Capstone Design. Cost Estimating and Estimating Models

Size: px
Start display at page:

Download "Capstone Design. Cost Estimating and Estimating Models"

Transcription

1 Capstone Design Engineering Economics II Engineering Economics II (1 of 14) Cost Estimating and Estimating Models Engineering economic analysis involves present and future economic factors It is critical to obtain reliable estimates of future costs, benefits and other economic parameters Estimates can be rough estimates, semi-detailed estimates, or detailed estimates, depending on the needs A characteristic ti of cost estimates t is that t errors in estimating are typically non-symmetric Costs are more likely to be underestimated than overestimated Engineering Economics II (2 of 14) 1

2 Cost Estimating and Estimating Models (continued) Difficulties in developing cost estimates arise from such conditions as: One-of-a-kind estimates Resource availability Estimator expertise Generally the quality of a cost estimate increases as the resources allocated to developing the estimate increase Benefits expected from improving a cost estimate should outweigh the cost of devoting additional resources to the estimate improvement Engineering Economics II (3 of 14) Models for Cost Estimates Several models are available for developing cost (or benefit) estimates The per unit model is a simple but useful model in which a cost estimate is made for a single unit Total cost estimate results from multiplying the estimated cost per unit times the number of units The segmenting model partitions the total estimation task into segments Each segment is estimated, then the segment estimates are combined for the total cost estimate Engineering Economics II (4 of 14) 2

3 Cost Indexes Cost indexes can be used to account for historical changes in costs The widely-reported Consumer Price Index (CPI) is an example Monthly data on changes in the prices paid by urban consumers for a representative basket of goods and services Cost index data are available from a variety of sources Suppose A is a time point in the past and B is the current time Let IV A denote the index value at time A and IV B denote the current index value for the cost estimate of interest To estimate the current cost based on the cost at time A, use the equation: Cost at time B = (Cost at time A) (IV B / IV A ) Engineering Economics II (5 of 14) Power Sizing Model The power sizing model accounts explicitly for economies of scale For example, the cost of constructing a six-story building will typically be less than double the construction cost of a comparable three-story building To estimate the cost of B based on the cost of comparable item A, use: Cost of B = (Cost of A) [ ("Size" of B) / ("Size" of A) ] x where x is the appropriate power sizing exponent An economy of scale is indicated by an exponent < 1.0 An exponent of 1.0 indicates no economy of scale, and an exponent greater than 1.0 indicates a diseconomy of scale "Size" is used here in a general sense to indicate physical size, capacity, or some other appropriate comparison unit Engineering Economics II (6 of 14) 3

4 Learning Curve Cost Estimate Learning curve cost estimating is based on the assumption that as a particular task is repeated, the operator systematically becomes quicker at performing the task Based on the assumption that the time required to complete the task for production unit 2x is a fixed percentage of the time that was required for production unit x, for all positive, integer x The learning curve slope indicates "how fast" learning occurs For example, a learning curve rate of 70% represents much faster learning than a rate of 90% If an operator exhibits learning on a certain task at a rate of 70%, the time required to complete production unit 50, for example, is only 70% of the time required to complete unit 25 Engineering Economics II (7 of 14) Learning Curve Time Let b = learning curve exponent = log (learning curve rate in decimal form) / log 2.0 Then T N = time estimate for unit N (N = 1, 2,...) = (T 1 ) (N) b where T 1 is the time required for unit 1 Engineering Economics II (8 of 14) 4

5 Simple Interest Simple interest is computed only on an original sum Total interest earned (owed) = P i n P = principal sum of money i = interest rate n = period (usually given in years) At the end of the loan period, the total amount due is F = P + P i n = P( 1+ i n) Engineering Economics II (9 of 14) Compound Interest Practical interest is calculated using a compound interest method For a loan, any interest owed but not paid at the end of a specified time period (often one year) is added to the balance due Next year s interest is calculated based on unpaid balance due Compound interest can be thought of a interest on top of interest Engineering Economics II (10 of 14) 5

6 Single payment compound interest formulas Given a present dollar amount P, interest rate i% per year, compounded annually, and a future amount F that occurs n years after the present, then the relationship between these terms is: F = P (1 + i) n Example: If $100 is invested at 6% interest per year, compounded annually, then the future value of this investment after four years is: F = P (1 + i) n = $100 ( ) 4 = $100 (1.06) 4 = $100 (1.2625) = $ Solving the above equation for P yields: P = F (1 + i) -n Engineering Economics II (11 of 14) Single payment compound interest formulas (other periods) If the interest period and compounding period are not stated, then the interest rate is understood to be annual with annual compounding Examples: "12% interest" means that the interest rate is 12% per year, compounded annually "12% interest compounded monthly" means that the interest rate is 12% per year (not 12% per month), compounded monthly Thus the interest rate is 1% (12% / 12 ) per month. "1% interest per month compounded monthly" is unambiguous Engineering Economics II (12 of 14) 6

7 Single payment compound interest formulas (other periods, continued)) When the compounding period is not annual, problems must be solved in terms of the compounding period, not years Example: If $100 is invested at 6% interest, compounded monthly, then the future value of this investment after four years is: F = P (1 + i) n = $100 ( ) 48 = $100 (1.005) 48 = $100 (1.2705) = $ Note that the interest rate used above is (6% / 12) = 0.5% per month = per month, and that the number of periods used is 48 (months), not 4 (years) Engineering Economics II (13 of 14) Single payment compound interest (solving for i or n) The single payment compound interest formula F = P (1 + i) n or single payment interest t table factors can be used to solve for unknown i or n. Example: A $100 investment now in an account that pays compound interest annually will be worth $250 at a point exactly 31 years from now. What annual interest rate does this account pay? Solving the equation: 250 = 100 (1 + i) 31 for i yields an answer of 3% Engineering Economics II (14 of 14) 7

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money.

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Simple and compound interest NAME: These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Principal: initial amount you borrow;

More information

troduction to Algebra

troduction to Algebra Chapter Six Percent Percents, Decimals, and Fractions Understanding Percent The word percent comes from the Latin phrase per centum,, which means per 100. Percent means per one hundred. The % symbol is

More information

Lesson Exponential Models & Logarithms

Lesson Exponential Models & Logarithms SACWAY STUDENT HANDOUT SACWAY BRAINSTORMING ALGEBRA & STATISTICS STUDENT NAME DATE INTRODUCTION Compound Interest When you invest money in a fixed- rate interest earning account, you receive interest at

More information

Financial Maths: Interest

Financial Maths: Interest Financial Maths: Interest Basic increase and decrease: Let us assume that you start with R100. You increase it by 10%, and then decrease it by 10%. How much money do you have at the end? Increase by 10%

More information

Chapter 5: Introduction to Valuation: The Time Value of Money

Chapter 5: Introduction to Valuation: The Time Value of Money Chapter 5: Introduction to Valuation: The Time Value of Money Faculty of Business Administration Lakehead University Spring 2003 May 12, 2003 Outline of Chapter 5 5.1 Future Value and Compounding 5.2 Present

More information

MATH THAT MAKES ENTS

MATH THAT MAKES ENTS On December 31, 2012, Curtis and Bill each had $1000 to start saving for retirement. The two men had different ideas about the best way to save, though. Curtis, who doesn t trust banks, put his money in

More information

CHAPTER 3. Compound Interest

CHAPTER 3. Compound Interest CHAPTER 3 Compound Interest Recall What can you say to the amount of interest earned in simple interest? Do you know? An interest can also earn an interest? Compound Interest Whenever a simple interest

More information

Math116Chap10MathOfMoneyPart2Done.notebook March 01, 2012

Math116Chap10MathOfMoneyPart2Done.notebook March 01, 2012 Chapter 10: The Mathematics of Money PART 2 Percent Increases and Decreases If a shirt is marked down 20% and it now costs $32, how much was it originally? Simple Interest If you invest a principle of

More information

Interest Formulas. Simple Interest

Interest Formulas. Simple Interest Interest Formulas You have $1000 that you wish to invest in a bank. You are curious how much you will have in your account after 3 years since banks typically give you back some interest. You have several

More information

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis 16 MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis Contents 2 Interest Rates 16 2.1 Definitions.................................... 16 2.1.1 Rate of Return..............................

More information

Section 4B: The Power of Compounding

Section 4B: The Power of Compounding Section 4B: The Power of Compounding Definitions The principal is the amount of your initial investment. This is the amount on which interest is paid. Simple interest is interest paid only on the original

More information

Before How can lines on a graph show the effect of interest rates on savings accounts?

Before How can lines on a graph show the effect of interest rates on savings accounts? Compound Interest LAUNCH (7 MIN) Before How can lines on a graph show the effect of interest rates on savings accounts? During How can you tell what the graph of simple interest looks like? After What

More information

Functions - Compound Interest

Functions - Compound Interest 10.6 Functions - Compound Interest Objective: Calculate final account balances using the formulas for compound and continuous interest. An application of exponential functions is compound interest. When

More information

3: Balance Equations

3: Balance Equations 3.1 Balance Equations Accounts with Constant Interest Rates 15 3: Balance Equations Investments typically consist of giving up something today in the hope of greater benefits in the future, resulting in

More information

Two Equivalent Conditions

Two Equivalent Conditions Two Equivalent Conditions The traditional theory of present value puts forward two equivalent conditions for asset-market equilibrium: Rate of Return The expected rate of return on an asset equals the

More information

Quantitative Literacy: Thinking Between the Lines

Quantitative Literacy: Thinking Between the Lines Quantitative Literacy: Thinking Between the Lines Crauder, Noell, Evans, Johnson Chapter 4: Personal Finance 2013 W. H. Freeman and Company 1 Chapter 4: Personal Finance Lesson Plan Saving money: The power

More information

Simple Interest. Formula I = prt

Simple Interest. Formula I = prt Simple Interest Formula I = prt I = PRT I = interest earned (amount of money the bank pays you) P = Principal amount invested or borrowed. R = Interest Rate usually given as a percent (must changed to

More information

The Monthly Payment. ( ) ( ) n. P r M = r 12. k r. 12C, which must be rounded up to the next integer.

The Monthly Payment. ( ) ( ) n. P r M = r 12. k r. 12C, which must be rounded up to the next integer. MATH 116 Amortization One of the most useful arithmetic formulas in mathematics is the monthly payment for an amortized loan. Here are some standard questions that apply whenever you borrow money to buy

More information

Section 5.1 Simple and Compound Interest

Section 5.1 Simple and Compound Interest Section 5.1 Simple and Compound Interest Question 1 What is simple interest? Question 2 What is compound interest? Question 3 - What is an effective interest rate? Question 4 - What is continuous compound

More information

Measuring Interest Rates

Measuring Interest Rates Measuring Interest Rates Economics 301: Money and Banking 1 1.1 Goals Goals and Learning Outcomes Goals: Learn to compute present values, rates of return, rates of return. Learning Outcomes: LO3: Predict

More information

Investigate. Name Per Algebra IB Unit 9 - Exponential Growth Investigation. Ratio of Values of Consecutive Decades. Decades Since

Investigate. Name Per Algebra IB Unit 9 - Exponential Growth Investigation. Ratio of Values of Consecutive Decades. Decades Since Name Per Algebra IB Unit 9 - Exponential Growth Investigation Investigate Real life situation 1) The National Association Realtors estimates that, on average, the price of a house doubles every ten years

More information

4: Single Cash Flows and Equivalence

4: Single Cash Flows and Equivalence 4.1 Single Cash Flows and Equivalence Basic Concepts 28 4: Single Cash Flows and Equivalence This chapter explains basic concepts of project economics by examining single cash flows. This means that each

More information

Day 3 Simple vs Compound Interest.notebook April 07, Simple Interest is money paid or earned on the. The Principal is the

Day 3 Simple vs Compound Interest.notebook April 07, Simple Interest is money paid or earned on the. The Principal is the LT: I can calculate simple and compound interest. p.11 What is Simple Interest? What is Principal? Simple Interest is money paid or earned on the. The Principal is the What is the Simple Interest Formula?

More information

Quantitative Literacy: Thinking Between the Lines

Quantitative Literacy: Thinking Between the Lines Quantitative Literacy: Thinking Between the Lines Crauder, Evans, Johnson, Noell Chapter 4: Personal Finance 2011 W. H. Freeman and Company 1 Chapter 4: Personal Finance Lesson Plan Saving money: The power

More information

Math 111: Section 3.1 Exponential Growth and Decay Section 004

Math 111: Section 3.1 Exponential Growth and Decay Section 004 Math 111: Section 3.1 Exponential Growth and Decay Section 004 An example of Exponential Growth If each bactrium splits into two bacteria every hour, then the population doubles every hour. The question

More information

Answers are on next slide. Graphs follow.

Answers are on next slide. Graphs follow. Sec 3.1 Exponential Functions and Their Graphs November 27, 2018 Exponential Function - the independent variable is in the exponent. Model situations with constant percentage change exponential growth

More information

Answers are on next slide. Graphs follow.

Answers are on next slide. Graphs follow. Sec 3.1 Exponential Functions and Their Graphs Exponential Function - the independent variable is in the exponent. Model situations with constant percentage change exponential growth exponential decay

More information

Interest Rates: Credit Cards and Annuities

Interest Rates: Credit Cards and Annuities Interest Rates: Credit Cards and Annuities 25 April 2014 Interest Rates: Credit Cards and Annuities 25 April 2014 1/25 Last Time Last time we discussed loans and saw how big an effect interest rates were

More information

Introduction to the Compound Interest Formula

Introduction to the Compound Interest Formula Introduction to the Compound Interest Formula Lesson Objectives: students will be introduced to the formula students will learn how to determine the value of the required variables in order to use the

More information

3.1 Exponential Functions and Their Graphs Date: Exponential Function

3.1 Exponential Functions and Their Graphs Date: Exponential Function 3.1 Exponential Functions and Their Graphs Date: Exponential Function Exponential Function: A function of the form f(x) = b x, where the b is a positive constant other than, and the exponent, x, is a variable.

More information

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis 16 MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis Contents 2 Interest Rates and Present Value Analysis 16 2.1 Definitions.................................... 16 2.1.1 Rate of

More information

Financial Applications Involving Exponential Functions

Financial Applications Involving Exponential Functions Section 6.5: Financial Applications Involving Exponential Functions When you invest money, your money earns interest, which means that after a period of time you will have more money than you started with.

More information

Time Value of Money. Lakehead University. Outline of the Lecture. Fall Future Value and Compounding. Present Value and Discounting

Time Value of Money. Lakehead University. Outline of the Lecture. Fall Future Value and Compounding. Present Value and Discounting Time Value of Money Lakehead University Fall 2004 Outline of the Lecture Future Value and Compounding Present Value and Discounting More on Present and Future Values 2 Future Value and Compounding Future

More information

MATH 111 Worksheet 21 Replacement Partial Compounding Periods

MATH 111 Worksheet 21 Replacement Partial Compounding Periods MATH 111 Worksheet 1 Replacement Partial Compounding Periods Key Questions: I. XYZ Corporation issues promissory notes in $1,000 denominations under the following terms. You give them $1,000 now, and eight

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE 19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE We assume here that the population variance σ 2 is known. This is an unrealistic assumption, but it allows us to give a simplified presentation which

More information

Finance 197. Simple One-time Interest

Finance 197. Simple One-time Interest Finance 197 Finance We have to work with money every day. While balancing your checkbook or calculating your monthly expenditures on espresso requires only arithmetic, when we start saving, planning for

More information

SIMPLE AND COMPOUND INTEREST

SIMPLE AND COMPOUND INTEREST SIMPLE AND COMPOUND INTEREST 8.1.1 8.1.3 In Course 2 students are introduced to simple interest, the interest is paid only on the original amount invested. The formula for simple interest is: I = Prt and

More information

Math 147 Section 6.4. Application Example

Math 147 Section 6.4. Application Example Math 147 Section 6.4 Present Value of Annuities 1 Application Example Suppose an individual makes an initial investment of $1500 in an account that earns 8.4%, compounded monthly, and makes additional

More information

(Refer Slide Time: 00:55)

(Refer Slide Time: 00:55) Engineering Economic Analysis Professor Dr. Pradeep K Jha Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Lecture 11 Economic Equivalence: Meaning and Principles

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Appendix A Financial Calculations

Appendix A Financial Calculations Derivatives Demystified: A Step-by-Step Guide to Forwards, Futures, Swaps and Options, Second Edition By Andrew M. Chisholm 010 John Wiley & Sons, Ltd. Appendix A Financial Calculations TIME VALUE OF MONEY

More information

The Time Value of Money

The Time Value of Money Chapter 2 The Time Value of Money Time Discounting One of the basic concepts of business economics and managerial decision making is that the value of an amount of money to be received in the future depends

More information

DEPARTMENT OF ECONOMICS, UNIVERSITY OF VICTORIA

DEPARTMENT OF ECONOMICS, UNIVERSITY OF VICTORIA DEPARTMENT OF ECONOMICS, UNIVERSITY OF VICTORIA Midterm Exam I (October 09, 2012) ECON204 (A01), Fall 2012 Name (Last, First): UVIC ID#: Signature: THIS EXAM HAS TOTAL 7 PAGES INCLUDING THE COVER PAGE

More information

Exponential Functions with Base e

Exponential Functions with Base e Exponential Functions with Base e Any positive number can be used as the base for an exponential function, but some bases are more useful than others. For instance, in computer science applications, the

More information

Chapter 2: BASICS OF FIXED INCOME SECURITIES

Chapter 2: BASICS OF FIXED INCOME SECURITIES Chapter 2: BASICS OF FIXED INCOME SECURITIES 2.1 DISCOUNT FACTORS 2.1.1 Discount Factors across Maturities 2.1.2 Discount Factors over Time 2.1 DISCOUNT FACTORS The discount factor between two dates, t

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

BLOCK 2 ~ EXPONENTIAL FUNCTIONS

BLOCK 2 ~ EXPONENTIAL FUNCTIONS BLOCK 2 ~ EXPONENTIAL FUNCTIONS TIC-TAC-TOE Looking Backwards Recursion Mix-Up Story Time Use exponential functions to look into the past to answer questions. Write arithmetic and geometric recursive routines.

More information

January 29. Annuities

January 29. Annuities January 29 Annuities An annuity is a repeating payment, typically of a fixed amount, over a period of time. An annuity is like a loan in reverse; rather than paying a loan company, a bank or investment

More information

7-4. Compound Interest. Vocabulary. Interest Compounded Annually. Lesson. Mental Math

7-4. Compound Interest. Vocabulary. Interest Compounded Annually. Lesson. Mental Math Lesson 7-4 Compound Interest BIG IDEA If money grows at a constant interest rate r in a single time period, then after n time periods the value of the original investment has been multiplied by (1 + r)

More information

Finding the Sum of Consecutive Terms of a Sequence

Finding the Sum of Consecutive Terms of a Sequence Mathematics 451 Finding the Sum of Consecutive Terms of a Sequence In a previous handout we saw that an arithmetic sequence starts with an initial term b, and then each term is obtained by adding a common

More information

Activity 1.1 Compound Interest and Accumulated Value

Activity 1.1 Compound Interest and Accumulated Value Activity 1.1 Compound Interest and Accumulated Value Remember that time is money. Ben Franklin, 1748 Reprinted by permission: Tribune Media Services Broom Hilda has discovered too late the power of compound

More information

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Correlated to: Minnesota K-12 Academic Standards in Mathematics, 9/2008 (Grade 7)

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Correlated to: Minnesota K-12 Academic Standards in Mathematics, 9/2008 (Grade 7) 7.1.1.1 Know that every rational number can be written as the ratio of two integers or as a terminating or repeating decimal. Recognize that π is not rational, but that it can be approximated by rational

More information

Chapter 11: Cost Minimisation and the Demand for Factors

Chapter 11: Cost Minimisation and the Demand for Factors Chapter 11: Cost Minimisation and the Demand for Factors 11.1: Introduction We assume a very simple objective for firms namely, that they want to maximise profits 1. We will explore the implications of

More information

1 Answers to the Sept 08 macro prelim - Long Questions

1 Answers to the Sept 08 macro prelim - Long Questions Answers to the Sept 08 macro prelim - Long Questions. Suppose that a representative consumer receives an endowment of a non-storable consumption good. The endowment evolves exogenously according to ln

More information

Computational Mathematics/Information Technology

Computational Mathematics/Information Technology Computational Mathematics/Information Technology 2009 10 Financial Functions in Excel This lecture starts to develop the background for the financial functions in Excel that deal with, for example, loan

More information

5.3 Interval Estimation

5.3 Interval Estimation 5.3 Interval Estimation Ulrich Hoensch Wednesday, March 13, 2013 Confidence Intervals Definition Let θ be an (unknown) population parameter. A confidence interval with confidence level C is an interval

More information

Economics 102 Discussion Handout Week 5 Spring 2018

Economics 102 Discussion Handout Week 5 Spring 2018 Economics 102 Discussion Handout Week 5 Spring 2018 GDP: Definition and Calculations Gross Domestic Product (GDP) is the market value of all goods and services produced within a country over a given time

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 2b 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 10 pages (including this cover page) and 9 problems. Check to see if any

More information

Econ 8602, Fall 2017 Homework 2

Econ 8602, Fall 2017 Homework 2 Econ 8602, Fall 2017 Homework 2 Due Tues Oct 3. Question 1 Consider the following model of entry. There are two firms. There are two entry scenarios in each period. With probability only one firm is able

More information

Chapter 6: Supply and Demand with Income in the Form of Endowments

Chapter 6: Supply and Demand with Income in the Form of Endowments Chapter 6: Supply and Demand with Income in the Form of Endowments 6.1: Introduction This chapter and the next contain almost identical analyses concerning the supply and demand implied by different kinds

More information

10 5 The Binomial Theorem

10 5 The Binomial Theorem 10 5 The Binomial Theorem Daily Outcomes: I can use Pascal's triangle to write binomial expansions I can use the Binomial Theorem to write and find the coefficients of specified terms in binomial expansions

More information

Mathematical Interest Theory-Week 1

Mathematical Interest Theory-Week 1 Mathematical Interest Theory-Week 1 Jonathan Curtis September 2016 Contents 0.1 Introduction.............................. 2 1 Chapter 1: The Growth of Money 3 1.1 Section 1.3: Accumulation and Amount

More information

3.1 Simple Interest. Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time

3.1 Simple Interest. Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time 3.1 Simple Interest Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time An example: Find the interest on a boat loan of $5,000 at 16% for

More information

Homework 1 Due February 10, 2009 Chapters 1-4, and 18-24

Homework 1 Due February 10, 2009 Chapters 1-4, and 18-24 Homework Due February 0, 2009 Chapters -4, and 8-24 Make sure your graphs are scaled and labeled correctly. Note important points on the graphs and label them. Also be sure to label the axis on all of

More information

Eliminating Substitution Bias. One eliminate substitution bias by continuously updating the market basket of goods purchased.

Eliminating Substitution Bias. One eliminate substitution bias by continuously updating the market basket of goods purchased. Eliminating Substitution Bias One eliminate substitution bias by continuously updating the market basket of goods purchased. 1 Two-Good Model Consider a two-good model. For good i, the price is p i, and

More information

Copyright 2015 Pearson Education, Inc. All rights reserved.

Copyright 2015 Pearson Education, Inc. All rights reserved. Chapter 4 Mathematics of Finance Section 4.1 Simple Interest and Discount A fee that is charged by a lender to a borrower for the right to use the borrowed funds. The funds can be used to purchase a house,

More information

Mathematics for Economists

Mathematics for Economists Department of Economics Mathematics for Economists Chapter 4 Mathematics of Finance Econ 506 Dr. Mohammad Zainal 4 Mathematics of Finance Compound Interest Annuities Amortization and Sinking Funds Arithmetic

More information

Algebra II Quiz: Lessons 7.1 through 7.4 Review

Algebra II Quiz: Lessons 7.1 through 7.4 Review Class: Date: Algebra II Quiz: Lessons 7.1 through 7.4 Review Graph: 1. f( x) = 4 x 1 2. Graph the function: f( x) = 3 x 2 a. b. 3 c. d. 3. Find the y-intercept of the equation. y = 3 7 x a. 4 b. 21 c.

More information

Mathematics 102 Fall Exponential functions

Mathematics 102 Fall Exponential functions Mathematics 102 Fall 1999 Exponential functions The mathematics of uncontrolled growth are frightening. A single cell of the bacterium E. coli would, under ideal circumstances, divide about every twenty

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

BOSTON UNIVERSITY SCHOOL OF MANAGEMENT. Math Notes

BOSTON UNIVERSITY SCHOOL OF MANAGEMENT. Math Notes BOSTON UNIVERSITY SCHOOL OF MANAGEMENT Math Notes BU Note # 222-1 This note was prepared by Professor Michael Salinger and revised by Professor Shulamit Kahn. 1 I. Introduction This note discusses the

More information

Exponential Modeling. Growth and Decay

Exponential Modeling. Growth and Decay Exponential Modeling Growth and Decay Identify each as growth or Decay What you should Know y Exponential functions 0

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

14.02 Principles of Macroeconomics Quiz # 1, Questions

14.02 Principles of Macroeconomics Quiz # 1, Questions 14.02 Principles of Macroeconomics Quiz # 1, Questions N ame: Signature: Date : Read all questions carefully and completely before beginning the exam. There are two sections and ten Pages make sure you

More information

Simple Interest. Compound Interest Start 10, , After 1 year 10, , After 2 years 11, ,449.00

Simple Interest. Compound Interest Start 10, , After 1 year 10, , After 2 years 11, ,449.00 Introduction We have all earned interest on money deposited in a savings account or paid interest on a credit card, but do you know how the interest was calculated? The two most common types of interest

More information

a n a m = an m a nm = a nm

a n a m = an m a nm = a nm Exponential Functions The greatest shortcoming of the human race is our inability to understand the exponential function. - Albert A. Bartlett The function f(x) = 2 x, where the power is a variable x,

More information

8: Economic Criteria

8: Economic Criteria 8.1 Economic Criteria Capital Budgeting 1 8: Economic Criteria The preceding chapters show how to discount and compound a variety of different types of cash flows. This chapter explains the use of those

More information

Elements of Economic Analysis II Lecture II: Production Function and Profit Maximization

Elements of Economic Analysis II Lecture II: Production Function and Profit Maximization Elements of Economic Analysis II Lecture II: Production Function and Profit Maximization Kai Hao Yang 09/26/2017 1 Production Function Just as consumer theory uses utility function a function that assign

More information

So far in the short-run analysis we have ignored the wage and price (we assume they are fixed).

So far in the short-run analysis we have ignored the wage and price (we assume they are fixed). Chapter 6: Labor Market So far in the short-run analysis we have ignored the wage and price (we assume they are fixed). Key idea: In the medium run, rising GD will lead to lower unemployment rate (more

More information

Chapter 03 - Basic Annuities

Chapter 03 - Basic Annuities 3-1 Chapter 03 - Basic Annuities Section 3.0 - Sum of a Geometric Sequence The form for the sum of a geometric sequence is: Sum(n) a + ar + ar 2 + ar 3 + + ar n 1 Here a = (the first term) n = (the number

More information

1. If x² - y² = 55, and x - y = 11, then y = 2. If the slope of a line is ½ and the y- intercept is 3, what is the x-intercept of the same line?

1. If x² - y² = 55, and x - y = 11, then y = 2. If the slope of a line is ½ and the y- intercept is 3, what is the x-intercept of the same line? 1/20/2016 SAT Warm-Up 1. If x² - y² = 55, and x - y = 11, then y = 2. If the slope of a line is ½ and the y- intercept is 3, what is the x-intercept of the same line? Simple Interest = Pin where P = principal

More information

Q-Center Math 1070 Exam #2 Review. November 8, 2016

Q-Center Math 1070 Exam #2 Review. November 8, 2016 Q-Center Math 1070 Exam #2 Review November 8, 2016 1 #1 Arsenic is a compound that occurs naturally in very low concentrations. Arsenic blood concentrations in healthy adults are normally distributed with

More information

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale)

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Math 184 - Summer 2011 Midterm 3 Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Read all of the following information before starting the exam: Calculators

More information

Econ 101A Midterm 1 Th 28 February 2008.

Econ 101A Midterm 1 Th 28 February 2008. Econ 0A Midterm Th 28 February 2008. You have approximately hour and 20 minutes to answer the questions in the midterm. Dan and Mariana will collect the exams at.00 sharp. Show your work, and good luck!

More information

Working with Percents

Working with Percents Working with Percents Percent means parts per hundred or for every hundred Can write as 40 or.40 or 40% - fractions or decimals or percents 100 Converting and rewriting decimals, percents and fractions:

More information

Engineering Economy Chapter 4 More Interest Formulas

Engineering Economy Chapter 4 More Interest Formulas Engineering Economy Chapter 4 More Interest Formulas 1. Uniform Series Factors Used to Move Money Find F, Given A (i.e., F/A) Find A, Given F (i.e., A/F) Find P, Given A (i.e., P/A) Find A, Given P (i.e.,

More information

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Lecture 04 Compounding Techniques- 1&2 Welcome to the lecture

More information

Problem Set #2. Intermediate Macroeconomics 101 Due 20/8/12

Problem Set #2. Intermediate Macroeconomics 101 Due 20/8/12 Problem Set #2 Intermediate Macroeconomics 101 Due 20/8/12 Question 1. (Ch3. Q9) The paradox of saving revisited You should be able to complete this question without doing any algebra, although you may

More information

Multiple Choice Questions Solutions are provided directly when you do the online tests.

Multiple Choice Questions Solutions are provided directly when you do the online tests. SOLUTIONS Multiple Choice Questions Solutions are provided directly when you do the online tests. Numerical Questions 1. Nominal and Real GDP Suppose than an economy consists of only types of products:

More information

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding.

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding. 4.2 Exponential Functions Exponents and Properties Exponential Functions Exponential Equations Compound Interest The Number e and Continuous Compounding Exponential Models Section 4.3 Logarithmic Functions

More information

ECON Micro Foundations

ECON Micro Foundations ECON 302 - Micro Foundations Michael Bar September 13, 2016 Contents 1 Consumer s Choice 2 1.1 Preferences.................................... 2 1.2 Budget Constraint................................ 3

More information

FTS Real Time Project: Managing Duration

FTS Real Time Project: Managing Duration Overview FTS Real Time Project: Managing Duration In this exercise you will learn how Dollar Duration ($ duration) is applied to manage the risk associated with movements in the yield curve. In the trading

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Applications of Exponential Functions Group Activity 7 Business Project Week #10 Applications of Exponential Functions Group Activity 7 Business Project Week #10 In the last activity we looked at exponential functions. This week we will look at exponential functions as related to interest

More information

Survey of Math Exam 2 Name

Survey of Math Exam 2 Name Survey of Math Exam 2 Name 1. Graph y = 2x 2, by letting x = 3, 2, 1,0,1,2, and 3 and finding corresponding values for y. SEE MARIANNE FOR SOLUTION 2. Use the x- and y-intercepts to graph 4x 2y = 8 SEE

More information

Sample Investment Device CD (Certificate of Deposit) Savings Account Bonds Loans for: Car House Start a business

Sample Investment Device CD (Certificate of Deposit) Savings Account Bonds Loans for: Car House Start a business Simple and Compound Interest (Young: 6.1) In this Lecture: 1. Financial Terminology 2. Simple Interest 3. Compound Interest 4. Important Formulas of Finance 5. From Simple to Compound Interest 6. Examples

More information

Simple Interest (for One Year)

Simple Interest (for One Year) Simple Interest (for One Year) Suppose you invest $1500.00 at 3.22% interest per year. How much will you have at the end of one year? Solution: 3.22% interest means that over the course of one year, one

More information

1.1 Interest rates Time value of money

1.1 Interest rates Time value of money Lecture 1 Pre- Derivatives Basics Stocks and bonds are referred to as underlying basic assets in financial markets. Nowadays, more and more derivatives are constructed and traded whose payoffs depend on

More information