Multilevel Monte Carlo Path Simulation

Size: px
Start display at page:

Download "Multilevel Monte Carlo Path Simulation"

Transcription

1 Mutieve Monte Caro Path Simuation Mike Gies Oxford University Computing Laboratory 15th Scottish Computationa Mathematics Symposium Mutieve Monte Caro p. 1/34

2 SDEs in Finance In computationa finance, stochastic differentia equations are used to mode the behaviour of stocks interest rates exchange rates weather eectricity/gas demand crude oi prices... The stochastic term accounts for the uncertainty of unpredictabe day-to-day events. Mutieve Monte Caro p. 2/34

3 SDEs in Finance These modes are then used to cacuate fair prices for a huge range of financia options: an option to se a stock portfoio at a specific price in 2 years time an option to buy aviation fue at a specific price in 6 months time an option to se US doars at a specific exchange rate in 3 years time In most cases, the buyer of the financia option is trying to reduce their risk. Mutieve Monte Caro p. 3/34

4 SDEs in Finance Exampes: Geometric Brownian motion (Back-Schoes mode for stock prices) ds = r S dt + σ S dw Cox-Ingerso-Ross mode (interest rates) dr = α(b r) dt + σ r dw Heston stochastic voatiity mode (stock prices) ds = r S dt + V S dw 1 dv = λ (σ 2 V ) dt + ξ V dw 2 with correation ρ between dw 1 and dw 2 Mutieve Monte Caro p. 4/34

5 Generic Probem Stochastic differentia equation with genera drift and voatiity terms: SDE with genera drift and voatiity terms: ds(t) = a(s, t) dt + b(s, t) dw (t) W (t) is a Wiener variabe with the properties that for any q <r <s<t, W (t) W (s) is Normay distributed with mean 0 and variance t s, independent of W (r) W (q). In many finance appications, we want to compute the expected vaue of an option dependent on the termina state P = f(s(t )) with a uniform Lipschitz bound, f(u) f(v ) c U V, U, V. Mutieve Monte Caro p. 5/34

6 Standard MC Approach Euer discretisation with timestep h: Ŝ n+1 = Ŝn + a(ŝn, t n ) h + b(ŝn, t n ) W n Simpest estimator for expected payoff is an average of N independent path simuations: Ŷ = N 1 N i=1 f(ŝ(i) T/h ) Mutieve Monte Caro p. 6/34

7 Standard MC Approach Two kinds of errors: statistica error, due to finite number of paths so r.m.s. error = O(N 1/2 ). V [Ŷ ] = N 1 V [f(ŝt/h)] discretisation bias, due to finite number of timesteps weak convergence O(h) error in expected payoff strong convergence O(h 1/2 ) error in individua path Mutieve Monte Caro p. 7/34

8 Standard MC Approach Mean Square Error is O ( N 1 + h 2) first term comes from variance of estimator second term comes from bias due to weak convergence To make this O(ε 2 ) requires N = O(ε 2 ), h = O(ε) = cost = O(N h 1 ) = O(ε 3 ) Aim is to improve this cost to O ( ε 2 (og ε) 2) Mutieve Monte Caro p. 8/34

9 Mutigrid A powerfu technique for soving PDE discretisations: Fine grid more accurate more expensive Coarse grid ess accurate ess expensive Mutieve Monte Caro p. 9/34

10 Mutigrid Mutigrid combines cacuations on a nested sequence of grids to get the accuracy of the finest grid at a much ower computationa cost. We wi use a simiar idea to achieve variance reduction in Monte Caro path cacuations, combining simuations with different numbers of timesteps same accuracy as finest cacuations, but at a much ower computationa cost. Mutieve Monte Caro p. 10/34

11 Other Research In Dec. 2005, Ahmed Kebaier pubished an artice in Annas of Appied Probabiity describing a two-eve method which reduces the cost to O ( ε 2.5). Aso in Dec. 2005, Adam Speight wrote a working paper describing a simiar mutieve use of contro variates, but without an anaysis of its compexity. There are aso cose simiarities to a mutieve technique deveoped by Stefan Heinrich for parametric integration (Journa of Compexity, 1998) Mutieve Monte Caro p. 11/34

12 Mutieve MC Approach Consider mutipe sets of simuations with different timesteps h = 2 T, = 0, 1,..., L, and payoff P E[ P L ] = E[ P 0 ] + L =1 E[ P P 1 ] Expected vaue is same aim is to reduce variance of estimator for a fixed computationa cost. Key point: approximate E[ P P 1 ] using N simuations with P and P 1 obtained using same Brownian path. Ŷ = N 1 N i=1 ( (i) P ) (i) P 1 Mutieve Monte Caro p. 12/34

13 Mutieve MC Approach Discrete Brownian path at different eves P 0 P P 2 P 3 P 4 P 5 P P Mutieve Monte Caro p. 13/34

14 Mutieve MC Approach each eve adds more detai to Brownian path E[ P P 1 ] refects impact of that extra detai on the payoff different timescaes handed by different eves simiar to different waveengths being handed by different grids in mutigrid Mutieve Monte Caro p. 14/34

15 Mutieve MC Approach Using independent paths for each eve, the variance of the combined estimator is V [ L =0 Ŷ ] = L =0 N 1 V, V V [ P P 1 ], and the computationa cost is proportiona to L =0 N h 1. Hence, the variance is minimised for a fixed computationa cost by choosing N to be proportiona to V h. The constant of proportionaity can be chosen so that the combined variance is O(ε 2 ). Mutieve Monte Caro p. 15/34

16 Mutieve MC Approach For the Euer discretisation and the Lipschitz payoff function V [ P P ] = O(h ) = V [ P P 1 ] = O(h ) and the optima N is asymptoticay proportiona to h. To make the combined variance O(ε 2 ) requires N = O(ε 2 L h ). To make the bias O(ε) requires L = og 2 ε 1 + O(1) = h L = O(ε). Hence, we obtain an O(ε 2 ) MSE for a computationa cost which is O(ε 2 L 2 ) = O(ε 2 (og ε) 2 ). Mutieve Monte Caro p. 16/34

17 Mutieve MC Approach Theorem: Let P be a functiona of the soution of a stochastic o.d.e., and P the discrete approximation using a timestep h = M T. If there exist independent estimators Ŷ based on N Monte Caro sampes, and positive constants α 1 2, β, c 1, c 2, c 3 such that i) E[ P P ] c 1 h α E[ P 0 ], = 0 ii) E[Ŷ] = E[ P P 1 ], > 0 iii) V [Ŷ] c 2 N 1 h β iv) C, the computationa compexity of Ŷ, is bounded by C c 3 N h 1 Mutieve Monte Caro p. 17/34

18 Mutieve MC Approach then there exists a positive constant c 4 such that for any ε<e 1 there are vaues L and N for which the muti-eve estimator has Mean Square Error MSE E L Ŷ = Ŷ, =0 [ (Ŷ E[P ] ) 2 ] < ε 2 with a computationa compexity C with bound c 4 ε 2, β > 1, C c 4 ε 2 (og ε) 2, β = 1, c 4 ε 2 (1 β)/α, 0 < β < 1. Mutieve Monte Caro p. 18/34

19 Resuts Geometric Brownian motion: ds = r S dt + σ S dw, 0 < t < 1, S(0)=1, r =0.05, σ =0.2 Heston mode: ds = r S dt + V S dw 1, 0 < t < 1 dv = λ (σ 2 V ) dt + ξ V dw 2, S(0)=1, V (0)=0.04, r =0.05, σ =0.2, λ=5, ξ =0.25, ρ= 0.5 A cacuations use M =4, more efficient than M =2. Mutieve Monte Caro p. 19/34

20 Resuts GBM: European ca, max(s(1) 1, 0) og M variance 4 6 og M mean P 8 P P P 1 P P Mutieve Monte Caro p. 20/34

21 Resuts GBM: European ca, max(s(1) 1, 0) ε= ε= ε= ε= ε= N 10 6 ε 2 Cost Std MC MLMC ε Mutieve Monte Caro p. 21/34

22 Resuts GBM: ookback option, S(1) min 0<t<1 S(t) og M variance 4 6 og M mean P 8 P P P 1 P P Mutieve Monte Caro p. 22/34

23 Resuts GBM: ookback option, S(1) min 0<t<1 S(t) ε= ε= ε= ε= ε= N 10 6 ε 2 Cost Std MC MLMC ε Mutieve Monte Caro p. 23/34

24 Resuts Heston mode: European ca og M variance 4 6 og M mean P 8 P P P 1 P P Mutieve Monte Caro p. 24/34

25 Resuts Heston mode: European ca N ε= ε= ε= ε= ε=0.001 ε 2 Cost Std MC MLMC ε Mutieve Monte Caro p. 25/34

26 Concusions Resuts so far: improved order of compexity easy to impement significant benefits for mode probems Current research: use of Mistein method (and antithetic variabes in muti-dimensiona case) to reduce compexity to O(ε 2 ) adaptive samping to treat discontinuous payoffs and pathwise derivatives for Greeks use of quasi-monte Caro methods, to reduce compexity towards O(ε 1 ) Mutieve Monte Caro p. 26/34

27 Working Paper M.B. Gies, Muti-eve Monte Caro path simuation Oxford University Computing Laboratory Numerica Anaysis Report NA-06/03 Emai: Acknowedgements: Pau Gasserman and Mark Broadie for eary feedback Microsoft for current research funding Mutieve Monte Caro p. 27/34

28 Mistein Scheme Generic SDE: ds(t) = a(s, t) dt + b(s, t) dw (t), 0<t<T, with correation matrix Ω(S, t) between eements of dw (t). Simpest Mistein scheme sets Lévy areas to zero to give Ŝ i,n+1 = Ŝi,n+a i h+b ij W j,n using impied summation convention. b ij S b k ( W j,n W k,n h Ω jk ) Mutieve Monte Caro p. 28/34

29 Mistein Scheme In scaar case: O(h) strong convergence O(ε 2 ) compexity for Lipschitz payoffs O(ε 2 ) compexity for ookback, barrier and digita options using carefuy constructed estimators In muti-dimensiona case: sti ony O(h 1/2 ) strong convergence but Ŝ n E[S W n ] = O(h) Mutieve Monte Caro p. 29/34

30 Mistein Scheme If a coarse path with timestep 2h is constructed using W c n = 2h Y n where the Y n are N(0, 1) random variabes, and the fine path uses a Brownian Bridge construction with W f n = 1 2 2h (Yn +Z n ), W f n+ 1 2 = 1 2 2h (Yn Z n ). where the Z n are aso N(0, 1) random variabes, then perturbation anaysis shows that the O(h 1/2 ) difference between the two paths comes from a sum of terms proportiona to Y j,n Z k,n Y k,n Z j,n. Mutieve Monte Caro p. 30/34

31 Mistein Scheme Using the idea of antithetic variabes, we use the estimator Ŷ = N 1 N i=1 ( ( 12 (i) P + ) (i) P ) (i) P 1, P (i) where is based on the same coarse path Y n, but with Z n repaced by Z n, which eads to the canceation of the eading order error proportiona to Z n. V [Ŷ] = O(h 2 ) for smooth payoffs, O(h 3/2 ) for Lipschitz in both cases, gives O(ε 2 ) compexity for O(ε) accuracy Mutieve Monte Caro p. 31/34

32 Adaptive samping With digita options, the probem is that sma path changes can ead to an O(1) change in the payoff For the Euer discretisation, O(h 1/2 ) strong convergence = O(h 1/2 ) paths have an O(1) vaue for P P 1 Hence, V = O(h 1/2 ). For improved resuts, need more sampes of paths near payoff discontinuities. Mutieve Monte Caro p. 32/34

33 Adaptive samping Two ideas for adaptive samping are both based on Brownian Bridge constructions, using coarse timestep reaisations to decide which paths are important idea 1: start with reativey few paths, and sub-divide those which ook interesting (spitting) idea 2: start with ots of paths, and prune those which are unimportant (Russian rouette) use path weights to ensure estimator remains unbiased initia resuts (combining 2 ideas to keep a fixed number of paths) ook good for a digita option, and it shoud aso hande barrier options Mutieve Monte Caro p. 33/34

34 Quasi-Monte Caro Quasi-Monte Caro methods can offer greaty improved convergence with respect to the number of sampes N: in the best case, O(N 1+δ ) error for arbitrary δ > 0, instead of O(N 1/2 ) depends on knowedge/identification of important dimensions in an appication Brownian Bridge Principa Component Anaysis confidence intervas can be obtained by using randomized QMC working with Soan, Kuo and Waterhouse, wi try both rank-1 attice rues and Sobo sequences Mutieve Monte Caro p. 34/34

Variance Reduction Through Multilevel Monte Carlo Path Calculations

Variance Reduction Through Multilevel Monte Carlo Path Calculations Variance Reduction Through Mutieve Monte Caro Path Cacuations Mike Gies gies@comab.ox.ac.uk Oxford University Computing Laboratory Mutieve Monte Caro p. 1/30 Mutigrid A powerfu technique for soving PDE

More information

Multilevel Monte Carlo Path Simulation

Multilevel Monte Carlo Path Simulation Mutieve Monte Caro Path Simuation Mike Gies gies@comab.ox.ac.uk Oxford University Computing Laboratory First IMA Conference on Computationa Finance Mutieve Monte Caro p. 1/34 Generic Probem Stochastic

More information

Multilevel Monte Carlo path simulation

Multilevel Monte Carlo path simulation Mutieve Monte Caro path simuation Mike Gies gies@comab.ox.ac.uk Oxford University Mathematica Institute Oxford-Man Institute of Quantitative Finance Acknowedgments: research funding from Microsoft and

More information

Multilevel Monte Carlo Path Simulation

Multilevel Monte Carlo Path Simulation Mutieve Monte Caro p. 1/32 Mutieve Monte Caro Path Simuation Mike Gies mike.gies@maths.ox.ac.uk Oxford University Mathematica Institute Oxford-Man Institute of Quantitative Finance Workshop on Stochastic

More information

Multilevel Monte Carlo for multi-dimensional SDEs

Multilevel Monte Carlo for multi-dimensional SDEs Mutieve Monte Caro for muti-dimensiona SDEs Mike Gies mike.gies@maths.ox.ac.uk Oxford University Mathematica Institute Oxford-Man Institute of Quantitative Finance MCQMC, Warsaw, August 16-20, 2010 Mutieve

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24 Lecture outline

More information

MULTILEVEL MONTE CARLO FOR BASKET OPTIONS. Michael B. Giles

MULTILEVEL MONTE CARLO FOR BASKET OPTIONS. Michael B. Giles Proceedings of the 29 Winter Simuation Conference M. D. Rossetti, R. R. Hi, B. Johansson, A. Dunkin, and R. G. Ingas, eds. MULTILEVEL MONTE CARLO FOR BASKET OPTIONS Michae B. Gies Oxford-Man Institute

More information

Improved multilevel Monte Carlo convergence using the Milstein scheme

Improved multilevel Monte Carlo convergence using the Milstein scheme Improved mutieve Monte Caro convergence using the Mistein scheme M.B. Gies Oxford University Computing Laboratory, Parks Road, Oxford, U.K. Mike.Gies@comab.ox.ac.uk Summary. In this paper we show that

More information

Lecture I. Advanced Monte Carlo Methods: I. Euler scheme

Lecture I. Advanced Monte Carlo Methods: I. Euler scheme Advanced Monte Caro Methods: I p. 3/51 Lecture I Advanced Monte Caro Methods: I p. 4/51 Advanced Monte Caro Methods: I Prof. Mike Gies mike.gies@maths.ox.ac.uk Oxford University Mathematica Institute Improved

More information

Multilevel Monte Carlo for Basket Options

Multilevel Monte Carlo for Basket Options MLMC for basket options p. 1/26 Multilevel Monte Carlo for Basket Options Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance WSC09,

More information

Multilevel Monte Carlo Simulation

Multilevel Monte Carlo Simulation Multilevel Monte Carlo p. 1/48 Multilevel Monte Carlo Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance Workshop on Computational

More information

Antithetic multilevel Monte Carlo estimation for multidimensional SDES

Antithetic multilevel Monte Carlo estimation for multidimensional SDES Antithetic mutieve Monte Caro estimation for mutidimensiona SDES Michae B. Gies and Lukasz Szpruch Abstract In this paper we deveop antithetic mutieve Monte Caro MLMC estimators for mutidimensiona SDEs

More information

Computing Greeks using multilevel path simulation

Computing Greeks using multilevel path simulation Computing Greeks using mutieve path simuation Syvestre Burgos, Michae B. Gies Abstract We investigate the extension of the mutieve Monte Caro method [4, 5] to the cacuation of Greeks. The pathwise sensitivity

More information

On Multilevel Quasi-Monte Carlo Methods

On Multilevel Quasi-Monte Carlo Methods On Mutieve Quasi-Monte Caro Methods Candidate Number 869133 University of Oxford A thesis submitted in partia fufiment of the MSc in Mathematica and Computationa Finance Trinity 2015 Acknowedgements I

More information

Multilevel quasi-monte Carlo path simulation

Multilevel quasi-monte Carlo path simulation Radon Series Comp. App. Math 8, 8 c de Gruyter 29 Mutieve quasi-monte Caro path simuation Michae B. Gies and Ben J. Waterhouse Abstract. This paper reviews the mutieve Monte Caro path simuation method

More information

Technical report The computation of Greeks with Multilevel Monte Carlo

Technical report The computation of Greeks with Multilevel Monte Carlo Technica report The computation of Greeks with Mutieve Monte Caro arxiv:1102.1348v1 [q-fin.cp] 7 Feb 2011 Syvestre Burgos, M.B. Gies Oxford-Man Institute of Quantitative Finance University of Oxford December

More information

Multilevel quasi-monte Carlo path simulation

Multilevel quasi-monte Carlo path simulation Multilevel quasi-monte Carlo path simulation Michael B. Giles and Ben J. Waterhouse Lluís Antoni Jiménez Rugama January 22, 2014 Index 1 Introduction to MLMC Stochastic model Multilevel Monte Carlo Milstein

More information

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Mathematics Institute of Computationa Science and Engineering Schoo of Basic Sciences - Section of Mathematics MATHICSE Technica Report Nr. 26.2011 December 2011 The mutieve Monte-Caro Method

More information

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1.

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1. Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Lecture 1 p. 1 Geometric Brownian Motion In the case of Geometric Brownian Motion ds t = rs t dt+σs

More information

Module 4: Monte Carlo path simulation

Module 4: Monte Carlo path simulation Module 4: Monte Carlo path simulation Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Module 4: Monte Carlo p. 1 SDE Path Simulation In Module 2, looked at the case

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. PDEs with Uncertainty. PDEs with Uncertainty

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. PDEs with Uncertainty. PDEs with Uncertainty Lecture outine Monte Caro Methods for Uncertainty Quantification Mike Gies Mathematica Institute, University of Oxford KU Leuven Summer Schoo on Uncertainty Quantification Lecture 4: PDE appications PDEs

More information

"Vibrato" Monte Carlo evaluation of Greeks

Vibrato Monte Carlo evaluation of Greeks "Vibrato" Monte Carlo evaluation of Greeks (Smoking Adjoints: part 3) Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance MCQMC 2008,

More information

Multilevel path simulation for jump-diffusion SDEs

Multilevel path simulation for jump-diffusion SDEs Multilevel path simulation for jump-diffusion SDEs Yuan Xia, Michael B. Giles Abstract We investigate the extension of the multilevel Monte Carlo path simulation method to jump-diffusion SDEs. We consider

More information

Multilevel Monte Carlo for VaR

Multilevel Monte Carlo for VaR Multilevel Monte Carlo for VaR Mike Giles, Wenhui Gou, Abdul-Lateef Haji-Ali Mathematical Institute, University of Oxford (BNP Paribas, Hong Kong) (also discussions with Ralf Korn, Klaus Ritter) Advances

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Computing Greeks with Multilevel Monte Carlo Methods using Importance Sampling

Computing Greeks with Multilevel Monte Carlo Methods using Importance Sampling Computing Greeks with Multilevel Monte Carlo Methods using Importance Sampling Supervisor - Dr Lukas Szpruch Candidate Number - 605148 Dissertation for MSc Mathematical & Computational Finance Trinity

More information

Parallel Multilevel Monte Carlo Simulation

Parallel Multilevel Monte Carlo Simulation Parallel Simulation Mathematisches Institut Goethe-Universität Frankfurt am Main Advances in Financial Mathematics Paris January 7-10, 2014 Simulation Outline 1 Monte Carlo 2 3 4 Algorithm Numerical Results

More information

Module 2: Monte Carlo Methods

Module 2: Monte Carlo Methods Module 2: Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute MC Lecture 2 p. 1 Greeks In Monte Carlo applications we don t just want to know the expected

More information

Multilevel Monte Carlo methods

Multilevel Monte Carlo methods Multilevel Monte Carlo methods Mike Giles Mathematical Institute, University of Oxford LMS/ CRISM Summer School in Computational Stochastics University of Warwick, July 11, 2018 With acknowledgements to

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

arxiv: v1 [q-fin.cp] 14 Feb 2018

arxiv: v1 [q-fin.cp] 14 Feb 2018 MULTILEVEL NESTED SIMULATION FOR EFFICIENT RISK ESTIMATION arxiv:1802.05016v1 [q-fin.cp] 14 Feb 2018 By Michae B. Gies and Abdu-Lateef Haji-Ai University of Oxford We investigate the probem of computing

More information

AD in Monte Carlo for finance

AD in Monte Carlo for finance AD in Monte Carlo for finance Mike Giles giles@comlab.ox.ac.uk Oxford University Computing Laboratory AD & Monte Carlo p. 1/30 Overview overview of computational finance stochastic o.d.e. s Monte Carlo

More information

From CFD to computational finance (and back again?)

From CFD to computational finance (and back again?) From CFD to computational finance (and back again?) Mike Giles University of Oxford Mathematical Institute MIT Center for Computational Engineering Seminar March 14th, 2013 Mike Giles (Oxford) CFD to finance

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Multilevel Change of Measure for Complex Digital Options

Multilevel Change of Measure for Complex Digital Options Multilevel Change of Measure for Complex Digital Options Jiaxing Wang Somerville College University of Oxford A thesis submitted in partial fulfillment of the MSc in Mathematical Finance Trinity 2014 This

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Financial Mathematics and Supercomputing

Financial Mathematics and Supercomputing GPU acceleration in early-exercise option valuation Álvaro Leitao and Cornelis W. Oosterlee Financial Mathematics and Supercomputing A Coruña - September 26, 2018 Á. Leitao & Kees Oosterlee SGBM on GPU

More information

Multilevel Monte Carlo methods for finance

Multilevel Monte Carlo methods for finance Multilevel Monte Carlo methods for finance Mike Giles Mathematical Institute, University of Oxford Oxford-Man Institute of Quantitative Finance HPCFinance Final Conference March 14, 2016 Mike Giles (Oxford)

More information

Research on Monte Carlo Methods

Research on Monte Carlo Methods Monte Carlo research p. 1/87 Research on Monte Carlo Methods Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Mathematical and Computational Finance Group Nomura, Tokyo, August

More information

Abstract (X (1) i k. The reverse bound holds if in addition, the following symmetry condition holds almost surely

Abstract (X (1) i k. The reverse bound holds if in addition, the following symmetry condition holds almost surely Decouping Inequaities for the Tai Probabiities of Mutivariate U-statistics by Victor H. de a Peña 1 and S. J. Montgomery-Smith 2 Coumbia University and University of Missouri, Coumbia Abstract In this

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

A profile likelihood method for normal mixture with unequal variance

A profile likelihood method for normal mixture with unequal variance This is the author s fina, peer-reviewed manuscript as accepted for pubication. The pubisher-formatted version may be avaiabe through the pubisher s web site or your institution s ibrary. A profie ikeihood

More information

TRUE MARTINGALES FOR UPPER BOUNDS ON BERMUDAN OPTION PRICES UNDER JUMP-DIFFUSION PROCESSES. Helin Zhu Fan Ye Enlu Zhou

TRUE MARTINGALES FOR UPPER BOUNDS ON BERMUDAN OPTION PRICES UNDER JUMP-DIFFUSION PROCESSES. Helin Zhu Fan Ye Enlu Zhou Proceedings of the 213 Winter Simuation Conference R. Pasupathy, S.-H. Kim, A. Tok, R. Hi, and M. E. Kuh, eds. TRUE MARTINGALES FOR UPPER BOUNDS ON BERMUDAN OPTION PRICES UNDER JUMP-DIFFUSION PROCESSES

More information

Finance Practice Midterm #2 Solutions. 1) Consider the following production function. Suppose that capital is fixed at 1.

Finance Practice Midterm #2 Solutions. 1) Consider the following production function. Suppose that capital is fixed at 1. Finance 00 Practice Midterm # Soutions ) Consider the foowing production function. Suppose that capita is fied at. Q K. L.05L For what vaues of Q is margina cost increasing? For what vaues of Q is margina

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Gamma. The finite-difference formula for gamma is

Gamma. The finite-difference formula for gamma is Gamma The finite-difference formula for gamma is [ P (S + ɛ) 2 P (S) + P (S ɛ) e rτ E ɛ 2 ]. For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas

More information

Multilevel Monte Carlo Methods for American Options

Multilevel Monte Carlo Methods for American Options Multilevel Monte Carlo Methods for American Options Simon Gemmrich, PhD Kellog College University of Oxford A thesis submitted in partial fulfillment of the MSc in Mathematical Finance November 19, 2012

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Fall 2017 Computer Exercise 2 Simulation This lab deals with pricing

More information

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

Convergence Analysis of Monte Carlo Calibration of Financial Market Models Analysis of Monte Carlo Calibration of Financial Market Models Christoph Käbe Universität Trier Workshop on PDE Constrained Optimization of Certain and Uncertain Processes June 03, 2009 Monte Carlo Calibration

More information

Optimal Hedge Ratio for Brent Oil Market; Baysian Approach

Optimal Hedge Ratio for Brent Oil Market; Baysian Approach Internationa Letters of Socia and Humanistic Sciences Onine: 2014-08-17 ISSN: 2300-2697, Vo. 37, pp 82-87 doi:10.18052/www.scipress.com/ilshs.37.82 2014 SciPress Ltd., Switzerand Optima Hedge Ratio for

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

PoS(ISCC 2017)020. Credit Risk Assessment of Receivable Accounts in Industry Chain based on SVM. Speaker. Huan Sun 1

PoS(ISCC 2017)020. Credit Risk Assessment of Receivable Accounts in Industry Chain based on SVM. Speaker. Huan Sun 1 Credit Risk Assessment of Receivabe Accounts in Industry Chain based on SVM 1 Schoo of computer and information, Hohhot Vocationa Coege Inner Mongoia, 010051, China E-mai: sunhhvc@163.com Industria chain

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Spring 2010 Computer Exercise 2 Simulation This lab deals with

More information

Product Pricing, Lead Time and Capacity Selection in Price and Time Sensitive Markets

Product Pricing, Lead Time and Capacity Selection in Price and Time Sensitive Markets Product Pricing, Lead Time and Capacity Seection in Price and Time Sensitive Markets SACHIN JAYASWAL Department of Management Sciences University of Wateroo, Canada joint work wit Eizabet Jewkes¹ and Saiba

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

MONTE CARLO EXTENSIONS

MONTE CARLO EXTENSIONS MONTE CARLO EXTENSIONS School of Mathematics 2013 OUTLINE 1 REVIEW OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO 3 SUMMARY MONTE CARLO SO FAR... Simple to program

More information

Mean Exit Times and the Multilevel Monte Carlo Method

Mean Exit Times and the Multilevel Monte Carlo Method Higham, Desmond and Mao, Xuerong and Roj, Mikoaj and Song, Qingshuo and Yin, George (2013) Mean exit times and the mutieve Monte Caro method. SIAM/ASA Journa on Uncertainty Quantification (JUQ), 1 (1).

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING Semih Yön 1, Cafer Erhan Bozdağ 2 1,2 Department of Industrial Engineering, Istanbul Technical University, Macka Besiktas, 34367 Turkey Abstract.

More information

Pricing of Double Barrier Options by Spectral Theory

Pricing of Double Barrier Options by Spectral Theory MPRA Munich Persona RePEc Archive Pricing of Doube Barrier Options by Spectra Theory M.D. De Era Mario Department of Statistic and Appied Mathematics 5. March 8 Onine at http://mpra.ub.uni-muenchen.de/175/

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

Counterparty Credit Risk Simulation

Counterparty Credit Risk Simulation Counterparty Credit Risk Simulation Alex Yang FinPricing http://www.finpricing.com Summary Counterparty Credit Risk Definition Counterparty Credit Risk Measures Monte Carlo Simulation Interest Rate Curve

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

Fidelity Freedom Index 2005 Fund - Investor Class (FJIFX)

Fidelity Freedom Index 2005 Fund - Investor Class (FJIFX) Aocation Fideity Freedom Index 2005 Fund - Investor Cass (FJIFX) Hypothetica Growth of $10,000 1,2 (10/2/2009-) n Fideity Freedom Index 2005 Fund - Investor Cass $15,353 n Target-Date 2000-2010 $16,178

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

f (tl) <tf(l) for all L and t>1. + u 0 [p (l ) α wl ] pα (l ) α 1 w =0 l =

f (tl) <tf(l) for all L and t>1. + u 0 [p (l ) α wl ] pα (l ) α 1 w =0 l = Econ 101A Midterm Th November 006. You have approximatey 1 hour and 0 minutes to answer the questions in the midterm. I wi coect the exams at 11.00 sharp. Show your work, and good uck! Probem 1. Profit

More information

Key Features of the Tax-Free Flexible Plan

Key Features of the Tax-Free Flexible Plan Key Features of the The Key Features suppied beow appy to the adut investment eement of the Famiy Fexibe Pan. No advice has been provided by Scottish Friendy in reation to this pan. If you are in any doubt

More information

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering Paul Glassennan Monte Carlo Methods in Financial Engineering With 99 Figures

More information

Pricing Early-exercise options

Pricing Early-exercise options Pricing Early-exercise options GPU Acceleration of SGBM method Delft University of Technology - Centrum Wiskunde & Informatica Álvaro Leitao Rodríguez and Cornelis W. Oosterlee Lausanne - December 4, 2016

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions

Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions Pierre Henry-Labordère 1 1 Global markets Quantitative Research, SOCIÉTÉ GÉNÉRALE Outline 1 Introduction 2 Semi-linear PDEs 3

More information

Estimating the Greeks

Estimating the Greeks IEOR E4703: Monte-Carlo Simulation Columbia University Estimating the Greeks c 207 by Martin Haugh In these lecture notes we discuss the use of Monte-Carlo simulation for the estimation of sensitivities

More information

3.1 Itô s Lemma for Continuous Stochastic Variables

3.1 Itô s Lemma for Continuous Stochastic Variables Lecture 3 Log Normal Distribution 3.1 Itô s Lemma for Continuous Stochastic Variables Mathematical Finance is about pricing (or valuing) financial contracts, and in particular those contracts which depend

More information

Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options

Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options Optimized Least-squares Monte Carlo (OLSM) for Measuring Counterparty Credit Exposure of American-style Options Kin Hung (Felix) Kan 1 Greg Frank 3 Victor Mozgin 3 Mark Reesor 2 1 Department of Applied

More information

Results for option pricing

Results for option pricing Results for option pricing [o,v,b]=optimal(rand(1,100000 Estimators = 0.4619 0.4617 0.4618 0.4613 0.4619 o = 0.46151 % best linear combination (true value=0.46150 v = 1.1183e-005 %variance per uniform

More information

Stochastic Volatility

Stochastic Volatility Chapter 16 Stochastic Volatility We have spent a good deal of time looking at vanilla and path-dependent options on QuantStart so far. We have created separate classes for random number generation and

More information

Model-independent bounds for Asian options

Model-independent bounds for Asian options Model-independent bounds for Asian options A dynamic programming approach Alexander M. G. Cox 1 Sigrid Källblad 2 1 University of Bath 2 CMAP, École Polytechnique University of Michigan, 2nd December,

More information

Retirement Income Charting a Course to Help Your Money Last

Retirement Income Charting a Course to Help Your Money Last Retirement Income Charting a Course to Hep Your Money Last Peter Murphy, CFP Financia Partners Securities are offered through LPL Financia, Member FINRA/SIPC. Investment Advice offered through Financia

More information

Model-independent bounds for Asian options

Model-independent bounds for Asian options Model-independent bounds for Asian options A dynamic programming approach Alexander M. G. Cox 1 Sigrid Källblad 2 1 University of Bath 2 CMAP, École Polytechnique 7th General AMaMeF and Swissquote Conference

More information

Optimal robust bounds for variance options and asymptotically extreme models

Optimal robust bounds for variance options and asymptotically extreme models Optimal robust bounds for variance options and asymptotically extreme models Alexander Cox 1 Jiajie Wang 2 1 University of Bath 2 Università di Roma La Sapienza Advances in Financial Mathematics, 9th January,

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Exact Sampling of Jump-Diffusion Processes

Exact Sampling of Jump-Diffusion Processes 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance

More information

Fidelity Freedom Index Income Fund - Institutional Premium Class (FFGZX)

Fidelity Freedom Index Income Fund - Institutional Premium Class (FFGZX) Fideity Freedom Index Income Fund - Institutiona Premium Cass (FFGZX) NTF No Transaction Fee 1 Hypothetica Growth of $10,000 2,3 (10/2/2009-) n Fideity Freedom Index Income Fund - Institutiona Premium

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

Monte Carlo Path Simulation and the Multilevel Monte Carlo Method. Krister Janzon

Monte Carlo Path Simulation and the Multilevel Monte Carlo Method. Krister Janzon Monte Carlo Path Simulation and the Multilevel Monte Carlo Method Krister Janzon Master s Thesis, 30 ECTS Master of Science Programme in Engineering Physics, 300 ECTS Spring 2018 Monte Carlo Path Simulation

More information

The Yield Envelope: Price Ranges for Fixed Income Products

The Yield Envelope: Price Ranges for Fixed Income Products The Yield Envelope: Price Ranges for Fixed Income Products by David Epstein (LINK:www.maths.ox.ac.uk/users/epstein) Mathematical Institute (LINK:www.maths.ox.ac.uk) Oxford Paul Wilmott (LINK:www.oxfordfinancial.co.uk/pw)

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Accounting 1 Instructor Notes

Accounting 1 Instructor Notes Accounting 1 Instructor Notes CHAPTER 5 ACCOUNTING SYSTEMS SPECIAL JOURNALS AND SUBSIDIARY LEDGERS You interact with accounting systems, maybe even everyday. You write a check, you use your debit or credit

More information