Utilities and Decision Theory. Lirong Xia

Size: px
Start display at page:

Download "Utilities and Decision Theory. Lirong Xia"

Transcription

1 Utilities and Decision Theory Lirong Xia

2 Checking conditional independence from BN graph ØGiven random variables Z 1, Z p, we are asked whether X Y Z 1, Z p dependent if there exists a path where all triples are active independent if for each path, there exists an inactive triple 2

3 General method for variable elimination Ø Compute a marginal probability p(x 1,,x p ) in a Bayesian network Let Y 1,,Y k denote the remaining variables Step 1: fix an order over the Y s (wlog Y 1 > >Y k ) Step 2: rewrite the summation as sth only involving X s sth only Σ y1 Σ y2 involving Y 1, Σ yk-1 Σ yk anything involving Y 1 and X s sth only Y 2 and X s sth only involving Y 1, Y 2,,Y k-1 and X s Step 3: variable elimination from right to left 3

4 Today ØUtility theory expected utility: preferences over lotteries maximum expected utility (MEU) principle 4

5 Expectimax Search Trees Ø Expectimax search Max nodes (we) as in minimax search Chance nodes Need to compute chance node values as expected utilities Ø Next class we will formalize the underlying problem as a Markov decision Process 5

6 Expectimax Pseudocode Ø Def value(s): If s is a max node return maxvalue(s) If s is a chance node return expvalue(s) If s is a terminal node return evaluations(s) Ø Def maxvalue(s): values = [value(s ) for s in successors(s)] return max(values) Ø Def expvalue(s): values = [value(s ) for s in successors(s)] weights = [probability(s, s ) for s in successors(s)] return expectation(values, weights) 6

7 Expectimax Quantities 7

8 Maximum expected utility ØPrinciple of maximum expected utility: A rational agent should chose the action which maximizes its expected utility, given its (probabilistic) knowledge Ø Questions: Where do utilities come from? How do we know such utilities even exist? What if our behavior can t be described by utilities? 8

9 Inference with Bayes Rule Ø Example: diagnostic probability from causal probability: p Ø Example: ( Cause Effect ) F is fire, {f, f} A is the alarm, {a, a} = ( ) ( ) p Effect Cause p Cause p Effect ( ) p(f)=0.001 p(a)=0.1 p(a f)=0.9 ( ) = p ( a f ) p f p f a ( ) p a ( ) = = Note: posterior probability of fire still very small Note: you should still run when hearing an alarm! Why? 9

10 0.009 stay run out % 10

11 Utilities Ø Utilities are functions from outcomes (states of the world, sample space) to real numbers that represent an agent s preferences Ø Where do utilities come from? In a game, may be simple (+1/-1) Utilities summarize the agent s goals

12 Preferences over lotteries ØAn agent chooses among: Prizes: A, B, etc. Lotteries: situations with uncertain prizes L = " # p, A; ØNotation: ( 1 p $ ),B% L p 1-p A B A B A B A B A is strictly preferred to B In difference between A and B A is strictly preferred to or indifferent with B 12

13 Utility theory in Economics ØState of the world: money you earn Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt) Ø Which would you prefer? A lottery ticket that pays out $10 with probability.5 and $0 otherwise, or A lottery ticket that pays out $1 with probability 1 Ø How about: A lottery ticket that pays out $100,000,000 with probability.5 and $0 otherwise, or A lottery ticket that pays out $10,000,000 with probability 1 Ø Usually, people do not simply go by expected value 13

14 Ø Which one you would prefer? Lottery A: Lottery B: + + Ø How about Lottery A: Lottery B: + 14

15 Encoding preferences over lotteries ØHow many lotteries? infinite! ØNeed to find a compact representation Maximum expected utility (MEU) principle which type of preferences (rankings over lotteries) can be represented by MEU? 15

16 Rational Preferences ØWe want some constraints on preferences before we call them rational ØFor example: an agent with intransitive preferences can be induced to give away all of its money If B C, then an agent with C would pay (say) 1 cent to get B If A B, then an agent with B would pay (say) 1 cent to get A If C A, then an agent with A would pay (say) 1 cent to get C ( A B) ( B C) ( A C) 16

17 Rational Preferences ØPreference of a rational agent must obey constraints The axioms of rationality: for all lotteries A, B, C ( Orderability A B) ( B A) ( A B) ( Transitivity A B) ( B C) ( A C) Continuity A B C p$ p, A;1 p,c& % ' B Substitutability A B # p, A;1 p,c% $ & # p,b;1 p,c% $ & Monotonicity A B p q % p, A;1 p,b' & ( % q, A;1 q,b ' & ( ØTheorem: rational preferences imply behavior describable as maximization of expected utility ( ) 17

18 MEU Principle Ø Theorem: [Ramsey, 1931; von Neumann & Morgenstern, 1944] Given any preference satisfying these axioms, there exists a real-value function U such that: ( ) >U ( B) A B U A U (" # p 1,S 1 ; ; p n,s $ n %) = pu S i i i ( ) ØMaximum expected utility (MEU) principle: Choose the action that maximizes expected utility Utilities are just a representation! an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities Utilities are NOT money 18

19 What would you do? stay run out %

20 Common types of utilities 20

21 Risk attitudes ØAn agent is risk-neutral if she only cares about the expected value of the lottery ticket ØAn agent is risk-averse if she always prefers the expected value of the lottery ticket to the lottery ticket Most people are like this ØAn agent is risk-seeking if she always prefers the lottery ticket to the expected value of the lottery ticket

22 Decreasing marginal utility ØTypically, at some point, having an extra dollar does not make people much happier (decreasing marginal utility) utility buy a nicer car (utility = 3) buy a car (utility = 2) buy a bike (utility = 1) $200 $1500 $5000 money

23 Maximizing expected utility utility buy a nicer car (utility = 3) buy a car (utility = 2) buy a bike (utility = 1) $200 $1500 $5000 money Ø Lottery 1: get $1500 with probability 1 gives expected utility 2 Ø Lottery 2: get $5000 with probability.4, $200 otherwise gives expected utility.4*3 +.6*1 = 1.8 (expected amount of money =.4*$ *$200 = $2120 > $1500) Ø So: maximizing expected utility is consistent with risk aversion

24 Different possible risk attitudes under expected utility maximization utility money ØGreen has decreasing marginal utility risk-averse Ø Blue has constant marginal utility risk-neutral Ø Red has increasing marginal utility risk-seeking ØGrey s marginal utility is sometimes increasing, sometimes decreasing neither risk-averse (everywhere) nor risk-seeking (everywhere)

25 Example: Insurance Ø Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties expected utility You own a car. Your lottery: L Y = [0.8, $0; 0.2, -$200] i.e., 20% chance of crashing You do not want -$200! Insurance is $50 U Y (L Y ) = 0.2*U Y (-$200)=-200 U Y (-$50)=-150 Amount Your Utility U Y $0 0 -$ $

26 Example: Insurance Ø Because people ascribe different utilities to different amounts of money, insurance agreements can increase both parties expected utility You own a car. Your lottery: L Y = [0.8, $0; 0.2, -$200] i.e., 20% chance of crashing You do not want -$200! Insurance company buys risk: L I = [0.8, $50; 0.2, -$150] i.e., $50 revenue + your L Y Insurer is risk-neutral: U(L) = U(EMV(L)) U Y (L Y ) = 0.2*U Y (-$200)=-200 U Y (-$50)=-150 U I (L I ) = U(0.8*50+0.2*(-150)) = U($10) >U($0) 26

27 Acting optimally over time Ø Finite number of periods: Overall utility = sum of rewards in individual periods Ø Infinite number of periods: are we just going to add up the rewards over infinitely many periods? Always get infinity! Ø (Limit of) average payoff: lim n Σ 1 t n r(t)/n Limit may not exist Ø Discounted payoff: Σ t ϒ t r(t) for some ϒ < 1 Interpretations of discounting: Interest rate r: ϒ= 1/(1+r) World ends with some probability 1-ϒ Ø Discounting is mathematically convenient We will see more in the next class 27

Expectimax Search Trees. CS 188: Artificial Intelligence Fall Expectimax Quantities. Expectimax Pseudocode. Expectimax Pruning?

Expectimax Search Trees. CS 188: Artificial Intelligence Fall Expectimax Quantities. Expectimax Pseudocode. Expectimax Pruning? CS 188: Artificial Intelligence Fall 2010 Expectimax Search Trees What if we don t know what the result of an action will be? E.g., In solitaire, next card is unknown In minesweeper, mine locations In

More information

Announcements. CS 188: Artificial Intelligence Spring Expectimax Search Trees. Maximum Expected Utility. What are Probabilities?

Announcements. CS 188: Artificial Intelligence Spring Expectimax Search Trees. Maximum Expected Utility. What are Probabilities? CS 188: Artificial Intelligence Spring 2010 Lecture 8: MEU / Utilities 2/11/2010 Announcements W2 is due today (lecture or drop box) P2 is out and due on 2/18 Pieter Abbeel UC Berkeley Many slides over

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 8: MEU / Utilities 2/11/2010 Pieter Abbeel UC Berkeley Many slides over the course adapted from Dan Klein 1 Announcements W2 is due today (lecture or

More information

Expectimax Search Trees. CS 188: Artificial Intelligence Fall Expectimax Example. Expectimax Pseudocode. Expectimax Pruning?

Expectimax Search Trees. CS 188: Artificial Intelligence Fall Expectimax Example. Expectimax Pseudocode. Expectimax Pruning? CS 188: Artificial Intelligence Fall 2011 Expectimax Search Trees What if we don t know what the result of an action will be? E.g., In solitaire, next card is unknown In minesweeper, mine locations In

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 7: Expectimax Search 9/15/2011 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 Expectimax Search

More information

343H: Honors AI. Lecture 7: Expectimax Search 2/6/2014. Kristen Grauman UT-Austin. Slides courtesy of Dan Klein, UC-Berkeley Unless otherwise noted

343H: Honors AI. Lecture 7: Expectimax Search 2/6/2014. Kristen Grauman UT-Austin. Slides courtesy of Dan Klein, UC-Berkeley Unless otherwise noted 343H: Honors AI Lecture 7: Expectimax Search 2/6/2014 Kristen Grauman UT-Austin Slides courtesy of Dan Klein, UC-Berkeley Unless otherwise noted 1 Announcements PS1 is out, due in 2 weeks Last time Adversarial

More information

CS 188: Artificial Intelligence. Maximum Expected Utility

CS 188: Artificial Intelligence. Maximum Expected Utility CS 188: Artificial Intelligence Lecture 7: Utility Theory Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein 1 Maximum Expected Utility Why should we average utilities? Why not minimax? Principle

More information

Expectimax and other Games

Expectimax and other Games Expectimax and other Games 2018/01/30 Chapter 5 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/games.pdf q Project 2 released,

More information

Worst-Case vs. Average Case. CSE 473: Artificial Intelligence Expectimax, Uncertainty, Utilities. Expectimax Search. Worst-Case vs.

Worst-Case vs. Average Case. CSE 473: Artificial Intelligence Expectimax, Uncertainty, Utilities. Expectimax Search. Worst-Case vs. CSE 473: Artificial Intelligence Expectimax, Uncertainty, Utilities Worst-Case vs. Average Case max min 10 10 9 100 Dieter Fox [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro

More information

CS 4100 // artificial intelligence

CS 4100 // artificial intelligence CS 4100 // artificial intelligence instructor: byron wallace (Playing with) uncertainties and expectations Attribution: many of these slides are modified versions of those distributed with the UC Berkeley

More information

Uncertain Outcomes. CS 188: Artificial Intelligence Uncertainty and Utilities. Expectimax Search. Worst-Case vs. Average Case

Uncertain Outcomes. CS 188: Artificial Intelligence Uncertainty and Utilities. Expectimax Search. Worst-Case vs. Average Case CS 188: Artificial Intelligence Uncertainty and Utilities Uncertain Outcomes Instructor: Marco Alvarez University of Rhode Island (These slides were created/modified by Dan Klein, Pieter Abbeel, Anca Dragan

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Uncertainty and Utilities Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides are based on those of Dan Klein and Pieter Abbeel for

More information

Probabilities. CSE 473: Artificial Intelligence Uncertainty, Utilities. Reminder: Expectations. Reminder: Probabilities

Probabilities. CSE 473: Artificial Intelligence Uncertainty, Utilities. Reminder: Expectations. Reminder: Probabilities CSE 473: Artificial Intelligence Uncertainty, Utilities Probabilities Dieter Fox [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Uncertainty and Utilities Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at

More information

Lecture 12: Introduction to reasoning under uncertainty. Actions and Consequences

Lecture 12: Introduction to reasoning under uncertainty. Actions and Consequences Lecture 12: Introduction to reasoning under uncertainty Preferences Utility functions Maximizing expected utility Value of information Bandit problems and the exploration-exploitation trade-off COMP-424,

More information

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week CS 473: Artificial Intelligence Markov Decision Processes Dan Weld University of Washington [Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

CS 6300 Artificial Intelligence Spring 2018

CS 6300 Artificial Intelligence Spring 2018 Expectimax Search CS 6300 Artificial Intelligence Spring 2018 Tucker Hermans thermans@cs.utah.edu Many slides courtesy of Pieter Abbeel and Dan Klein Expectimax Search Trees What if we don t know what

More information

Decision making in the presence of uncertainty

Decision making in the presence of uncertainty CS 271 Foundations of AI Lecture 21 Decision making in the presence of uncertainty Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Decision-making in the presence of uncertainty Many real-world

More information

CSL603 Machine Learning

CSL603 Machine Learning CSL603 Machine Learning qundergraduate-graduate bridge course qstructure will be similar to CSL452 oquizzes, labs, exams, and perhaps a project qcourse load ~ CSL452 o possibly on the heavier side qmore

More information

Choice under risk and uncertainty

Choice under risk and uncertainty Choice under risk and uncertainty Introduction Up until now, we have thought of the objects that our decision makers are choosing as being physical items However, we can also think of cases where the outcomes

More information

Overview: Representation Techniques

Overview: Representation Techniques 1 Overview: Representation Techniques Week 6 Representations for classical planning problems deterministic environment; complete information Week 7 Logic programs for problem representations including

More information

PhD Qualifier Examination

PhD Qualifier Examination PhD Qualifier Examination Department of Agricultural Economics May 29, 2014 Instructions This exam consists of six questions. You must answer all questions. If you need an assumption to complete a question,

More information

Decision making in the presence of uncertainty

Decision making in the presence of uncertainty CS 2750 Foundations of AI Lecture 20 Decision making in the presence of uncertainty Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Decision-making in the presence of uncertainty Computing the probability

More information

Energy and public Policies

Energy and public Policies Energy and public Policies Decision making under uncertainty Contents of class #1 Page 1 1. Decision Criteria a. Dominated decisions b. Maxmin Criterion c. Maximax Criterion d. Minimax Regret Criterion

More information

Markov Decision Processes. Lirong Xia

Markov Decision Processes. Lirong Xia Markov Decision Processes Lirong Xia Today ØMarkov decision processes search with uncertain moves and infinite space ØComputing optimal policy value iteration policy iteration 2 Grid World Ø The agent

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Ryan P. Adams COS 324 Elements of Machine Learning Princeton University We now turn to a new aspect of machine learning, in which agents take actions and become active in their

More information

Outline Introduction Game Representations Reductions Solution Concepts. Game Theory. Enrico Franchi. May 19, 2010

Outline Introduction Game Representations Reductions Solution Concepts. Game Theory. Enrico Franchi. May 19, 2010 May 19, 2010 1 Introduction Scope of Agent preferences Utility Functions 2 Game Representations Example: Game-1 Extended Form Strategic Form Equivalences 3 Reductions Best Response Domination 4 Solution

More information

Making Simple Decisions

Making Simple Decisions Ch. 16 p.1/33 Making Simple Decisions Chapter 16 Ch. 16 p.2/33 Outline Rational preferences Utilities Money Decision networks Value of information Additional reference: Clemen, Robert T. Making Hard Decisions:

More information

Announcements. CS 188: Artificial Intelligence Fall Preferences. Rational Preferences. Rational Preferences. MEU Principle. Project 2 (due 10/1)

Announcements. CS 188: Artificial Intelligence Fall Preferences. Rational Preferences. Rational Preferences. MEU Principle. Project 2 (due 10/1) CS 188: Artificial Intelligence Fall 007 Lecture 9: Utilitie 9/5/007 Dan Klein UC Berkeley Project (due 10/1) Announcement SVN group available, email u to requet Midterm 10/16 in cla One ide of a page

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 253 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action a will have possible outcome states Result(a)

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 247 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action A will have possible outcome states Result

More information

Introduction to Artificial Intelligence Spring 2019 Note 2

Introduction to Artificial Intelligence Spring 2019 Note 2 CS 188 Introduction to Artificial Intelligence Spring 2019 Note 2 These lecture notes are heavily based on notes originally written by Nikhil Sharma. Games In the first note, we talked about search problems

More information

Lecture 6 Introduction to Utility Theory under Certainty and Uncertainty

Lecture 6 Introduction to Utility Theory under Certainty and Uncertainty Lecture 6 Introduction to Utility Theory under Certainty and Uncertainty Prof. Massimo Guidolin Prep Course in Quant Methods for Finance August-September 2017 Outline and objectives Axioms of choice under

More information

Using the Maximin Principle

Using the Maximin Principle Using the Maximin Principle Under the maximin principle, it is easy to see that Rose should choose a, making her worst-case payoff 0. Colin s similar rationality as a player induces him to play (under

More information

PAULI MURTO, ANDREY ZHUKOV

PAULI MURTO, ANDREY ZHUKOV GAME THEORY SOLUTION SET 1 WINTER 018 PAULI MURTO, ANDREY ZHUKOV Introduction For suggested solution to problem 4, last year s suggested solutions by Tsz-Ning Wong were used who I think used suggested

More information

Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude

Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude Duan LI Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong http://www.se.cuhk.edu.hk/

More information

Uncertain Outcomes. CS 232: Ar)ficial Intelligence Uncertainty and U)li)es Sep 24, Worst- Case vs. Average Case.

Uncertain Outcomes. CS 232: Ar)ficial Intelligence Uncertainty and U)li)es Sep 24, Worst- Case vs. Average Case. 1 CS 232: Ar)ficial Intelligence Uncertainty and U)li)es Sep 24, 2015 Uncertain Outcomes [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics ECON5200 - Fall 2014 Introduction What you have done: - consumers maximize their utility subject to budget constraints and firms maximize their profits given technology and market

More information

UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) Fall Module I

UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) Fall Module I UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) Fall 2018 Module I The consumers Decision making under certainty (PR 3.1-3.4) Decision making under uncertainty

More information

Micro Theory I Assignment #5 - Answer key

Micro Theory I Assignment #5 - Answer key Micro Theory I Assignment #5 - Answer key 1. Exercises from MWG (Chapter 6): (a) Exercise 6.B.1 from MWG: Show that if the preferences % over L satisfy the independence axiom, then for all 2 (0; 1) and

More information

UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) Fall Module I

UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) Fall Module I UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) Fall 2016 Module I The consumers Decision making under certainty (PR 3.1-3.4) Decision making under uncertainty

More information

Introduction to Decision Making. CS 486/686: Introduction to Artificial Intelligence

Introduction to Decision Making. CS 486/686: Introduction to Artificial Intelligence Introduction to Decision Making CS 486/686: Introduction to Artificial Intelligence 1 Outline Utility Theory Decision Trees 2 Decision Making Under Uncertainty I give a robot a planning problem: I want

More information

April 28, Decision Analysis 2. Utility Theory The Value of Information

April 28, Decision Analysis 2. Utility Theory The Value of Information 15.053 April 28, 2005 Decision Analysis 2 Utility Theory The Value of Information 1 Lotteries and Utility L1 $50,000 $ 0 Lottery 1: a 50% chance at $50,000 and a 50% chance of nothing. L2 $20,000 Lottery

More information

Uncertainty. Contingent consumption Subjective probability. Utility functions. BEE2017 Microeconomics

Uncertainty. Contingent consumption Subjective probability. Utility functions. BEE2017 Microeconomics Uncertainty BEE217 Microeconomics Uncertainty: The share prices of Amazon and the difficulty of investment decisions Contingent consumption 1. What consumption or wealth will you get in each possible outcome

More information

Extensive-Form Games with Imperfect Information

Extensive-Form Games with Imperfect Information May 6, 2015 Example 2, 2 A 3, 3 C Player 1 Player 1 Up B Player 2 D 0, 0 1 0, 0 Down C Player 1 D 3, 3 Extensive-Form Games With Imperfect Information Finite No simultaneous moves: each node belongs to

More information

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10.

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10. e-pg Pathshala Subject : Computer Science Paper: Machine Learning Module: Decision Theory and Bayesian Decision Theory Module No: CS/ML/0 Quadrant I e-text Welcome to the e-pg Pathshala Lecture Series

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Choice Theory Investments 1 / 65 Outline 1 An Introduction

More information

Game theory and applications: Lecture 1

Game theory and applications: Lecture 1 Game theory and applications: Lecture 1 Adam Szeidl September 20, 2018 Outline for today 1 Some applications of game theory 2 Games in strategic form 3 Dominance 4 Nash equilibrium 1 / 8 1. Some applications

More information

Lecture 3 Representation of Games

Lecture 3 Representation of Games ecture 3 epresentation of Games 4. Game Theory Muhamet Yildiz oad Map. Cardinal representation Expected utility theory. Quiz 3. epresentation of games in strategic and extensive forms 4. Dominance; dominant-strategy

More information

CS188 Spring 2012 Section 4: Games

CS188 Spring 2012 Section 4: Games CS188 Spring 2012 Section 4: Games 1 Minimax Search In this problem, we will explore adversarial search. Consider the zero-sum game tree shown below. Trapezoids that point up, such as at the root, represent

More information

Incentive Compatibility: Everywhere vs. Almost Everywhere

Incentive Compatibility: Everywhere vs. Almost Everywhere Incentive Compatibility: Everywhere vs. Almost Everywhere Murali Agastya Richard T. Holden August 29, 2006 Abstract A risk neutral buyer observes a private signal s [a, b], which informs her that the mean

More information

Session 9: The expected utility framework p. 1

Session 9: The expected utility framework p. 1 Session 9: The expected utility framework Susan Thomas http://www.igidr.ac.in/ susant susant@mayin.org IGIDR Bombay Session 9: The expected utility framework p. 1 Questions How do humans make decisions

More information

Microeconomics of Banking: Lecture 2

Microeconomics of Banking: Lecture 2 Microeconomics of Banking: Lecture 2 Prof. Ronaldo CARPIO September 25, 2015 A Brief Look at General Equilibrium Asset Pricing Last week, we saw a general equilibrium model in which banks were irrelevant.

More information

Random Variables and Applications OPRE 6301

Random Variables and Applications OPRE 6301 Random Variables and Applications OPRE 6301 Random Variables... As noted earlier, variability is omnipresent in the business world. To model variability probabilistically, we need the concept of a random

More information

CS 188 Fall Introduction to Artificial Intelligence Midterm 1. ˆ You have approximately 2 hours and 50 minutes.

CS 188 Fall Introduction to Artificial Intelligence Midterm 1. ˆ You have approximately 2 hours and 50 minutes. CS 188 Fall 2013 Introduction to Artificial Intelligence Midterm 1 ˆ You have approximately 2 hours and 50 minutes. ˆ The exam is closed book, closed notes except your one-page crib sheet. ˆ Please use

More information

PAULI MURTO, ANDREY ZHUKOV. If any mistakes or typos are spotted, kindly communicate them to

PAULI MURTO, ANDREY ZHUKOV. If any mistakes or typos are spotted, kindly communicate them to GAME THEORY PROBLEM SET 1 WINTER 2018 PAULI MURTO, ANDREY ZHUKOV Introduction If any mistakes or typos are spotted, kindly communicate them to andrey.zhukov@aalto.fi. Materials from Osborne and Rubinstein

More information

CEC login. Student Details Name SOLUTIONS

CEC login. Student Details Name SOLUTIONS Student Details Name SOLUTIONS CEC login Instructions You have roughly 1 minute per point, so schedule your time accordingly. There is only one correct answer per question. Good luck! Question 1. Searching

More information

G5212: Game Theory. Mark Dean. Spring 2017

G5212: Game Theory. Mark Dean. Spring 2017 G5212: Game Theory Mark Dean Spring 2017 Modelling Dynamics Up until now, our games have lacked any sort of dynamic aspect We have assumed that all players make decisions at the same time Or at least no

More information

Learning Objectives = = where X i is the i t h outcome of a decision, p i is the probability of the i t h

Learning Objectives = = where X i is the i t h outcome of a decision, p i is the probability of the i t h Learning Objectives After reading Chapter 15 and working the problems for Chapter 15 in the textbook and in this Workbook, you should be able to: Distinguish between decision making under uncertainty and

More information

MICROECONOMIC THEROY CONSUMER THEORY

MICROECONOMIC THEROY CONSUMER THEORY LECTURE 5 MICROECONOMIC THEROY CONSUMER THEORY Choice under Uncertainty (MWG chapter 6, sections A-C, and Cowell chapter 8) Lecturer: Andreas Papandreou 1 Introduction p Contents n Expected utility theory

More information

Dr. Abdallah Abdallah Fall Term 2014

Dr. Abdallah Abdallah Fall Term 2014 Quantitative Analysis Dr. Abdallah Abdallah Fall Term 2014 1 Decision analysis Fundamentals of decision theory models Ch. 3 2 Decision theory Decision theory is an analytic and systemic way to tackle problems

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Choice under Uncertainty

Choice under Uncertainty Chapter 7 Choice under Uncertainty 1. Expected Utility Theory. 2. Risk Aversion. 3. Applications: demand for insurance, portfolio choice 4. Violations of Expected Utility Theory. 7.1 Expected Utility Theory

More information

CONVENTIONAL FINANCE, PROSPECT THEORY, AND MARKET EFFICIENCY

CONVENTIONAL FINANCE, PROSPECT THEORY, AND MARKET EFFICIENCY CONVENTIONAL FINANCE, PROSPECT THEORY, AND MARKET EFFICIENCY PART ± I CHAPTER 1 CHAPTER 2 CHAPTER 3 Foundations of Finance I: Expected Utility Theory Foundations of Finance II: Asset Pricing, Market Efficiency,

More information

BAYESIAN GAMES: GAMES OF INCOMPLETE INFORMATION

BAYESIAN GAMES: GAMES OF INCOMPLETE INFORMATION BAYESIAN GAMES: GAMES OF INCOMPLETE INFORMATION MERYL SEAH Abstract. This paper is on Bayesian Games, which are games with incomplete information. We will start with a brief introduction into game theory,

More information

Notes for Session 2, Expected Utility Theory, Summer School 2009 T.Seidenfeld 1

Notes for Session 2, Expected Utility Theory, Summer School 2009 T.Seidenfeld 1 Session 2: Expected Utility In our discussion of betting from Session 1, we required the bookie to accept (as fair) the combination of two gambles, when each gamble, on its own, is judged fair. That is,

More information

Expected utility theory; Expected Utility Theory; risk aversion and utility functions

Expected utility theory; Expected Utility Theory; risk aversion and utility functions ; Expected Utility Theory; risk aversion and utility functions Prof. Massimo Guidolin Portfolio Management Spring 2016 Outline and objectives Utility functions The expected utility theorem and the axioms

More information

GAME THEORY. Department of Economics, MIT, Follow Muhamet s slides. We need the following result for future reference.

GAME THEORY. Department of Economics, MIT, Follow Muhamet s slides. We need the following result for future reference. 14.126 GAME THEORY MIHAI MANEA Department of Economics, MIT, 1. Existence and Continuity of Nash Equilibria Follow Muhamet s slides. We need the following result for future reference. Theorem 1. Suppose

More information

General Examination in Microeconomic Theory SPRING 2014

General Examination in Microeconomic Theory SPRING 2014 HARVARD UNIVERSITY DEPARTMENT OF ECONOMICS General Examination in Microeconomic Theory SPRING 2014 You have FOUR hours. Answer all questions Those taking the FINAL have THREE hours Part A (Glaeser): 55

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Fundamentals of Managerial and Strategic Decision-Making

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Fundamentals of Managerial and Strategic Decision-Making Resource Allocation and Decision Analysis ECON 800) Spring 0 Fundamentals of Managerial and Strategic Decision-Making Reading: Relevant Costs and Revenues ECON 800 Coursepak, Page ) Definitions and Concepts:

More information

Microeconomic Theory II Preliminary Examination Solutions

Microeconomic Theory II Preliminary Examination Solutions Microeconomic Theory II Preliminary Examination Solutions 1. (45 points) Consider the following normal form game played by Bruce and Sheila: L Sheila R T 1, 0 3, 3 Bruce M 1, x 0, 0 B 0, 0 4, 1 (a) Suppose

More information

Exercises - Moral hazard

Exercises - Moral hazard Exercises - Moral hazard 1. (from Rasmusen) If a salesman exerts high e ort, he will sell a supercomputer this year with probability 0:9. If he exerts low e ort, he will succeed with probability 0:5. The

More information

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712 Prof. Peck Fall 016 Department of Economics The Ohio State University Final Exam Questions and Answers Econ 871 1. (35 points) The following economy has one consumer, two firms, and four goods. Goods 1

More information

d. Find a competitive equilibrium for this economy. Is the allocation Pareto efficient? Are there any other competitive equilibrium allocations?

d. Find a competitive equilibrium for this economy. Is the allocation Pareto efficient? Are there any other competitive equilibrium allocations? Answers to Microeconomics Prelim of August 7, 0. Consider an individual faced with two job choices: she can either accept a position with a fixed annual salary of x > 0 which requires L x units of labor

More information

Finish what s been left... CS286r Fall 08 Finish what s been left... 1

Finish what s been left... CS286r Fall 08 Finish what s been left... 1 Finish what s been left... CS286r Fall 08 Finish what s been left... 1 Perfect Bayesian Equilibrium A strategy-belief pair, (σ, µ) is a perfect Bayesian equilibrium if (Beliefs) At every information set

More information

Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the

Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the Copyright (C) 2001 David K. Levine This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General

More information

Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals.

Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals. Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals. We will deal with a particular set of assumptions, but we can modify

More information

Period State of the world: n/a A B n/a A B Endowment ( income, output ) Y 0 Y1 A Y1 B Y0 Y1 A Y1. p A 1+r. 1 0 p B.

Period State of the world: n/a A B n/a A B Endowment ( income, output ) Y 0 Y1 A Y1 B Y0 Y1 A Y1. p A 1+r. 1 0 p B. ECONOMICS 7344, Spring 2 Bent E. Sørensen April 28, 2 NOTE. Obstfeld-Rogoff (OR). Simplified notation. Assume that agents (initially we will consider just one) live for 2 periods in an economy with uncertainty

More information

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts 6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts Asu Ozdaglar MIT February 9, 2010 1 Introduction Outline Review Examples of Pure Strategy Nash Equilibria

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives CHAPTER Duxbury Thomson Learning Making Hard Decision Third Edition RISK ATTITUDES A. J. Clark School of Engineering Department of Civil and Environmental Engineering 13 FALL 2003 By Dr. Ibrahim. Assakkaf

More information

EconS Micro Theory I Recitation #8b - Uncertainty II

EconS Micro Theory I Recitation #8b - Uncertainty II EconS 50 - Micro Theory I Recitation #8b - Uncertainty II. Exercise 6.E.: The purpose of this exercise is to show that preferences may not be transitive in the presence of regret. Let there be S states

More information

DECISION ANALYSIS. Decision often must be made in uncertain environments. Examples:

DECISION ANALYSIS. Decision often must be made in uncertain environments. Examples: DECISION ANALYSIS Introduction Decision often must be made in uncertain environments. Examples: Manufacturer introducing a new product in the marketplace. Government contractor bidding on a new contract.

More information

ESD.71 Engineering Systems Analysis for Design

ESD.71 Engineering Systems Analysis for Design ESD.71 Engineering Systems Analysis for Design Assignment 4 Solution November 18, 2003 15.1 Money Bags Call Bag A the bag with $640 and Bag B the one with $280. Also, denote the probabilities: P (A) =

More information

Expected Utility and Risk Aversion

Expected Utility and Risk Aversion Expected Utility and Risk Aversion Expected utility and risk aversion 1/ 58 Introduction Expected utility is the standard framework for modeling investor choices. The following topics will be covered:

More information

Sequential-move games with Nature s moves.

Sequential-move games with Nature s moves. Econ 221 Fall, 2018 Li, Hao UBC CHAPTER 3. GAMES WITH SEQUENTIAL MOVES Game trees. Sequential-move games with finite number of decision notes. Sequential-move games with Nature s moves. 1 Strategies in

More information

6.1 Binomial Theorem

6.1 Binomial Theorem Unit 6 Probability AFM Valentine 6.1 Binomial Theorem Objective: I will be able to read and evaluate binomial coefficients. I will be able to expand binomials using binomial theorem. Vocabulary Binomial

More information

ENGINEERING RISK ANALYSIS (M S & E 250 A)

ENGINEERING RISK ANALYSIS (M S & E 250 A) ENGINEERING RISK ANALYSIS (M S & E 250 A) VOLUME 1 CLASS NOTES SECTION 2 ELEMENTS OF DECISION ANALYSIS M. ELISABETH PATÉ-CORNELL MANAGEMENT SCIENCE AND ENGINEERING STANFORD UNIVERSITY M. E. PATÉ-CORNELL

More information

Decision Theory. Refail N. Kasimbeyli

Decision Theory. Refail N. Kasimbeyli Decision Theory Refail N. Kasimbeyli Chapter 3 3 Utility Theory 3.1 Single-attribute utility 3.2 Interpreting utility functions 3.3 Utility functions for non-monetary attributes 3.4 The axioms of utility

More information

University of California, Davis Department of Economics Giacomo Bonanno. Economics 103: Economics of uncertainty and information PRACTICE PROBLEMS

University of California, Davis Department of Economics Giacomo Bonanno. Economics 103: Economics of uncertainty and information PRACTICE PROBLEMS University of California, Davis Department of Economics Giacomo Bonanno Economics 03: Economics of uncertainty and information PRACTICE PROBLEMS oooooooooooooooo Problem :.. Expected value Problem :..

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1 Making Decisions CS 3793 Artificial Intelligence Making Decisions 1 Planning under uncertainty should address: The world is nondeterministic. Actions are not certain to succeed. Many events are outside

More information

Strategy Lines and Optimal Mixed Strategy for R

Strategy Lines and Optimal Mixed Strategy for R Strategy Lines and Optimal Mixed Strategy for R Best counterstrategy for C for given mixed strategy by R In the previous lecture we saw that if R plays a particular mixed strategy, [p, p, and shows no

More information

Building Consistent Risk Measures into Stochastic Optimization Models

Building Consistent Risk Measures into Stochastic Optimization Models Building Consistent Risk Measures into Stochastic Optimization Models John R. Birge The University of Chicago Graduate School of Business www.chicagogsb.edu/fac/john.birge JRBirge Fuqua School, Duke University

More information

CUR 412: Game Theory and its Applications, Lecture 9

CUR 412: Game Theory and its Applications, Lecture 9 CUR 412: Game Theory and its Applications, Lecture 9 Prof. Ronaldo CARPIO May 22, 2015 Announcements HW #3 is due next week. Ch. 6.1: Ultimatum Game This is a simple game that can model a very simplified

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Markov Decision Processes (MDP)! Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore 1 Outline

More information

Name. Final Exam, Economics 210A, December 2014 Answer any 7 of these 8 questions Good luck!

Name. Final Exam, Economics 210A, December 2014 Answer any 7 of these 8 questions Good luck! Name Final Exam, Economics 210A, December 2014 Answer any 7 of these 8 questions Good luck! 1) For each of the following statements, state whether it is true or false. If it is true, prove that it is true.

More information

ANASH EQUILIBRIUM of a strategic game is an action profile in which every. Strategy Equilibrium

ANASH EQUILIBRIUM of a strategic game is an action profile in which every. Strategy Equilibrium Draft chapter from An introduction to game theory by Martin J. Osborne. Version: 2002/7/23. Martin.Osborne@utoronto.ca http://www.economics.utoronto.ca/osborne Copyright 1995 2002 by Martin J. Osborne.

More information

Optimizing S-shaped utility and risk management

Optimizing S-shaped utility and risk management Optimizing S-shaped utility and risk management Ineffectiveness of VaR and ES constraints John Armstrong (KCL), Damiano Brigo (Imperial) Quant Summit March 2018 Are ES constraints effective against rogue

More information