieve Monte Caro p. 19/32 MLMC Resuts GBM: Asian option, exp( rt) max(t 1 T S(t) dt 1, 0) og 2 variance og 2 mean P P P P 1 P P

20 Mutieve Monte Caro p. 20/32 MLMC Resuts GBM: Asian option, exp( rt) max(t 1 T 0 S(t) dt 1, 0) 10 8 ε= ε= ε= ε= ε= Std MC MLMC N 10 6 ε 2 Cost ε

21 Mutieve Monte Caro p. 21/32 MLMC Resuts GBM: ookback option, exp( rt) (S(T) min 0<t<T S(t)) og 2 variance og 2 mean P P P P 1 P P

22 Mutieve Monte Caro p. 22/32 MLMC Resuts GBM: ookback option, exp( rt) (S(T) min 0<t<T S(t)) 10 8 ε= ε= ε= ε= ε= Std MC MLMC N 10 6 ε 2 Cost ε

23 Mutieve Monte Caro p. 23/32 Extensions 1) Mistein scheme for vector SDEs significanty more difficut because it invoves Lévy areas defined as A jk,n = tn+1 t n (W j (t) W j (t n )) dw k (W k (t) W k (t n )) dw j. O(h) strong convergence if Lévy areas are simuated correcty expensive O(h 1/2 ) strong convergence in genera if Lévy areas are omitted, except if a certain commutativity condition is satisfied (usefu for a number of rea cases) Lipschitz payoffs can be handed we using antithetic variabes

24 Mutieve Monte Caro p. 24/32 Extensions 2) Quasi-Monte Caro standard Monte Caro has a random samping error proportiona to N 1/2 Quasi-Monte Caro uses a deterministic choice of sampe points to achieve an error which is neary O(N 1 ) in the best cases Not much appicabe theory because financia payoffs don t have required smoothness In practice, get great resuts using rank-1 attice rues deveoped by Ian Soan s group at UNSW Haven t yet tried Sobo sequences

25 Mutieve Monte Caro p. 25/32 Extensions 3) Numerica Anaysis Finance & Stochastics paper with Des Higham and Xeurong Mao (Strathcyde) on anaysis of Euer discretisation with compex options Rainer Avikainen (Jyväskyä) has a paper in the same issue with a tighter bound for the digita option Kaus Ritter (Darmstadt) and Thomas Müer-Gronbach (Magdeburg) have generaised anaysis of Euer discretisation to path dependent options with a Lipschitz property more work needed to anayse Mistein approximation

26 Mutieve Monte Caro p. 26/32 Extensions 4) Greeks this is the name given to derivatives such as E[P] S 0 [ ] P under certain circumstance, this is equa to E S 0 this eads to the pathwise differentiation approach the mutieve approach shoud again work we but not tried yet can aso incorporate the adjoint approach deveoped with Pau Gasserman more efficient when many Greeks are wanted for one payoff function

27 Mutieve Monte Caro p. 27/32 Extensions 5) vibrato Monte Caro probem with discontinuous payoffs is that sma changes in path can ead to a big change in the payoff so far, have treated digita options using a trick in Pau Gasserman s book, taking the conditiona expectation one timestep before maturity, which effectivey smooths the payoff the vibrato Monte Caro idea generaises this to cases in which the conditiona expectation is not known in cosed form

28 Mutieve Monte Caro p. 28/32 Extensions 6) American options with European options, the buyer can ony exercise the option at maturity, the fina time T with American options, the buyer can exercise at any time, eading to an optima contro probem in PDE approaches, this is soved using a inear compementarity approach which marches backwards in time modifying Monte Caro methods is much harder an active research topic I have some ideas on how to incorporate the mutieve approach hope to start a project on this soon

29 Mutieve Monte Caro p. 29/32 Extensions 7) Adaptive time integration Rau Tempone and Anders Szepessy (KTH) are combining their adaptive timestepping methods (based on adjoint-weighted error indicators) with the mutieve method Have appied it very successfuy to first exit time appications Shoud aso be very good for CIR and Heston modes which invove a v singuarity

30 Mutieve Monte Caro p. 30/32 Extensions 8) SPDEs (stochastic PDEs) working with a coeague Christoph Reisinger on a financia SPDE which is a convection-diffusion PDE with a stochastic convection veocity : dv = µ v x dt v x 2 dt ρ v x dw working with Rob Scheich (Bath) on an eiptic SPDE where the diffusivity is a og-norma stochastic fied: (κ(x) p ) = 0. Kaus Ritter and others are aso using mutieve approach for SPDE s

31 Mutieve Monte Caro p. 31/32 Extensions 9) CUDA impementation on NVIDIA graphics cards advances in computer hardware/software are important as we as advances in mathematics graphics cards are very powerfu parae processors, with up to 240 cores per graphics chip (GPU) 2 years ago, NVIDIA introduced the CUDA deveopment environment which uses minor extension to C/C++ with a visiting student, Xiaoke Su, achieved 100 speedup on a Monte Caro appication using 128 cores (more recenty, achieved 50 speedup for simpe PDE appications, incuding impicit ADI time-marching)

32 Mutieve Monte Caro p. 32/32 Concusions Mutieve Monte Caro method has aready achieved improved order of compexity significant benefits for mode probems but much more research is needed, both theoretica and appied. Acknowedgements: Pau Gasserman, Mark Broadie, Terry Lyons for eary discussions Microsoft, EPSRC, Oxford-Man Institute for funding

Multilevel Monte Carlo Path Simulation

Multilevel Monte Carlo Path Simulation Mutieve Monte Caro Path Simuation Mike Gies gies@comab.ox.ac.uk Oxford University Computing Laboratory First IMA Conference on Computationa Finance Mutieve Monte Caro p. 1/34 Generic Probem Stochastic

More information

Variance Reduction Through Multilevel Monte Carlo Path Calculations

Variance Reduction Through Multilevel Monte Carlo Path Calculations Variance Reduction Through Mutieve Monte Caro Path Cacuations Mike Gies gies@comab.ox.ac.uk Oxford University Computing Laboratory Mutieve Monte Caro p. 1/30 Mutigrid A powerfu technique for soving PDE

More information

Multilevel Monte Carlo path simulation

Multilevel Monte Carlo path simulation Mutieve Monte Caro path simuation Mike Gies gies@comab.ox.ac.uk Oxford University Mathematica Institute Oxford-Man Institute of Quantitative Finance Acknowedgments: research funding from Microsoft and

More information

Multilevel Monte Carlo Path Simulation

Multilevel Monte Carlo Path Simulation Mutieve Monte Caro Path Simuation Mike Gies gies@comab.ox.ac.uk Oxford University Computing Laboratory 15th Scottish Computationa Mathematics Symposium Mutieve Monte Caro p. 1/34 SDEs in Finance In computationa

More information

Multilevel Monte Carlo for multi-dimensional SDEs

Multilevel Monte Carlo for multi-dimensional SDEs Mutieve Monte Caro for muti-dimensiona SDEs Mike Gies mike.gies@maths.ox.ac.uk Oxford University Mathematica Institute Oxford-Man Institute of Quantitative Finance MCQMC, Warsaw, August 16-20, 2010 Mutieve

More information

Multilevel Monte Carlo Simulation

Multilevel Monte Carlo Simulation Multilevel Monte Carlo p. 1/48 Multilevel Monte Carlo Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance Workshop on Computational

More information

MULTILEVEL MONTE CARLO FOR BASKET OPTIONS. Michael B. Giles

MULTILEVEL MONTE CARLO FOR BASKET OPTIONS. Michael B. Giles Proceedings of the 29 Winter Simuation Conference M. D. Rossetti, R. R. Hi, B. Johansson, A. Dunkin, and R. G. Ingas, eds. MULTILEVEL MONTE CARLO FOR BASKET OPTIONS Michae B. Gies Oxford-Man Institute

More information

Improved multilevel Monte Carlo convergence using the Milstein scheme

Improved multilevel Monte Carlo convergence using the Milstein scheme Improved mutieve Monte Caro convergence using the Mistein scheme M.B. Gies Oxford University Computing Laboratory, Parks Road, Oxford, U.K. Mike.Gies@comab.ox.ac.uk Summary. In this paper we show that

More information

Lecture I. Advanced Monte Carlo Methods: I. Euler scheme

Lecture I. Advanced Monte Carlo Methods: I. Euler scheme Advanced Monte Caro Methods: I p. 3/51 Lecture I Advanced Monte Caro Methods: I p. 4/51 Advanced Monte Caro Methods: I Prof. Mike Gies mike.gies@maths.ox.ac.uk Oxford University Mathematica Institute Improved

More information

Multilevel Monte Carlo for Basket Options

Multilevel Monte Carlo for Basket Options MLMC for basket options p. 1/26 Multilevel Monte Carlo for Basket Options Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance WSC09,

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24 Lecture outline

More information

Computing Greeks using multilevel path simulation

Computing Greeks using multilevel path simulation Computing Greeks using mutieve path simuation Syvestre Burgos, Michae B. Gies Abstract We investigate the extension of the mutieve Monte Caro method [4, 5] to the cacuation of Greeks. The pathwise sensitivity

More information

Antithetic multilevel Monte Carlo estimation for multidimensional SDES

Antithetic multilevel Monte Carlo estimation for multidimensional SDES Antithetic mutieve Monte Caro estimation for mutidimensiona SDES Michae B. Gies and Lukasz Szpruch Abstract In this paper we deveop antithetic mutieve Monte Caro MLMC estimators for mutidimensiona SDEs

More information

Multilevel quasi-monte Carlo path simulation

Multilevel quasi-monte Carlo path simulation Radon Series Comp. App. Math 8, 8 c de Gruyter 29 Mutieve quasi-monte Caro path simuation Michae B. Gies and Ben J. Waterhouse Abstract. This paper reviews the mutieve Monte Caro path simuation method

More information

Technical report The computation of Greeks with Multilevel Monte Carlo

Technical report The computation of Greeks with Multilevel Monte Carlo Technica report The computation of Greeks with Mutieve Monte Caro arxiv:1102.1348v1 [q-fin.cp] 7 Feb 2011 Syvestre Burgos, M.B. Gies Oxford-Man Institute of Quantitative Finance University of Oxford December

More information

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1.

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1. Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Lecture 1 p. 1 Geometric Brownian Motion In the case of Geometric Brownian Motion ds t = rs t dt+σs

More information

"Vibrato" Monte Carlo evaluation of Greeks

Vibrato Monte Carlo evaluation of Greeks "Vibrato" Monte Carlo evaluation of Greeks (Smoking Adjoints: part 3) Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance MCQMC 2008,

More information

Module 4: Monte Carlo path simulation

Module 4: Monte Carlo path simulation Module 4: Monte Carlo path simulation Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Module 4: Monte Carlo p. 1 SDE Path Simulation In Module 2, looked at the case

More information

On Multilevel Quasi-Monte Carlo Methods

On Multilevel Quasi-Monte Carlo Methods On Mutieve Quasi-Monte Caro Methods Candidate Number 869133 University of Oxford A thesis submitted in partia fufiment of the MSc in Mathematica and Computationa Finance Trinity 2015 Acknowedgements I

More information

Research on Monte Carlo Methods

Research on Monte Carlo Methods Monte Carlo research p. 1/87 Research on Monte Carlo Methods Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Mathematical and Computational Finance Group Nomura, Tokyo, August

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. PDEs with Uncertainty. PDEs with Uncertainty

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. PDEs with Uncertainty. PDEs with Uncertainty Lecture outine Monte Caro Methods for Uncertainty Quantification Mike Gies Mathematica Institute, University of Oxford KU Leuven Summer Schoo on Uncertainty Quantification Lecture 4: PDE appications PDEs

More information

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Mathematics Institute of Computationa Science and Engineering Schoo of Basic Sciences - Section of Mathematics MATHICSE Technica Report Nr. 26.2011 December 2011 The mutieve Monte-Caro Method

More information

Multilevel path simulation for jump-diffusion SDEs

Multilevel path simulation for jump-diffusion SDEs Multilevel path simulation for jump-diffusion SDEs Yuan Xia, Michael B. Giles Abstract We investigate the extension of the multilevel Monte Carlo path simulation method to jump-diffusion SDEs. We consider

More information

Multilevel Monte Carlo methods

Multilevel Monte Carlo methods Multilevel Monte Carlo methods Mike Giles Mathematical Institute, University of Oxford LMS/ CRISM Summer School in Computational Stochastics University of Warwick, July 11, 2018 With acknowledgements to

More information

Multilevel Monte Carlo methods for finance

Multilevel Monte Carlo methods for finance Multilevel Monte Carlo methods for finance Mike Giles Mathematical Institute, University of Oxford Oxford-Man Institute of Quantitative Finance HPCFinance Final Conference March 14, 2016 Mike Giles (Oxford)

More information

From CFD to computational finance (and back again?)

From CFD to computational finance (and back again?) From CFD to computational finance (and back again?) Mike Giles University of Oxford Mathematical Institute MIT Center for Computational Engineering Seminar March 14th, 2013 Mike Giles (Oxford) CFD to finance

More information

Multilevel quasi-monte Carlo path simulation

Multilevel quasi-monte Carlo path simulation Multilevel quasi-monte Carlo path simulation Michael B. Giles and Ben J. Waterhouse Lluís Antoni Jiménez Rugama January 22, 2014 Index 1 Introduction to MLMC Stochastic model Multilevel Monte Carlo Milstein

More information

Parallel Multilevel Monte Carlo Simulation

Parallel Multilevel Monte Carlo Simulation Parallel Simulation Mathematisches Institut Goethe-Universität Frankfurt am Main Advances in Financial Mathematics Paris January 7-10, 2014 Simulation Outline 1 Monte Carlo 2 3 4 Algorithm Numerical Results

More information

Multilevel Monte Carlo for VaR

Multilevel Monte Carlo for VaR Multilevel Monte Carlo for VaR Mike Giles, Wenhui Gou, Abdul-Lateef Haji-Ali Mathematical Institute, University of Oxford (BNP Paribas, Hong Kong) (also discussions with Ralf Korn, Klaus Ritter) Advances

More information

Module 2: Monte Carlo Methods

Module 2: Monte Carlo Methods Module 2: Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute MC Lecture 2 p. 1 Greeks In Monte Carlo applications we don t just want to know the expected

More information

Computing Greeks with Multilevel Monte Carlo Methods using Importance Sampling

Computing Greeks with Multilevel Monte Carlo Methods using Importance Sampling Computing Greeks with Multilevel Monte Carlo Methods using Importance Sampling Supervisor - Dr Lukas Szpruch Candidate Number - 605148 Dissertation for MSc Mathematical & Computational Finance Trinity

More information

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

Convergence Analysis of Monte Carlo Calibration of Financial Market Models Analysis of Monte Carlo Calibration of Financial Market Models Christoph Käbe Universität Trier Workshop on PDE Constrained Optimization of Certain and Uncertain Processes June 03, 2009 Monte Carlo Calibration

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

arxiv: v1 [q-fin.cp] 14 Feb 2018

arxiv: v1 [q-fin.cp] 14 Feb 2018 MULTILEVEL NESTED SIMULATION FOR EFFICIENT RISK ESTIMATION arxiv:1802.05016v1 [q-fin.cp] 14 Feb 2018 By Michae B. Gies and Abdu-Lateef Haji-Ai University of Oxford We investigate the probem of computing

More information

Multilevel Change of Measure for Complex Digital Options

Multilevel Change of Measure for Complex Digital Options Multilevel Change of Measure for Complex Digital Options Jiaxing Wang Somerville College University of Oxford A thesis submitted in partial fulfillment of the MSc in Mathematical Finance Trinity 2014 This

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Financial Mathematics and Supercomputing

Financial Mathematics and Supercomputing GPU acceleration in early-exercise option valuation Álvaro Leitao and Cornelis W. Oosterlee Financial Mathematics and Supercomputing A Coruña - September 26, 2018 Á. Leitao & Kees Oosterlee SGBM on GPU

More information

TRUE MARTINGALES FOR UPPER BOUNDS ON BERMUDAN OPTION PRICES UNDER JUMP-DIFFUSION PROCESSES. Helin Zhu Fan Ye Enlu Zhou

TRUE MARTINGALES FOR UPPER BOUNDS ON BERMUDAN OPTION PRICES UNDER JUMP-DIFFUSION PROCESSES. Helin Zhu Fan Ye Enlu Zhou Proceedings of the 213 Winter Simuation Conference R. Pasupathy, S.-H. Kim, A. Tok, R. Hi, and M. E. Kuh, eds. TRUE MARTINGALES FOR UPPER BOUNDS ON BERMUDAN OPTION PRICES UNDER JUMP-DIFFUSION PROCESSES

More information

AD in Monte Carlo for finance

AD in Monte Carlo for finance AD in Monte Carlo for finance Mike Giles giles@comlab.ox.ac.uk Oxford University Computing Laboratory AD & Monte Carlo p. 1/30 Overview overview of computational finance stochastic o.d.e. s Monte Carlo

More information

Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff

Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff Finance Stoch 2009 13: 403 413 DOI 10.1007/s00780-009-0092-1 Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff Michael B. Giles Desmond J. Higham Xuerong Mao Received: 1

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Mean Exit Times and the Multilevel Monte Carlo Method

Mean Exit Times and the Multilevel Monte Carlo Method Higham, Desmond and Mao, Xuerong and Roj, Mikoaj and Song, Qingshuo and Yin, George (2013) Mean exit times and the mutieve Monte Caro method. SIAM/ASA Journa on Uncertainty Quantification (JUQ), 1 (1).

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Estimating the Greeks

Estimating the Greeks IEOR E4703: Monte-Carlo Simulation Columbia University Estimating the Greeks c 207 by Martin Haugh In these lecture notes we discuss the use of Monte-Carlo simulation for the estimation of sensitivities

More information

Multilevel Monte Carlo methods

Multilevel Monte Carlo methods Multilevel Monte Carlo methods Mike Giles Mathematical Institute, University of Oxford SIAM Conference on Uncertainty Quantification April 5-8, 2016 Acknowledgements to many collaborators: Frances Kuo,

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Gamma. The finite-difference formula for gamma is

Gamma. The finite-difference formula for gamma is Gamma The finite-difference formula for gamma is [ P (S + ɛ) 2 P (S) + P (S ɛ) e rτ E ɛ 2 ]. For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Pricing Early-exercise options

Pricing Early-exercise options Pricing Early-exercise options GPU Acceleration of SGBM method Delft University of Technology - Centrum Wiskunde & Informatica Álvaro Leitao Rodríguez and Cornelis W. Oosterlee Lausanne - December 4, 2016

More information

Abstract (X (1) i k. The reverse bound holds if in addition, the following symmetry condition holds almost surely

Abstract (X (1) i k. The reverse bound holds if in addition, the following symmetry condition holds almost surely Decouping Inequaities for the Tai Probabiities of Mutivariate U-statistics by Victor H. de a Peña 1 and S. J. Montgomery-Smith 2 Coumbia University and University of Missouri, Coumbia Abstract In this

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Slides for DN2281, KTH 1

Slides for DN2281, KTH 1 Slides for DN2281, KTH 1 January 28, 2014 1 Based on the lecture notes Stochastic and Partial Differential Equations with Adapted Numerics, by J. Carlsson, K.-S. Moon, A. Szepessy, R. Tempone, G. Zouraris.

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 2. Integration For deterministic h : R R,

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 2. Integration For deterministic h : R R, Numerical Simulation of Stochastic Differential Equations: Lecture, Part Des Higham Department of Mathematics University of Strathclyde Lecture, part : SDEs Ito stochastic integrals Ito SDEs Examples of

More information

Multilevel Monte Carlo Methods for American Options

Multilevel Monte Carlo Methods for American Options Multilevel Monte Carlo Methods for American Options Simon Gemmrich, PhD Kellog College University of Oxford A thesis submitted in partial fulfillment of the MSc in Mathematical Finance November 19, 2012

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Finance Practice Midterm #2 Solutions. 1) Consider the following production function. Suppose that capital is fixed at 1.

Finance Practice Midterm #2 Solutions. 1) Consider the following production function. Suppose that capital is fixed at 1. Finance 00 Practice Midterm # Soutions ) Consider the foowing production function. Suppose that capita is fied at. Q K. L.05L For what vaues of Q is margina cost increasing? For what vaues of Q is margina

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Pricing of Double Barrier Options by Spectral Theory

Pricing of Double Barrier Options by Spectral Theory MPRA Munich Persona RePEc Archive Pricing of Doube Barrier Options by Spectra Theory M.D. De Era Mario Department of Statistic and Appied Mathematics 5. March 8 Onine at http://mpra.ub.uni-muenchen.de/175/

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6 Lecture 3 Sergei Fedotov 091 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 091 010 1 / 6 Lecture 3 1 Distribution for lns(t) Solution to Stochastic Differential Equation

More information

Optimal Hedge Ratio for Brent Oil Market; Baysian Approach

Optimal Hedge Ratio for Brent Oil Market; Baysian Approach Internationa Letters of Socia and Humanistic Sciences Onine: 2014-08-17 ISSN: 2300-2697, Vo. 37, pp 82-87 doi:10.18052/www.scipress.com/ilshs.37.82 2014 SciPress Ltd., Switzerand Optima Hedge Ratio for

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

European option pricing under parameter uncertainty

European option pricing under parameter uncertainty European option pricing under parameter uncertainty Martin Jönsson (joint work with Samuel Cohen) University of Oxford Workshop on BSDEs, SPDEs and their Applications July 4, 2017 Introduction 2/29 Introduction

More information

A profile likelihood method for normal mixture with unequal variance

A profile likelihood method for normal mixture with unequal variance This is the author s fina, peer-reviewed manuscript as accepted for pubication. The pubisher-formatted version may be avaiabe through the pubisher s web site or your institution s ibrary. A profie ikeihood

More information

MONTE CARLO EXTENSIONS

MONTE CARLO EXTENSIONS MONTE CARLO EXTENSIONS School of Mathematics 2013 OUTLINE 1 REVIEW OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO 3 SUMMARY MONTE CARLO SO FAR... Simple to program

More information

3.1 Itô s Lemma for Continuous Stochastic Variables

3.1 Itô s Lemma for Continuous Stochastic Variables Lecture 3 Log Normal Distribution 3.1 Itô s Lemma for Continuous Stochastic Variables Mathematical Finance is about pricing (or valuing) financial contracts, and in particular those contracts which depend

More information

JDEP 384H: Numerical Methods in Business

JDEP 384H: Numerical Methods in Business Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods Chapter 8: Option Pricing by Monte Carlo Methods JDEP 384H: Numerical Methods in Business Instructor: Thomas Shores Department of

More information

2.3 Mathematical Finance: Option pricing

2.3 Mathematical Finance: Option pricing CHAPTR 2. CONTINUUM MODL 8 2.3 Mathematical Finance: Option pricing Options are some of the commonest examples of derivative securities (also termed financial derivatives or simply derivatives). A uropean

More information

Key Features of the Tax-Free Flexible Plan

Key Features of the Tax-Free Flexible Plan Key Features of the The Key Features suppied beow appy to the adut investment eement of the Famiy Fexibe Pan. No advice has been provided by Scottish Friendy in reation to this pan. If you are in any doubt

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification May 30 31, 2013 Mike Giles (Oxford) Monte

More information

Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options

Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options Kin Hung (Felix) Kan 1 Greg Frank 3 Victor Mozgin 3 Mark Reesor 2 1 Department of Applied

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE.

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. Risk Neutral Pricing Thursday, May 12, 2011 2:03 PM We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. This is used to construct a

More information

Stochastic Grid Bundling Method

Stochastic Grid Bundling Method Stochastic Grid Bundling Method GPU Acceleration Delft University of Technology - Centrum Wiskunde & Informatica Álvaro Leitao Rodríguez and Cornelis W. Oosterlee London - December 17, 2015 A. Leitao &

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Barriers and Optimal Investment 1

Barriers and Optimal Investment 1 Barriers and Optima Investment 1 Jean-Danie Saphores 2 bstract This paper anayzes the impact of different types of barriers on the decision to invest using a simpe framework based on stochastic discount

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Spring 2010 Computer Exercise 2 Simulation This lab deals with

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Fall 2017 Computer Exercise 2 Simulation This lab deals with pricing

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

CS 774 Project: Fall 2009 Version: November 27, 2009

CS 774 Project: Fall 2009 Version: November 27, 2009 CS 774 Project: Fall 2009 Version: November 27, 2009 Instructors: Peter Forsyth, paforsyt@uwaterloo.ca Office Hours: Tues: 4:00-5:00; Thurs: 11:00-12:00 Lectures:MWF 3:30-4:20 MC2036 Office: DC3631 CS

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

f (tl) <tf(l) for all L and t>1. + u 0 [p (l ) α wl ] pα (l ) α 1 w =0 l =

f (tl) <tf(l) for all L and t>1. + u 0 [p (l ) α wl ] pα (l ) α 1 w =0 l = Econ 101A Midterm Th November 006. You have approximatey 1 hour and 0 minutes to answer the questions in the midterm. I wi coect the exams at 11.00 sharp. Show your work, and good uck! Probem 1. Profit

More information

Counterparty Credit Risk Simulation

Counterparty Credit Risk Simulation Counterparty Credit Risk Simulation Alex Yang FinPricing http://www.finpricing.com Summary Counterparty Credit Risk Definition Counterparty Credit Risk Measures Monte Carlo Simulation Interest Rate Curve

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

Monte Carlo Methods in Structuring and Derivatives Pricing

Monte Carlo Methods in Structuring and Derivatives Pricing Monte Carlo Methods in Structuring and Derivatives Pricing Prof. Manuela Pedio (guest) 20263 Advanced Tools for Risk Management and Pricing Spring 2017 Outline and objectives The basic Monte Carlo algorithm

More information