Sample Investment Device CD (Certificate of Deposit) Savings Account Bonds Loans for: Car House Start a business

Size: px
Start display at page:

Download "Sample Investment Device CD (Certificate of Deposit) Savings Account Bonds Loans for: Car House Start a business"

Transcription

1 Simple and Compound Interest (Young: 6.1) In this Lecture: 1. Financial Terminology 2. Simple Interest 3. Compound Interest 4. Important Formulas of Finance 5. From Simple to Compound Interest 6. Examples of Common Compounding Periods 7. Additional Examples 8. Using the TVM Solver on a TI-8X Graphing Calculator (Optional) Remark In financial matters we as individual people are often the borrower while the bank, as the provider of money, is the lender ; however, we can also think of ourselves as the lender and the bank the borrower when we invest money in the bank. The table below summarizes these relationships. Borrower a) Bank or Financial Institution b) Individual or small business Sample Investment Device CD (Certificate of Deposit) Savings Account Bonds Loans for: Car House Start a business Lender Individual or small business Bank or Financial Institution Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 1

2 Financial Terminology 1. Principal amount of money borrowed by the borrower NOW (also called the present value of the money borrowed). 2. Interest a fee paid by the borrower (i.e., the bank in (a) and you in (b)) for the privilege of using the money borrowed for some period of time. 3. Future Value (of the principal borrowed) total amount (principal plus interest) to be repaid to the lender at the end of the period of time that the money was borrowed. Two Types of Interest: INTEREST Simple Compound 1. Simple Interest a percentage of the amount borrowed (i.e., the principal) is paid to the lender each year (or fraction of a year). 2. Compound Interest in each compounding period (e.g., day, month, year) a percentage of the amount borrowed PLUS a percentage of the total interest accumulated is paid to the lender at the end of the compounding period. Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 2

3 What is the difference between the two? In the case of simple interest, the amount of interest paid is based ONLY on the amount borrowed, whereas in a compound interest scenario the amount of interest paid is based on the amount invested PLUS the interest accumulated in the account. Important Formulas of Finance 1. Simple Interest Formula Let P = principal (amount borrowed or lent), or present value r = annual (nominal) interest rate (decimal form) t = length of the loan, measured in years. Then the simple interest I on the loan is, I = Prt The total accumulated amount A (or future value) paid by the borrow to the lender is, A = P + I = P + Prt = P(1+ rt) Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 3

4 Class Activity (A) Suppose you invest $1,000 at 8% simple interest. How much money will be in the account after 5 years? (B) Suppose you invest $1,000 at 8% simple interest. How much money will be in the account after six months? Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 4

5 (C) Many credit card companies charge simple interest on the unpaid balance of the account for the number of days since your last payment. Suppose that your credit card company charges 9.9% simple interest and you made your last payment 32 days ago at which time the balance was $3,000. How much interest is owed after 32 days? (D) Continuing with part (C), if your next payment is $200 what will be your new balance? Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 5

6 From Simple to Compound Interest Class Activity (A) Suppose that you invest $1,000 at 8% compound interest, where the interest is compounded quarterly. Complete the table. Let, i = quarterly interest rate= 0.08/ 4 = 0.02 Quarter # m Amount in account after m quarters Interest paid for quarter 0 1,000 N/A (0.02) = 1000 * (1.02) =$20 = 1, * (1.02) = [1000 * 1.02] * 1.02 = 1000 * (1.02) 2 = !!! 20 (5 yrs = 20 qtrs) NOTE: Try to spot the pattern in the table. Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 6

7 (B) How much would be in the account after 5 years at 8% compound interest, compounded quarterly? 2. Compound Interest Formula Let P = principal t = number of years m = number of interest periods per year r = annual interest rate i = r = interest rate per period m n = m!t = total number of interest periods (in t years) Then the future value after n interest periods is,! A = P 1 + r $ # & " m% = P(1 + i) n m 't Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 7

8 Class Activity Identify each quantity in the formula A = P 1+ r " # m % & using numbers from the last class activity. Assume a time of 5 years.! m 't $ P = t = m = r = i = n = Examples of Common Compounding Periods Number of Interest Periods per Year, m Length of Each compounding Period Compounding Period Annually 1 1 year Semiannually 2 6 months Quarterly 4 3 months Monthly 12 1 month Daily day Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 8

9 Class Activity What happens if we continue to compound the interest more and more times each year (i.e., so that the compounding period is getting smaller and smaller) in the last example? Recall that the principal was 1,000, the rate was 8%, and we were investing the principal for 5 years. m = # of periods per year 4 (quarterly)! A =1000# m " / 4! $ 5 * m & % ( ) (daily) 8760 (hourly) m! " Compounding continuously NOTE: Your instructor will fill in what goes in the last box. Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 9

10 3. Continuous Compounding Interest Formula Let P = principal (amount borrowed or lent), or present value r = rate of interest compounded continuously t = time measured in years Then the accumulated amount, A, after t years is, A = Pe rt ; e! Remark Students often get confused in deciding whether to the continuous compounding formula above or the compound interest formula that we discussed earlier in these notes. Remember that we use the formula above only in the case that the problem states that interest is compounded continuously. Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 10

11 Class Activity How much money will be in account after 8 years, if $500 is invested at a nominal annual rate of 6% and the interest is compounded: (A) semiannually? (B) continuously? Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 11

12 Class Activity (Optional) Solve each equation for x, using algebraic methods. (A) 300=100(1+x) 4 (B) 300 =100(1.1) 5x [Hint: Recall that ln a b =b ln a ] Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 12

13 (C) 300 =100e 0.2x [Hint: ln e a =a ] Answers: (A) 3 1/4 ln 3!1! ; (B)! ; (C) 5 ln1.1 ln 3 0.2! Additional Examples We now use the algebraic methods of the previous class activity to solve additional problems involving compound interest. Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 13

14 Class Activity Find the annual rate of interest, r, needed for $2,500 to grow to $7,500 in 6 years if the interest is to be compounded semiannually. Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 14

15 Class Activity (A) How many quarters, n, are needed for $4800 to grow to $30,000 if the annual interest rate is 15%, compounded quarterly? (B) To how many years does your answer in part (A) correspond? Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 15

16 Class Activity How long in years will it take for an investment to double (i.e., the doubling time ) if it is invested at 6%, compounded continuously? Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 16

17 Using the TVM Solver on a TI-8X Graphing Calculator (Optional) The TI-83 Plus and TI-84 series calculators have the capability to solve equations involving compound interest. The next activities show how to use this tool [Note: Be sure to check with your instructor regarding his or her policies on using the TVM Solver on tests and quizzes.] To access the TVM Solver, press APPS, select 1:Finance, and 1:TVM Solver as shown below: Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 17

18 A screen similar to the following screen will appear: The table below summarizes what each quantity in this last window represents. Quantity in TVM Explanation Solver N Number of interest periods (in t years) I% Annual interest rate PV Principal, P, entered as a NEGATIVE NUMBER PMT Payment put the payment equal to zero when solving compound interest problems FV Future value (or accumulated value) for the account. Enter this quantity as a POSITIVE number. C/Y Number of interest periods per year (this is the same as m in the compound interest formula) P/Y Number of payments per year set this value to be the same as the value you enter for C/Y. PMT: END BEGIN Be sure that END is selected (i.e., payments are made at the END of the interest period) Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 18

19 Class Activity Use the TVM Solver on your graphing calculator to find the annual rate of interest, r, needed for $2,500 to grow to $7,500 in 6 years if the interest is to be compounded semiannually. (A) Fill in the missing values below. N = PV = PMT = FV = C/Y = P/Y = Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 19

20 (B) Input your values to coincide with the values entered in the screen capture below. Note that we have entered a value of 0 for the quantity to be solved for and have positioned the cursor next to the value we want to calculate (i.e., I%). (C) Next, press ALPHA, SOLVE (above the ENTER key) and the following screen should appear: Based on the screen, what is the annual interest rate? Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 20

21 Class Activity Use the TVM Solver to determine how many quarters are needed for $4800 to grow to $30,000 if the annual interest rate is 15%, compounded quarterly? Answer: N = quarters Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 21

22 Young 6.1 Survival Guide Notes copyright 2008 Knobel/Stanley 22

SECTION 6.1: Simple and Compound Interest

SECTION 6.1: Simple and Compound Interest 1 SECTION 6.1: Simple and Compound Interest Chapter 6 focuses on and various financial applications of interest. GOAL: Understand and apply different types of interest. Simple Interest If a sum of money

More information

6.1 Simple and Compound Interest

6.1 Simple and Compound Interest 6.1 Simple and Compound Interest If P dollars (called the principal or present value) earns interest at a simple interest rate of r per year (as a decimal) for t years, then Interest: I = P rt Accumulated

More information

The TVM Solver. When you input four of the first five variables in the list above, the TVM Solver solves for the fifth variable.

The TVM Solver. When you input four of the first five variables in the list above, the TVM Solver solves for the fifth variable. 1 The TVM Solver The TVM Solver is an application on the TI-83 Plus graphing calculator. It displays the timevalue-of-money (TVM) variables used in solving finance problems. Prior to using the TVM Solver,

More information

Sections F.1 and F.2- Simple and Compound Interest

Sections F.1 and F.2- Simple and Compound Interest Sections F.1 and F.2- Simple and Compound Interest Simple Interest Formulas If I denotes the interest on a principal P (in dollars) at an interest rate of r (as a decimal) per year for t years, then we

More information

Section Compound Interest

Section Compound Interest Section 5.1 - Compound Interest Simple Interest Formulas If I denotes the interest on a principal P (in dollars) at an interest rate of r (as a decimal) per year for t years, then we have: Interest: Accumulated

More information

The values in the TVM Solver are quantities involved in compound interest and annuities.

The values in the TVM Solver are quantities involved in compound interest and annuities. Texas Instruments Graphing Calculators have a built in app that may be used to compute quantities involved in compound interest, annuities, and amortization. For the examples below, we ll utilize the screens

More information

Simple Interest: Interest earned on the original investment amount only. I = Prt

Simple Interest: Interest earned on the original investment amount only. I = Prt c Kathryn Bollinger, June 28, 2011 1 Chapter 5 - Finance 5.1 - Compound Interest Simple Interest: Interest earned on the original investment amount only If P dollars (called the principal or present value)

More information

Example. Chapter F Finance Section F.1 Simple Interest and Discount

Example. Chapter F Finance Section F.1 Simple Interest and Discount Math 166 (c)2011 Epstein Chapter F Page 1 Chapter F Finance Section F.1 Simple Interest and Discount Math 166 (c)2011 Epstein Chapter F Page 2 How much should be place in an account that pays simple interest

More information

Math Week in Review #10

Math Week in Review #10 Math 166 Fall 2008 c Heather Ramsey Page 1 Chapter F - Finance Math 166 - Week in Review #10 Simple Interest - interest that is computed on the original principal only Simple Interest Formulas Interest

More information

Chapter 3 Mathematics of Finance

Chapter 3 Mathematics of Finance Chapter 3 Mathematics of Finance Section R Review Important Terms, Symbols, Concepts 3.1 Simple Interest Interest is the fee paid for the use of a sum of money P, called the principal. Simple interest

More information

Math 166: Topics in Contemporary Mathematics II

Math 166: Topics in Contemporary Mathematics II Math 166: Topics in Contemporary Mathematics II Xin Ma Texas A&M University October 28, 2017 Xin Ma (TAMU) Math 166 October 28, 2017 1 / 10 TVM Solver on the Calculator Unlike simple interest, it is much

More information

A mortgage is an annuity where the present value is the amount borrowed to purchase a home

A mortgage is an annuity where the present value is the amount borrowed to purchase a home KEY CONCEPTS A mortgage is an annuity where the present value is the amount borrowed to purchase a home The amortization period is the length of time needed to eliminate the debt Typical amortization period

More information

Section 5.1 Compound Interest

Section 5.1 Compound Interest Section 5.1 Compound Interest Simple Interest Formulas: Interest: Accumulated amount: I = Prt A = P (1 + rt) Here P is the principal (money you start out with), r is the interest rate (as a decimal), and

More information

Unit 9: Borrowing Money

Unit 9: Borrowing Money Unit 9: Borrowing Money 1 Financial Vocab Amortization Table A that lists regular payments of a loan and shows how much of each payment goes towards the interest charged and the principal borrowed, as

More information

Financial institutions pay interest when you deposit your money into one of their accounts.

Financial institutions pay interest when you deposit your money into one of their accounts. KEY CONCEPTS Financial institutions pay interest when you deposit your money into one of their accounts. Often, financial institutions charge fees or service charges for providing you with certain services

More information

When changing any conditions of an investment or loan, the amount or principal will also change.

When changing any conditions of an investment or loan, the amount or principal will also change. KEY CONCEPTS When changing any conditions of an investment or loan, the amount or principal will also change. Doubling an interest rate or term more than doubles the total interest This is due to the effects

More information

Section 5.1 Simple and Compound Interest

Section 5.1 Simple and Compound Interest Section 5.1 Simple and Compound Interest Question 1 What is simple interest? Question 2 What is compound interest? Question 3 - What is an effective interest rate? Question 4 - What is continuous compound

More information

Section 5.1 Compound Interest

Section 5.1 Compound Interest Section 5.1 Compound Interest Simple Interest Formulas: Interest: Accumulated amount: I = P rt A = P (1 + rt) Here P is the principal (money you start out with), r is the interest rate (as a decimal),

More information

Chapter 4 Real Life Decisions

Chapter 4 Real Life Decisions Chapter 4 Real Life Decisions Chp. 4.1 Owning a vehicle After this section, I'll know how to... Explain the difference between buying, leasing and leasing-to-own a vehicle Calculate the costs of buying,

More information

Simple Interest: Interest earned on the original investment amount only

Simple Interest: Interest earned on the original investment amount only c Kathryn Bollinger, November 30, 2005 1 Chapter 5 - Finance 5.1 - Compound Interest Simple Interest: Interest earned on the original investment amount only = I = Prt I = the interest earned, P = the amount

More information

2.4 - Exponential Functions

2.4 - Exponential Functions c Kathryn Bollinger, January 21, 2010 1 2.4 - Exponential Functions General Exponential Functions Def: A general exponential function has the form f(x) = a b x where a is a real number constant with a

More information

3.1 Simple Interest. Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time

3.1 Simple Interest. Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time 3.1 Simple Interest Definition: I = Prt I = interest earned P = principal ( amount invested) r = interest rate (as a decimal) t = time An example: Find the interest on a boat loan of $5,000 at 16% for

More information

Simple Interest. Simple Interest is the money earned (or owed) only on the borrowed. Balance that Interest is Calculated On

Simple Interest. Simple Interest is the money earned (or owed) only on the borrowed. Balance that Interest is Calculated On MCR3U Unit 8: Financial Applications Lesson 1 Date: Learning goal: I understand simple interest and can calculate any value in the simple interest formula. Simple Interest is the money earned (or owed)

More information

7.7 Technology: Amortization Tables and Spreadsheets

7.7 Technology: Amortization Tables and Spreadsheets 7.7 Technology: Amortization Tables and Spreadsheets Generally, people must borrow money when they purchase a car, house, or condominium, so they arrange a loan or mortgage. Loans and mortgages are agreements

More information

Introduction to the Compound Interest Formula

Introduction to the Compound Interest Formula Introduction to the Compound Interest Formula Lesson Objectives: students will be introduced to the formula students will learn how to determine the value of the required variables in order to use the

More information

1: Finance, then 1: TVM Solver

1: Finance, then 1: TVM Solver Wksheet 6-6: TVM Solver A graphing calculat can be used to make calculations using the compound interest fmula: n FV PV ( 1 i). The TVM Solver, the Time-Value-Money Solver, allows you to enter the value

More information

Copyright 2015 by the McGraw-Hill Education (Asia). All rights reserved.

Copyright 2015 by the McGraw-Hill Education (Asia). All rights reserved. Copyright 2015 by the McGraw-Hill Education (Asia). All rights reserved. Key Concepts and Skills Be able to compute: The future value of an investment made today The present value of cash to be received

More information

Learning Goal: What is compound interest? How do we compute the interest on an investment?

Learning Goal: What is compound interest? How do we compute the interest on an investment? Name IB Math Studies Year 1 Date 7-6 Intro to Compound Interest Learning Goal: What is compound interest? How do we compute the interest on an investment? Warm-Up: Let s say that you deposit $100 into

More information

Using the Finance Menu of the TI-83/84/Plus calculators

Using the Finance Menu of the TI-83/84/Plus calculators Using the Finance Menu of the TI-83/84/Plus calculators To get to the FINANCE menu On the TI-83 press 2 nd x -1 On the TI-83, TI-83 Plus, TI-84, or TI-84 Plus press APPS and then select 1:FINANCE The FINANCE

More information

Chapter 5. Finance 300 David Moore

Chapter 5. Finance 300 David Moore Chapter 5 Finance 300 David Moore Time and Money This chapter is the first chapter on the most important skill in this course: how to move money through time. Timing is everything. The simple techniques

More information

3.1 Mathematic of Finance: Simple Interest

3.1 Mathematic of Finance: Simple Interest 3.1 Mathematic of Finance: Simple Interest Introduction Part I This chapter deals with Simple Interest, and teaches students how to calculate simple interest on investments and loans. The Simple Interest

More information

Activity 1.1 Compound Interest and Accumulated Value

Activity 1.1 Compound Interest and Accumulated Value Activity 1.1 Compound Interest and Accumulated Value Remember that time is money. Ben Franklin, 1748 Reprinted by permission: Tribune Media Services Broom Hilda has discovered too late the power of compound

More information

TVM Appendix: Using the TI-83/84

TVM Appendix: Using the TI-83/84 Time Value of Money Problems on a Texas Instruments TI-84 Before you start: To calculate problems on a TI-84, you have to go into the applications menu, the lavender APPS key on the calculator. Several

More information

The three formulas we use most commonly involving compounding interest n times a year are

The three formulas we use most commonly involving compounding interest n times a year are Section 6.6 and 6.7 with finance review questions are included in this document for your convenience for studying for quizzes and exams for Finance Calculations for Math 11. Section 6.6 focuses on identifying

More information

The Regular Payment of an Annuity with technology

The Regular Payment of an Annuity with technology UNIT 7 Annuities Date Lesson Text TOPIC Homework Dec. 7 7.1 7.1 The Amount of an Annuity with technology Pg. 415 # 1 3, 5 7, 12 **check answers withti-83 Dec. 9 7.2 7.2 The Present Value of an Annuity

More information

Definition: The exponential functions are the functions of the form f(x) =a x,wherethe base a is a positive constant with a 6= 1.

Definition: The exponential functions are the functions of the form f(x) =a x,wherethe base a is a positive constant with a 6= 1. Section 3: Exponential Functions Exponential Functions Definition: The exponential functions are the functions of the form f(x) =a x,wherethe base a is a positive constant with a 6= Properties of the Graphs

More information

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University,

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used

More information

7.5 Amount of an Ordinary Annuity

7.5 Amount of an Ordinary Annuity 7.5 Amount of an Ordinary Annuity Nigel is saving $700 each year for a trip. Rashid is saving $200 at the end of each month for university. Jeanine is depositing $875 at the end of each 3 months for 3

More information

Unit 9 Financial Mathematics: Borrowing Money. Chapter 10 in Text

Unit 9 Financial Mathematics: Borrowing Money. Chapter 10 in Text Unit 9 Financial Mathematics: Borrowing Money Chapter 10 in Text 9.1 Analyzing Loans Simple vs. Compound Interest Simple Interest: the amount of interest that you pay on a loan is calculated ONLY based

More information

Unit 9 Financial Mathematics: Borrowing Money. Chapter 10 in Text

Unit 9 Financial Mathematics: Borrowing Money. Chapter 10 in Text Unit 9 Financial Mathematics: Borrowing Money Chapter 10 in Text 9.1 Analyzing Loans Simple vs. Compound Interest Simple Interest: the amount of interest that you pay on a loan is calculated ONLY based

More information

TI-83 Plus Workshop. Al Maturo,

TI-83 Plus Workshop. Al Maturo, Solving Equations with one variable. Enter the equation into: Y 1 = x x 6 Y = x + 5x + 3 Y 3 = x 3 5x + 1 TI-83 Plus Workshop Al Maturo, AMATURO@las.ch We shall refer to this in print as f(x). We shall

More information

MA Notes, Lesson 19 Textbook (calculus part) Section 2.4 Exponential Functions

MA Notes, Lesson 19 Textbook (calculus part) Section 2.4 Exponential Functions MA 590 Notes, Lesson 9 Tetbook (calculus part) Section.4 Eponential Functions In an eponential function, the variable is in the eponent and the base is a positive constant (other than the number ). Eponential

More information

Texas Instruments 83 Plus and 84 Plus Calculator

Texas Instruments 83 Plus and 84 Plus Calculator Texas Instruments 83 Plus and 84 Plus Calculator For the topics we cover, keystrokes for the TI-83 PLUS and 84 PLUS are identical. Keystrokes are shown for a few topics in which keystrokes are unique.

More information

2. A loan of $7250 was repaid at the end of 8 months. What size repayment check was written if a 9% annual rate of interest was charged?

2. A loan of $7250 was repaid at the end of 8 months. What size repayment check was written if a 9% annual rate of interest was charged? Math 1630 Practice Test Name Chapter 5 Date For each problem, indicate which formula you are using, (B) substitute the given values into the appropriate places, and (C) solve the formula for the unknown

More information

f ( x) a, where a 0 and a 1. (Variable is in the exponent. Base is a positive number other than 1.)

f ( x) a, where a 0 and a 1. (Variable is in the exponent. Base is a positive number other than 1.) MA 590 Notes, Lesson 9 Tetbook (calculus part) Section.4 Eponential Functions In an eponential function, the variable is in the eponent and the base is a positive constant (other than the number ). Eponential

More information

KEY CONCEPTS. A shorter amortization period means larger payments but less total interest

KEY CONCEPTS. A shorter amortization period means larger payments but less total interest KEY CONCEPTS A shorter amortization period means larger payments but less total interest There are a number of strategies for reducing the time needed to pay off a mortgage and for reducing the total interest

More information

The principal is P $5000. The annual interest rate is 2.5%, or Since it is compounded monthly, I divided it by 12.

The principal is P $5000. The annual interest rate is 2.5%, or Since it is compounded monthly, I divided it by 12. 8.4 Compound Interest: Solving Financial Problems GOAL Use the TVM Solver to solve problems involving future value, present value, number of payments, and interest rate. YOU WILL NEED graphing calculator

More information

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money.

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Simple and compound interest NAME: These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Principal: initial amount you borrow;

More information

Chapter 3 Mathematics of Finance

Chapter 3 Mathematics of Finance Chapter 3 Mathematics of Finance Section 2 Compound and Continuous Interest Learning Objectives for Section 3.2 Compound and Continuous Compound Interest The student will be able to compute compound and

More information

troduction to Algebra

troduction to Algebra Chapter Six Percent Percents, Decimals, and Fractions Understanding Percent The word percent comes from the Latin phrase per centum,, which means per 100. Percent means per one hundred. The % symbol is

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 2b 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 10 pages (including this cover page) and 9 problems. Check to see if any

More information

Week in Review #7. Section F.3 and F.4: Annuities, Sinking Funds, and Amortization

Week in Review #7. Section F.3 and F.4: Annuities, Sinking Funds, and Amortization WIR Math 166-copyright Joe Kahlig, 10A Page 1 Week in Review #7 Section F.3 and F.4: Annuities, Sinking Funds, and Amortization an annuity is a sequence of payments made at a regular time intervals. For

More information

Finance Notes AMORTIZED LOANS

Finance Notes AMORTIZED LOANS Amortized Loans Page 1 of 10 AMORTIZED LOANS Objectives: After completing this section, you should be able to do the following: Calculate the monthly payment for a simple interest amortized loan. Calculate

More information

Math 1324 Finite Mathematics Chapter 4 Finance

Math 1324 Finite Mathematics Chapter 4 Finance Math 1324 Finite Mathematics Chapter 4 Finance Simple Interest: Situation where interest is calculated on the original principal only. A = P(1 + rt) where A is I = Prt Ex: A bank pays simple interest at

More information

4.7 Compound Interest

4.7 Compound Interest 4.7 Compound Interest 4.7 Compound Interest Objective: Determine the future value of a lump sum of money. 1 Simple Interest Formula: InterestI = Prt Principal interest rate time in years 2 A credit union

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 3a 4/11/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 9 pages (including this cover page) and 9 problems. Check to see if any

More information

Pre-Algebra, Unit 7: Percents Notes

Pre-Algebra, Unit 7: Percents Notes Pre-Algebra, Unit 7: Percents Notes Percents are special fractions whose denominators are 100. The number in front of the percent symbol (%) is the numerator. The denominator is not written, but understood

More information

Chapter 15B and 15C - Annuities formula

Chapter 15B and 15C - Annuities formula Chapter 15B and 15C - Annuities formula Finding the amount owing at any time during the term of the loan. A = PR n Q Rn 1 or TVM function on the Graphics Calculator Finding the repayment amount, Q Q =

More information

Section 8.1. I. Percent per hundred

Section 8.1. I. Percent per hundred 1 Section 8.1 I. Percent per hundred a. Fractions to Percents: 1. Write the fraction as an improper fraction 2. Divide the numerator by the denominator 3. Multiply by 100 (Move the decimal two times Right)

More information

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Lecture - 01 Introduction Welcome to the course Time value

More information

Graph A Graph B Graph C Graph D. t g(t) h(t) k(t) f(t) Graph

Graph A Graph B Graph C Graph D. t g(t) h(t) k(t) f(t) Graph MATH 119 Chapter 1 Test (Sample B ) NAME: 1) Each of the function in the following table is increasing or decreasing in different way. Which of the graphs below best fits each function Graph A Graph B

More information

Advanced Mathematical Decision Making In Texas, also known as

Advanced Mathematical Decision Making In Texas, also known as Advanced Mathematical Decision Making In Texas, also known as Advanced Quantitative Reasoning Unit VI: Decision Making in Finance This course is a project of The Texas Association of Supervisors of Mathematics

More information

Graphing Calculator Appendix

Graphing Calculator Appendix Appendix GC GC-1 This appendix contains some keystroke suggestions for many graphing calculator operations that are featured in this text. The keystrokes are for the TI-83/ TI-83 Plus calculators. The

More information

6.1 Simple Interest page 243

6.1 Simple Interest page 243 page 242 6 Students learn about finance as it applies to their daily lives. Two of the most important types of financial decisions for many people involve either buying a house or saving for retirement.

More information

Annual = Semi- Annually= Monthly=

Annual = Semi- Annually= Monthly= F Math 12 1.1 Simple Interest p.6 1. Term: The of an investment or loan 2. Interest (i): the amount of earned on an investment or paid on a loan 3. Fixed interest rate: An interest rate that is guaranteed

More information

Lesson Exponential Models & Logarithms

Lesson Exponential Models & Logarithms SACWAY STUDENT HANDOUT SACWAY BRAINSTORMING ALGEBRA & STATISTICS STUDENT NAME DATE INTRODUCTION Compound Interest When you invest money in a fixed- rate interest earning account, you receive interest at

More information

Equation of Value II. If we choose t = 0 as the comparison date, then we have

Equation of Value II. If we choose t = 0 as the comparison date, then we have Equation of Value I Definition The comparison date is the date to let accumulation or discount values equal for both direction of payments (e.g. payments to the bank and money received from the bank).

More information

And Why. What You ll Learn. Key Words

And Why. What You ll Learn. Key Words What You ll Learn To use technology to solve problems involving annuities and mortgages and to gather and interpret information about annuities and mortgages And Why Annuities are used to save and pay

More information

Day 3 Simple vs Compound Interest.notebook April 07, Simple Interest is money paid or earned on the. The Principal is the

Day 3 Simple vs Compound Interest.notebook April 07, Simple Interest is money paid or earned on the. The Principal is the LT: I can calculate simple and compound interest. p.11 What is Simple Interest? What is Principal? Simple Interest is money paid or earned on the. The Principal is the What is the Simple Interest Formula?

More information

Copyright 2015 Pearson Education, Inc. All rights reserved.

Copyright 2015 Pearson Education, Inc. All rights reserved. Chapter 4 Mathematics of Finance Section 4.1 Simple Interest and Discount A fee that is charged by a lender to a borrower for the right to use the borrowed funds. The funds can be used to purchase a house,

More information

Lecture 3. Chapter 4: Allocating Resources Over Time

Lecture 3. Chapter 4: Allocating Resources Over Time Lecture 3 Chapter 4: Allocating Resources Over Time 1 Introduction: Time Value of Money (TVM) $20 today is worth more than the expectation of $20 tomorrow because: a bank would pay interest on the $20

More information

Name Date. Goal: Solve problems that involve simple interest. 1. term: The contracted duration of an investment or loan.

Name Date. Goal: Solve problems that involve simple interest. 1. term: The contracted duration of an investment or loan. F Math 12 1.1 Simple Interest p.6 Name Date Goal: Solve problems that involve simple interest. 1. term: The contracted duration of an investment or loan. 2. interest (i): The amount of money earned on

More information

Name Date. Which option is most beneficial for the bank, and which is most beneficial for Leandro? A B C N = N = N = I% = I% = I% = PV = PV = PV =

Name Date. Which option is most beneficial for the bank, and which is most beneficial for Leandro? A B C N = N = N = I% = I% = I% = PV = PV = PV = F Math 12 2.0 Getting Started p. 78 Name Date Doris works as a personal loan manager at a bank. It is her job to decide whether the bank should lend money to a customer. When she approves a loan, she thinks

More information

The Time Value. The importance of money flows from it being a link between the present and the future. John Maynard Keynes

The Time Value. The importance of money flows from it being a link between the present and the future. John Maynard Keynes The Time Value of Money The importance of money flows from it being a link between the present and the future. John Maynard Keynes Get a Free $,000 Bond with Every Car Bought This Week! There is a car

More information

I. Warnings for annuities and

I. Warnings for annuities and Outline I. More on the use of the financial calculator and warnings II. Dealing with periods other than years III. Understanding interest rate quotes and conversions IV. Applications mortgages, etc. 0

More information

Functions - Compound Interest

Functions - Compound Interest 10.6 Functions - Compound Interest Objective: Calculate final account balances using the formulas for compound and continuous interest. An application of exponential functions is compound interest. When

More information

Casio 9750G PLUS Calculator

Casio 9750G PLUS Calculator Casio 9750G PLUS Calculator Keystrokes for the Casio 9750G PLUS are shown for a few topics in which keystrokes are unique. Start by reading the Quik Start section. Then, before beginning a specific unit

More information

Personal Finance and Budget

Personal Finance and Budget Teacher Notes Activity at a Glance Subject: Social Studies Subject Area: Economics Category: Personal Finance Topic: Personal Budget Personal Finance and Budget Activity 1 Calculating the Cost of Living

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Autumn 2018 Sample Midterm 2c 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 8 pages (including this cover page) and 6 problems. Check to see if any

More information

The High Cost of Other People s Money. Hutch Sprunt Appalachian State University NCCTM October 2005

The High Cost of Other People s Money. Hutch Sprunt Appalachian State University NCCTM October 2005 The High Cost of Other People s Money Hutch Sprunt Appalachian State University NCCTM October 2005 A helpful progression for students: Larger loans Credit cards (and debit cards) Various financial sources

More information

22. Construct a bond amortization table for a $1000 two-year bond with 7% coupons paid semi-annually bought to yield 8% semi-annually.

22. Construct a bond amortization table for a $1000 two-year bond with 7% coupons paid semi-annually bought to yield 8% semi-annually. Chapter 6 Exercises 22. Construct a bond amortization table for a $1000 two-year bond with 7% coupons paid semi-annually bought to yield 8% semi-annually. 23. Construct a bond amortization table for a

More information

Lecture Notes 2. XII. Appendix & Additional Readings

Lecture Notes 2. XII. Appendix & Additional Readings Foundations of Finance: Concepts and Tools for Portfolio, Equity Valuation, Fixed Income, and Derivative Analyses Professor Alex Shapiro Lecture Notes 2 Concepts and Tools for Portfolio, Equity Valuation,

More information

Chapter 21: Savings Models

Chapter 21: Savings Models October 14, 2013 This time Arithmetic Growth Simple Interest Geometric Growth Compound Interest A limit to Compounding Simple Interest Simple Interest Simple Interest is interest that is paid on the original

More information

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding.

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding. 4.2 Exponential Functions Exponents and Properties Exponential Functions Exponential Equations Compound Interest The Number e and Continuous Compounding Exponential Models Section 4.3 Logarithmic Functions

More information

1 Some review of percentages

1 Some review of percentages 1 Some review of percentages Recall that 5% =.05, 17% =.17, x% = x. When we say x% of y, we 100 mean the product x%)y). If a quantity A increases by 7%, then it s new value is }{{} P new value = }{{} A

More information

1 Some review of percentages

1 Some review of percentages 1 Some review of percentages Recall that 5% =.05, 17% =.17, x% = x. When we say x% of y, we 100 mean the product (x%)(y). If a quantity A increases by 7%, then it s new value is }{{} P new value = }{{}

More information

Chapter 5. Interest Rates ( ) 6. % per month then you will have ( 1.005) = of 2 years, using our rule ( ) = 1.

Chapter 5. Interest Rates ( ) 6. % per month then you will have ( 1.005) = of 2 years, using our rule ( ) = 1. Chapter 5 Interest Rates 5-. 6 a. Since 6 months is 24 4 So the equivalent 6 month rate is 4.66% = of 2 years, using our rule ( ) 4 b. Since one year is half of 2 years ( ).2 2 =.0954 So the equivalent

More information

NCCVT UNIT 4: CHECKING AND SAVINGS

NCCVT UNIT 4: CHECKING AND SAVINGS NCCVT UNIT 4: CHECKING AND SAVINGS March 2011 4.1.1 Study: Simple Interest Study Sheet Mathematics of Personal Finance (S1225613) Name: The questions below will help you keep track of key concepts from

More information

MATH 111 Worksheet 21 Replacement Partial Compounding Periods

MATH 111 Worksheet 21 Replacement Partial Compounding Periods MATH 111 Worksheet 1 Replacement Partial Compounding Periods Key Questions: I. XYZ Corporation issues promissory notes in $1,000 denominations under the following terms. You give them $1,000 now, and eight

More information

Lesson 24 Annuities. Minds On

Lesson 24 Annuities. Minds On Lesson 24 Annuities Goals To define define and understand how annuities work. To understand how investments, loans and mortgages work. To analyze and solve annuities in real world situations (loans, investments).

More information

Manual for SOA Exam FM/CAS Exam 2.

Manual for SOA Exam FM/CAS Exam 2. Manual for SOA Exam FM/CAS Exam 2. Chapter 1. Basic Interest Theory. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics.

More information

Getting Started Pg. 450 # 1, 2, 4a, 5ace, 6, (7 9)doso. Investigating Interest and Rates of Change Pg. 459 # 1 4, 6-10

Getting Started Pg. 450 # 1, 2, 4a, 5ace, 6, (7 9)doso. Investigating Interest and Rates of Change Pg. 459 # 1 4, 6-10 UNIT 8 FINANCIAL APPLICATIONS Date Lesson Text TOPIC Homework May 24 8.0 Opt Getting Started Pg. 450 # 1, 2, 4a, 5ace, 6, (7 9)doso May 26 8.1 8.1 Investigating Interest and Rates of Change Pg. 459 # 1

More information

Understanding Interest Rates

Understanding Interest Rates Money & Banking Notes Chapter 4 Understanding Interest Rates Measuring Interest Rates Present Value (PV): A dollar paid to you one year from now is less valuable than a dollar paid to you today. Why? -

More information

Chapter 4. Discounted Cash Flow Valuation

Chapter 4. Discounted Cash Flow Valuation Chapter 4 Discounted Cash Flow Valuation Appreciate the significance of compound vs. simple interest Describe and compute the future value and/or present value of a single cash flow or series of cash flows

More information

Seven Steps of Constructing Projects

Seven Steps of Constructing Projects I. Who are you? Seven Steps of Constructing Projects Agenda Assuming no responsibility, If you could immerse yourself for 4 hours doing something you love but never have 4 hours to do WHAT WOULD YOU DO?

More information

The Theory of Interest

The Theory of Interest The Theory of Interest An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Simple Interest (1 of 2) Definition Interest is money paid by a bank or other financial institution

More information

F.3 - Annuities and Sinking Funds

F.3 - Annuities and Sinking Funds F.3 - Annuities and Sinking Funds Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University March 22, 2018 Blake Boudreaux (TAMU) F.3 - Annuities March 22, 2018 1 / 12 Objectives Know

More information

Solutions to Questions - Chapter 3 Mortgage Loan Foundations: The Time Value of Money

Solutions to Questions - Chapter 3 Mortgage Loan Foundations: The Time Value of Money Solutions to Questions - Chapter 3 Mortgage Loan Foundations: The Time Value of Money Question 3-1 What is the essential concept in understanding compound interest? The concept of earning interest on interest

More information

Assignment 3 Solutions

Assignment 3 Solutions ssignment 3 Solutions Timothy Vis January 30, 2006 3-1-6 P 900, r 10%, t 9 months, I?. Given I P rt, we have I (900)(0.10)( 9 12 ) 67.50 3-1-8 I 40, P 400, t 4 years, r?. Given I P rt, we have 40 (400)r(4),

More information