Test 1 STAT Fall 2014 October 7, 2014

Size: px
Start display at page:

Download "Test 1 STAT Fall 2014 October 7, 2014"

Transcription

1 Test 1 STAT Fall 2014 October 7, You are given: Calculate: i. Mortality follows the illustrative life table ii. i 6% a. The actuarial present value for a whole life insurance with a death benefit of 100,000 payable at the end of the year of death of (70). 100,000 A 100,000( ) 51, b. The actuarial present value for a 20 year term insurance with a death benefit of 100,000 payable at the end of the year of death of (70). 100, 000A 100, 000( A E A ) 1 70: , 000( ( )( )) 47, c. The actuarial present value for a 20 year endowment insurance with a death benefit of 100,000 payable at the end of the year of death of (70). 100, 000A 100, 000( A E A E ) 70: , 000( ( )( ) ) 52, The actuarial present value of the term insurance is less than the actuarial present value of the whole life which is less than the actuarial present value of the endowment insurance. This will always be true for the same x and n. Explain why. Term only pays if the insured dies before age x+n, whereas whole life pays whenever (x) dies. Therefore the term APV is less than the whole life APV. Endowment always pays at or before time x+n but whole life pays after time x+n. Therefore, the whole life APV < Endowment APV.

2 2. You are given the following mortality table: [] x q [ x] q[ x] 1 q[ x] 2 x 3 q x You are also given that d Z is the present value random variable for a 3 year endowment insurance with a death benefit of 1000 payable at the end of the year of death for a person who is age 53 and was underwritten at age 53. Calculate the variance of Z.

3 v1 d With ls ' l 10, 000 l (10, 000)( ) 9650 l (9650)( ) [53] [53] 1 [53] 2 10,000 E[ Z ] v( l l ) v ( l l ) v ( l l ) v l [53] [53] 1 [53] 1 [53] 2 [53] 2 [53] 2 [53] 3 10,000 E[ Z ] v( l l ) v ( l l ) v ( l ) 2 3 [ 53] [53] 1 [53] 1 [53] 2 [53] (0.92)(10, ) (0.92) ( ) (0.92 )( ) EZ [ ] , 000 EZ 2 [ ] (0.92) (10, ) (0.92) ( ) (0.92 )( ) 10, With p's and q's E[ Z ] v( q ) v ( p q ) v ( p p ) 2 3 [53] [53] [53] 1 [53] [53] (0.92)(0.035) (0.92) ( )(0.049) (0.92) ( )( ) EZ [ ] (0.92) (0.035) (0.92) ( )(0.049) (0.92) ( )( ) Var Z 2 2 [ ] (1000 ) ( )

4 3. You are given: i. v 0.94 ii. 1Ex iii. 2 Ex iv. 2 Ax Calculate A x x 2 Ax 2 Ex Ax 2 Ax 2 2 Ex A Ex Ex vpx px qx 1 px v 0.94 E E v p v p p p q x 2 x 2 x x x1 x1 2 2 x1 v px (0.94) (0.975) Now using the recursive formula twice A vq vp A (0.94)(0.042) (0.94)(0.958)( ) x1 x1 x1 x2 A vq vp A (0.94)(0.025) (0.94)(0.975)( ) x x x x1

5 4. The following information is from the 2000 US Population Table: Calculate e 110. Age x q x e p p p p 110 t x 2 x 3 x 1 (1 0.4) (1 0.4)(1 0.6) (1 0.4)(1 0.6)(1 0.8) OR l 1000 l 600 l 240 l l l l t x 2 x 3 x 1 l e p p p p Is a Population Table appropriate to use to price a life insurance product? Explain your answer! No. The mortality for the US population is very different from the mortality of people who buy life insurance. Due to underwriting, people who buy life insurance have lower mortality that is also a function of when they were underwritten. Life insurance should generally be priced with a select and ultimate table.

6 5. You are given that mortality follows Gompertz law with B and c You are also given that 0 t t (1.05) exp (1.05 1) dt Calculate 10, 000A 0 using i 10.25%. Note that 2 (1.05) t t B x t xt 10, 000Ax 10, 000v t px xt dt 10, 000 (1.1025) exp ( c )( c 1) Bc dt ln(c) , , 000 (1.1025) exp ( )( 1) ln(c) 0 t B 0 t 0t A0 c c Bc dt t t t 10, 000 (1.1025) exp (1.05 1) ( )(1.05) dt t t t (10, 000)( ) (1.05) (1.05) exp (1.05 1) dt t t (10, 000)( ) (1.05) exp (1.05 1) dt (10, 000)( )(20) 50

7 6. You are given that mortality follows the Illustrative Life Table. CFM 2.5 q 80.2 is calculated assuming that a constant force of mortality applies between integral ages. UDD 2.5 q 80.2 is calculated assuming that deaths are uniformly distributed between integral ages. CFM UDD Calculate 10, q q80.2. q l80 l81 l82 l l l 3,849, , 061, ,849, CFM l80.2 l80 l81 q UDD l l80 0.2l81 0.3l82 0.7l l l l l ,851, , 064, ,851, CFM UDD , 000 q q 10, 000( ) Your boss wants to know which assumption (UDD or CFM) you would recommend and why. Be sure to explain why. I would recommend UDD. Under UDD, there is an increasing force of mortality throughout a year which is closer to reality that a constant force of mortality.

8 7. You are given that x t t t Calculate 10 p x t x tdt (0.01 t t ) dt 0.005t px e e e e e

9 8. Amstutz Assurance Company provides warranty protection on Christmas tree lights. Under the warranty coverage, if a stand of lights burns out during the year, Amstutz will replace the strand of lights at end of the year. The coverage provided has a three year term and coverage continues on the replaced lights. In other words, if the strands that replace the burned out strands also stop working, Amstutz will replace them also. The city of West Lafayette purchases coverage and has 50,000 strands of Christmas lights which are all new. Christmas light strands burn out at the following rates: i. The probability that a new strand of lights will fail in the first year of service is 20%. ii. The probability that a one year old strand of lights will fail during the next year is 45%. iii. The probability that a two year old strand of lights will fail during the next year is 60%. A cost to replace a strand of lights is 2. Using an interest rate of 8%, calculate the Actuarial Present Value of the coverage offered by Amstutz to West Lafayette. The first year there are 50,000 strands which are new and 20% fails so 10,000 fail. The second year, there are 40,000 strands that are one year old and 10,000 strands that are new. Therefore, the number that fail are (40,000)(0.45)+(10,000)(0.2)=20,000 The third year, there are 22,000 (40,000(.55)) strands that are two years old, 8000 (10,000(0.8)) strands that are one year old and 20,000 new strands. Therefore the number that fail are (22,000)(0.6)+(8000)(0.45)+(20,000)(0.2)=20,800 APV v v v 2 3 (2) (10, 000) (20, 000) (20,800) 85,835.49

10 9. You are given: i. 10q ii. 20q iii. 30q Calculate 20 p p58 10 p58 20 p68 20 p68 10 p p

STAT 472 Fall 2013 Test 2 October 31, 2013

STAT 472 Fall 2013 Test 2 October 31, 2013 STAT 47 Fall 013 Test October 31, 013 1. (6 points) Yifei who is (45) is receiving an annuity with payments of 5,000 at the beginning of each year. The annuity guarantees that payments will be made for

More information

Annuities. Lecture: Weeks 8-9. Lecture: Weeks 8-9 (Math 3630) Annuities Fall Valdez 1 / 41

Annuities. Lecture: Weeks 8-9. Lecture: Weeks 8-9 (Math 3630) Annuities Fall Valdez 1 / 41 Annuities Lecture: Weeks 8-9 Lecture: Weeks 8-9 (Math 3630) Annuities Fall 2017 - Valdez 1 / 41 What are annuities? What are annuities? An annuity is a series of payments that could vary according to:

More information

Annuities. Lecture: Weeks Lecture: Weeks 9-11 (Math 3630) Annuities Fall Valdez 1 / 44

Annuities. Lecture: Weeks Lecture: Weeks 9-11 (Math 3630) Annuities Fall Valdez 1 / 44 Annuities Lecture: Weeks 9-11 Lecture: Weeks 9-11 (Math 3630) Annuities Fall 2017 - Valdez 1 / 44 What are annuities? What are annuities? An annuity is a series of payments that could vary according to:

More information

Chapter 4 - Insurance Benefits

Chapter 4 - Insurance Benefits Chapter 4 - Insurance Benefits Section 4.4 - Valuation of Life Insurance Benefits (Subsection 4.4.1) Assume a life insurance policy pays $1 immediately upon the death of a policy holder who takes out the

More information

Annuities. Lecture: Weeks 8-9. Lecture: Weeks 8-9 (Math 3630) Annuities Fall Valdez 1 / 41

Annuities. Lecture: Weeks 8-9. Lecture: Weeks 8-9 (Math 3630) Annuities Fall Valdez 1 / 41 Annuities Lecture: Weeks 8-9 Lecture: Weeks 8-9 (Math 3630) Annuities Fall 2017 - Valdez 1 / 41 What are annuities? What are annuities? An annuity is a series of payments that could vary according to:

More information

STAT 472 Fall 2016 Test 2 November 8, 2016

STAT 472 Fall 2016 Test 2 November 8, 2016 STAT 472 Fall 2016 Test 2 November 8, 2016 1. Anne who is (65) buys a whole life policy with a death benefit of 200,000 payable at the end of the year of death. The policy has annual premiums payable for

More information

1. Datsenka Dog Insurance Company has developed the following mortality table for dogs: l x

1. Datsenka Dog Insurance Company has developed the following mortality table for dogs: l x 1. Datsenka Dog Insurance Company has developed the following mortality table for dogs: Age l Age 0 000 5 100 1 1950 6 1000 1850 7 700 3 1600 8 300 4 1400 9 0 l Datsenka sells an whole life annuity based

More information

PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM

PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM March 17, 2009 This exam is closed to books and notes, but you may use a calculator. You have 3 hours. Your exam contains 7 questions and 11 pages. Please make

More information

Summary of Formulae for Actuarial Life Contingencies

Summary of Formulae for Actuarial Life Contingencies Summary of Formulae for Actuarial Life Contingencies Contents Review of Basic Actuarial Functions... 3 Random Variables... 5 Future Lifetime (Continuous)... 5 Curtate Future Lifetime (Discrete)... 5 1/m

More information

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20

1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7. b. 22. c. 23. d. 20 1 of 17 1/4/2008 12:01 PM 1. The force of mortality at age x is given by 10 µ(x) = 103 x, 0 x < 103. Compute E(T(81) 2 ]. a. 7 b. 22 3 c. 23 3 d. 20 3 e. 8 2. Suppose 1 for 0 x 1 s(x) = 1 ex 100 for 1

More information

A. 11 B. 15 C. 19 D. 23 E. 27. Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1.

A. 11 B. 15 C. 19 D. 23 E. 27. Solution. Let us write s for the policy year. Then the mortality rate during year s is q 30+s 1. Solutions to the Spring 213 Course MLC Examination by Krzysztof Ostaszewski, http://wwwkrzysionet, krzysio@krzysionet Copyright 213 by Krzysztof Ostaszewski All rights reserved No reproduction in any form

More information

50, 000[ v(0.03) v (1 0.03)0.07 v (1 0.03)(1 0.07)0.1]

50, 000[ v(0.03) v (1 0.03)0.07 v (1 0.03)(1 0.07)0.1] . Kevin, (5), purchases a fuy curtate three year term insurance with a death benefit of 5,. Kevin s mortaity is epected to foow the foowing one year seect and utimate tabe: [] q [ ] q 49..4 5 5.3.7 5 5.5.

More information

Life Tables and Selection

Life Tables and Selection Life Tables and Selection Lecture: Weeks 4-5 Lecture: Weeks 4-5 (Math 3630) Life Tables and Selection Fall 2017 - Valdez 1 / 29 Chapter summary Chapter summary What is a life table? also called a mortality

More information

Life Tables and Selection

Life Tables and Selection Life Tables and Selection Lecture: Weeks 4-5 Lecture: Weeks 4-5 (Math 3630) Life Tables and Selection Fall 2018 - Valdez 1 / 29 Chapter summary Chapter summary What is a life table? also called a mortality

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India CT5 General Insurance, Life and Health Contingencies Indicative Solution November 28 Introduction The indicative solution has been written by the Examiners with the aim

More information

Stat 475 Winter 2018

Stat 475 Winter 2018 Stat 475 Winter 208 Homework Assignment 4 Due Date: Tuesday March 6 General Notes: Please hand in Part I on paper in class on the due date. Also email Nate Duncan natefduncan@gmail.com the Excel spreadsheet

More information

STT 455-6: Actuarial Models

STT 455-6: Actuarial Models STT 455-6: Actuarial Models Albert Cohen Actuarial Sciences Program Department of Mathematics Department of Statistics and Probability A336 Wells Hall Michigan State University East Lansing MI 48823 albert@math.msu.edu

More information

Chapter 5 - Annuities

Chapter 5 - Annuities 5-1 Chapter 5 - Annuities Section 5.3 - Review of Annuities-Certain Annuity Immediate - It pays 1 at the end of every year for n years. The present value of these payments is: where ν = 1 1+i. 5-2 Annuity-Due

More information

2 hours UNIVERSITY OF MANCHESTER. 8 June :00-16:00. Answer ALL six questions The total number of marks in the paper is 100.

2 hours UNIVERSITY OF MANCHESTER. 8 June :00-16:00. Answer ALL six questions The total number of marks in the paper is 100. 2 hours UNIVERSITY OF MANCHESTER CONTINGENCIES 1 8 June 2016 14:00-16:00 Answer ALL six questions The total number of marks in the paper is 100. University approved calculators may be used. 1 of 6 P.T.O.

More information

1. Suppose that µ x =, 0. a b c d e Unanswered The time is 9:27

1. Suppose that µ x =, 0. a b c d e Unanswered The time is 9:27 1 of 17 1/4/2008 12:29 PM 1 1. Suppose that µ x =, 0 105 x x 105 and that the force of interest is δ = 0.04. An insurance pays 8 units at the time of death. Find the variance of the present value of the

More information

Question Worth Score. Please provide details of your workings in the appropriate spaces provided; partial points will be granted.

Question Worth Score. Please provide details of your workings in the appropriate spaces provided; partial points will be granted. MATH 3630 Actuarial Mathematics I Wednesday, 16 December 2015 Time Allowed: 2 hours (3:30-5:30 pm) Room: LH 305 Total Marks: 120 points Please write your name and student number at the spaces provided:

More information

Multiple Life Models. Lecture: Weeks Lecture: Weeks 9-10 (STT 456) Multiple Life Models Spring Valdez 1 / 38

Multiple Life Models. Lecture: Weeks Lecture: Weeks 9-10 (STT 456) Multiple Life Models Spring Valdez 1 / 38 Multiple Life Models Lecture: Weeks 9-1 Lecture: Weeks 9-1 (STT 456) Multiple Life Models Spring 215 - Valdez 1 / 38 Chapter summary Chapter summary Approaches to studying multiple life models: define

More information

A x 1 : 26 = 0.16, A x+26 = 0.2, and A x : 26

A x 1 : 26 = 0.16, A x+26 = 0.2, and A x : 26 1 of 16 1/4/2008 12:23 PM 1 1. Suppose that µ x =, 0 104 x x 104 and that the force of interest is δ = 0.04 for an insurance policy issued to a person aged 45. The insurance policy pays b t = e 0.04 t

More information

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k Solutions to the November 202 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 202 by Krzysztof Ostaszewski All rights reserved. No reproduction in

More information

Life annuities. Actuarial mathematics 3280 Department of Mathematics and Statistics York University. Edward Furman.

Life annuities. Actuarial mathematics 3280 Department of Mathematics and Statistics York University. Edward Furman. Edward Furman, Actuarial mathematics MATH3280 p. 1/53 Life annuities Actuarial mathematics 3280 Department of Mathematics and Statistics York University Edward Furman efurman@mathstat.yorku.ca Edward Furman,

More information

Chapter 2 and 3 Exam Prep Questions

Chapter 2 and 3 Exam Prep Questions 1 You are given the following mortality table: q for males q for females 90 020 010 91 02 01 92 030 020 93 040 02 94 00 030 9 060 040 A life insurance company currently has 1000 males insured and 1000

More information

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS. Copyright 2013 by the Society of Actuaries

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS. Copyright 2013 by the Society of Actuaries SOCIETY OF ACTUARIES EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE QUESTIONS Copyright 2013 by the Society of Actuaries The questions in this study note were previously presented in study note

More information

MATH 3630 Actuarial Mathematics I Class Test 2 - Section 1/2 Wednesday, 14 November 2012, 8:30-9:30 PM Time Allowed: 1 hour Total Marks: 100 points

MATH 3630 Actuarial Mathematics I Class Test 2 - Section 1/2 Wednesday, 14 November 2012, 8:30-9:30 PM Time Allowed: 1 hour Total Marks: 100 points MATH 3630 Actuarial Mathematics I Class Test 2 - Section 1/2 Wednesday, 14 November 2012, 8:30-9:30 PM Time Allowed: 1 hour Total Marks: 100 points Please write your name and student number at the spaces

More information

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given:

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given: Solutions to the May 2012 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 2012 by Krzysztof Ostaszewski All rights reserved. No reproduction in any

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 6. Benefit premiums. Section 6.10. Extract from: Arcones Fall 2010 Edition, available at http://www.actexmadriver.com/ 1/28 When finding the annual premium expenses and commissions have to be taken

More information

MATH 3630 Actuarial Mathematics I Class Test 1-3:35-4:50 PM Wednesday, 15 November 2017 Time Allowed: 1 hour and 15 minutes Total Marks: 100 points

MATH 3630 Actuarial Mathematics I Class Test 1-3:35-4:50 PM Wednesday, 15 November 2017 Time Allowed: 1 hour and 15 minutes Total Marks: 100 points MATH 3630 Actuarial Mathematics I Class Test 1-3:35-4:50 PM Wednesday, 15 November 2017 Time Allowed: 1 hour and 15 minutes Total Marks: 100 points Please write your name and student number at the spaces

More information

Supplement Note for Candidates Using. Models for Quantifying Risk, Fourth Edition

Supplement Note for Candidates Using. Models for Quantifying Risk, Fourth Edition Supplement Note for Candidates Using Models for Quantifying Risk, Fourth Edition Robin J. Cunningham, Ph.D. Thomas N. Herzog, Ph.D., ASA Richard L. London, FSA Copyright 2012 by ACTEX Publications, nc.

More information

Survival models. F x (t) = Pr[T x t].

Survival models. F x (t) = Pr[T x t]. 2 Survival models 2.1 Summary In this chapter we represent the future lifetime of an individual as a random variable, and show how probabilities of death or survival can be calculated under this framework.

More information

1 Cash-flows, discounting, interest rates and yields

1 Cash-flows, discounting, interest rates and yields Assignment 1 SB4a Actuarial Science Oxford MT 2016 1 1 Cash-flows, discounting, interest rates and yields Please hand in your answers to questions 3, 4, 5, 8, 11 and 12 for marking. The rest are for further

More information

MATH/STAT 4720, Life Contingencies II Fall 2015 Toby Kenney

MATH/STAT 4720, Life Contingencies II Fall 2015 Toby Kenney MATH/STAT 4720, Life Contingencies II Fall 2015 Toby Kenney In Class Examples () September 2, 2016 1 / 145 8 Multiple State Models Definition A Multiple State model has several different states into which

More information

Remember..Prospective Reserves

Remember..Prospective Reserves Remember..Prospective Reserves Notation: t V x Net Premium Prospective reserve at t for a whole life assurance convention: if we are working at an integer duration, the reserve is calculated just before

More information

Policy Values. Lecture: Weeks 2-4. Lecture: Weeks 2-4 (STT 456) Policy Values Spring Valdez 1 / 33

Policy Values. Lecture: Weeks 2-4. Lecture: Weeks 2-4 (STT 456) Policy Values Spring Valdez 1 / 33 Policy Values Lecture: Weeks 2-4 Lecture: Weeks 2-4 (STT 456) Policy Values Spring 2015 - Valdez 1 / 33 Chapter summary Chapter summary Insurance reserves (policy values) what are they? how do we calculate

More information

Chapter 1 - Life Contingent Financial Instruments

Chapter 1 - Life Contingent Financial Instruments Chapter 1 - Life Contingent Financial Instruments The purpose of this course is to explore the mathematical principles that underly life contingent insurance products such as Life Insurance Pensions Lifetime

More information

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 7.315. The amount of each claim is distributed as a Pareto distribution with

More information

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of

1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 1. The number of dental claims for each insured in a calendar year is distributed as a Geometric distribution with variance of 7.3125. The amount of each claim is distributed as a Pareto distribution with

More information

Premium Calculation. Lecture: Weeks Lecture: Weeks (Math 3630) Premium Caluclation Fall Valdez 1 / 35

Premium Calculation. Lecture: Weeks Lecture: Weeks (Math 3630) Premium Caluclation Fall Valdez 1 / 35 Premium Calculation Lecture: Weeks 12-14 Lecture: Weeks 12-14 (Math 3630) Premium Caluclation Fall 2017 - Valdez 1 / 35 Preliminaries Preliminaries An insurance policy (life insurance or life annuity)

More information

May 2001 Course 3 **BEGINNING OF EXAMINATION** Prior to the medical breakthrough, s(x) followed de Moivre s law with ω =100 as the limiting age.

May 2001 Course 3 **BEGINNING OF EXAMINATION** Prior to the medical breakthrough, s(x) followed de Moivre s law with ω =100 as the limiting age. May 001 Course 3 **BEGINNING OF EXAMINATION** 1. For a given life age 30, it is estimated that an impact of a medical breakthrough will be an increase of 4 years in e o 30, the complete expectation of

More information

MLC Written Answer Model Solutions Spring 2014

MLC Written Answer Model Solutions Spring 2014 MLC Written Answer Model Solutions Spring 214 1. Learning Outcomes: (2a) (3a) (3b) (3d) Sources: Textbook references: 4.4, 5.6, 5.11, 6.5, 9.4 (a) Show that the expected present value of the death benefit

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

Exam MLC Models for Life Contingencies. Friday, October 27, :30 a.m. 12:45 p.m. INSTRUCTIONS TO CANDIDATES

Exam MLC Models for Life Contingencies. Friday, October 27, :30 a.m. 12:45 p.m. INSTRUCTIONS TO CANDIDATES Society of Actuaries Canadian Institute of Actuaries Exam MLC Models for Life Contingencies Friday, October 27, 2017 8:30 a.m. 12:45 p.m. MLC General Instructions 1. Write your candidate number here. Your

More information

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS TO CANDIDATES Society of Actuaries Canadian Institute of Actuaries Exam MLC Models for Life Contingencies Tuesday, April 29, 2014 8:30 a.m. 12:45 p.m. MLC General Instructions INSTRUCTIONS TO CANDIDATES 1. Write your

More information

SOCIETY OF ACTUARIES EXAM MLC ACTUARIAL MODELS EXAM MLC SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM MLC ACTUARIAL MODELS EXAM MLC SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM MLC ACTUARIAL MODELS EXAM MLC SAMPLE QUESTIONS Copyright 2008 by the Society of Actuaries Some of the questions in this study note are taken from past SOA examinations. MLC-09-08

More information

Gross Premium. gross premium gross premium policy value (using dirsct method and using the recursive formula)

Gross Premium. gross premium gross premium policy value (using dirsct method and using the recursive formula) Gross Premium In this section we learn how to calculate: gross premium gross premium policy value (using dirsct method and using the recursive formula) From the ACTEX Manual: There are four types of expenses:

More information

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE WRITTEN-ANSWER QUESTIONS AND SOLUTIONS

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE WRITTEN-ANSWER QUESTIONS AND SOLUTIONS SOCIETY OF ACTUARIES EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE WRITTEN-ANSWER QUESTIONS AND SOLUTIONS Questions September 17, 2016 Question 22 was added. February 12, 2015 In Questions 12,

More information

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS TO CANDIDATES Society of Actuaries Canadian Institute of Actuaries Exam MLC Models for Life Contingencies Friday, October 28, 2016 8:30 a.m. 12:45 p.m. MLC General Instructions 1. Write your candidate number here. Your

More information

Stat 476 Life Contingencies II. Policy values / Reserves

Stat 476 Life Contingencies II. Policy values / Reserves Stat 476 Life Contingencies II Policy values / Reserves Future loss random variables When we discussed the setting of premium levels, we often made use of future loss random variables. In that context,

More information

1. For a special whole life insurance on (x), payable at the moment of death:

1. For a special whole life insurance on (x), payable at the moment of death: **BEGINNING OF EXAMINATION** 1. For a special whole life insurance on (x), payable at the moment of death: µ () t = 0.05, t > 0 (ii) δ = 0.08 x (iii) (iv) The death benefit at time t is bt 0.06t = e, t

More information

M.Sc. ACTUARIAL SCIENCE. Term-End Examination June, 2012

M.Sc. ACTUARIAL SCIENCE. Term-End Examination June, 2012 No. of Printed Pages : 11 MIA-009 (F2F) M.Sc. ACTUARIAL SCIENCE Term-End Examination June, 2012 MIA-009 (F2F) : GENERAL INSURANCE, LIFE AND HEALTH CONTINGENCIES Time : 3 hours Maximum Marks : 100 Note

More information

This exam contains 8 pages (including this cover page) and 5 problems. Check to see if any pages are missing.

This exam contains 8 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Stat 475 Winter 207 Midterm Exam 27 February 207 Name: This exam contains 8 pages (including this cover page) and 5 problems Check to see if any pages are missing You may only use an SOA-approved calculator

More information

Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts

Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts Ordinary Mixed Life Insurance and Mortality-Linked Insurance Contracts M.Sghairi M.Kouki February 16, 2007 Abstract Ordinary mixed life insurance is a mix between temporary deathinsurance and pure endowment.

More information

The Impact of Natural Hedging on a Life Insurer s Risk Situation

The Impact of Natural Hedging on a Life Insurer s Risk Situation The Impact of Natural Hedging on a Life Insurer s Risk Situation Longevity 7 September 2011 Nadine Gatzert and Hannah Wesker Friedrich-Alexander-University of Erlangen-Nürnberg 2 Introduction Motivation

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT5 General Insurance, Life and Health Contingencies For 2018 Examinations Aim The aim of the Contingencies subject is to provide a grounding in the mathematical

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 3. Life tables. Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/11 (#28, Exam M, Spring 2005) For a life table with a one-year select period, you are given:

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Heriot-Watt University BSc in Actuarial Science Life Insurance Mathematics A (F70LA) Tutorial Problems

Heriot-Watt University BSc in Actuarial Science Life Insurance Mathematics A (F70LA) Tutorial Problems Heriot-Watt University BSc in Actuarial Science Life Insurance Mathematics A (F70LA) Tutorial Problems 1. Show that, under the uniform distribution of deaths, for integer x and 0 < s < 1: Pr[T x s T x

More information

Errata for Actuarial Mathematics for Life Contingent Risks

Errata for Actuarial Mathematics for Life Contingent Risks Errata for Actuarial Mathematics for Life Contingent Risks David C M Dickson, Mary R Hardy, Howard R Waters Note: These errata refer to the first printing of Actuarial Mathematics for Life Contingent Risks.

More information

ACSC/STAT 3720, Life Contingencies I Winter 2018 Toby Kenney Homework Sheet 5 Model Solutions

ACSC/STAT 3720, Life Contingencies I Winter 2018 Toby Kenney Homework Sheet 5 Model Solutions Basic Questions ACSC/STAT 3720, Life Contingencies I Winter 2018 Toby Kenney Homework Sheet 5 Model Solutions 1. An insurance company offers a whole life insurance policy with benefit $500,000 payable

More information

Stat 476 Life Contingencies II. Pension Mathematics

Stat 476 Life Contingencies II. Pension Mathematics Stat 476 Life Contingencies II Pension Mathematics Pension Plans Many companies sponsor pension plans for their employees. There are a variety of reasons why a company might choose to have a pension plan:

More information

Commutation Functions. = v x l x. + D x+1. = D x. +, N x. M x+n. ω x. = M x M x+n + D x+n. (this annuity increases to n, then pays n for life),

Commutation Functions. = v x l x. + D x+1. = D x. +, N x. M x+n. ω x. = M x M x+n + D x+n. (this annuity increases to n, then pays n for life), Commutation Functions C = v +1 d = v l M = C + C +1 + C +2 + = + +1 + +2 + A = M 1 A :n = M M +n A 1 :n = +n R = M + M +1 + M +2 + S = + +1 + +2 + (this S notation is not salary-related) 1 C = v +t l +t

More information

1. For two independent lives now age 30 and 34, you are given:

1. For two independent lives now age 30 and 34, you are given: Society of Actuaries Course 3 Exam Fall 2003 **BEGINNING OF EXAMINATION** 1. For two independent lives now age 30 and 34, you are given: x q x 30 0.1 31 0.2 32 0.3 33 0.4 34 0.5 35 0.6 36 0.7 37 0.8 Calculate

More information

1. The probability that a visit to a primary care physician s (PCP) office results in neither

1. The probability that a visit to a primary care physician s (PCP) office results in neither 1. The probability that a visit to a primary care physician s (PCP) office results in neither lab work nor referral to a specialist is 35%. Of those coming to a PCP s office, 30% are referred to specialists

More information

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS TO CANDIDATES Society of Actuaries Canadian Institute of Actuaries Exam MLC Models for Life Contingencies Tuesday, April 25, 2017 8:30 a.m. 12:45 p.m. MLC General Instructions 1. Write your candidate number here. Your

More information

CAS 3 Fall 2007 Notes

CAS 3 Fall 2007 Notes CAS 3 Fall 27 Notes Contents 1 Statistics and Stochastic Processes 3 1.1 Probability............................................ 3 1.2 Point Estimation......................................... 4 1.3 Hypothesis

More information

INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS TO CANDIDATES Society of Actuaries Canadian Institute of Actuaries Exam MLC Models for Life Contingencies Friday, October 30, 2015 8:30 a.m. 12:45 p.m. MLC General Instructions 1. Write your candidate number here. Your

More information

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 5 Probability Distributions. probability distributions Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 5-5 The Poisson Distribution

More information

Modelling, Estimation and Hedging of Longevity Risk

Modelling, Estimation and Hedging of Longevity Risk IA BE Summer School 2016, K. Antonio, UvA 1 / 50 Modelling, Estimation and Hedging of Longevity Risk Katrien Antonio KU Leuven and University of Amsterdam IA BE Summer School 2016, Leuven Module II: Fitting

More information

Chapter 4 Probability Distributions

Chapter 4 Probability Distributions Slide 1 Chapter 4 Probability Distributions Slide 2 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5

More information

SECOND EDITION. MARY R. HARDY University of Waterloo, Ontario. HOWARD R. WATERS Heriot-Watt University, Edinburgh

SECOND EDITION. MARY R. HARDY University of Waterloo, Ontario. HOWARD R. WATERS Heriot-Watt University, Edinburgh ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS SECOND EDITION DAVID C. M. DICKSON University of Melbourne MARY R. HARDY University of Waterloo, Ontario HOWARD R. WATERS Heriot-Watt University, Edinburgh

More information

No. of Printed Pages : 11 I MIA-005 (F2F) I M.Sc. IN ACTUARIAL SCIENCE (MSCAS) Term-End Examination June, 2012

No. of Printed Pages : 11 I MIA-005 (F2F) I M.Sc. IN ACTUARIAL SCIENCE (MSCAS) Term-End Examination June, 2012 No. of Printed Pages : 11 I MIA-005 (F2F) I M.Sc. IN ACTUARIAL SCIENCE (MSCAS) Term-End Examination June, 2012 MIA-005 (F2F) : STOCHASTIC MODELLING AND SURVIVAL MODELS Time : 3 hours Maximum Marks : 100

More information

Michigan State University STT Actuarial Models II Class Test 1 Friday, 27 February 2015 Total Marks: 100 points

Michigan State University STT Actuarial Models II Class Test 1 Friday, 27 February 2015 Total Marks: 100 points Michigan State University STT 456 - Actuarial Models II Class Test 1 Friday, 27 February 2015 Total Marks: 100 points Please write your name at the space provided: Name: There are ten (10) multiple choice

More information

Exam MLC Spring 2007 FINAL ANSWER KEY

Exam MLC Spring 2007 FINAL ANSWER KEY Exam MLC Spring 2007 FINAL ANSWER KEY Question # Answer Question # Answer 1 E 16 B 2 B 17 D 3 D 18 C 4 E 19 D 5 C 20 C 6 A 21 B 7 E 22 C 8 E 23 B 9 E 24 A 10 C 25 B 11 A 26 A 12 D 27 A 13 C 28 C 14 * 29

More information

a b c d e Unanswered The time is 8:51

a b c d e Unanswered The time is 8:51 1 of 17 1/4/2008 11:54 AM 1. The following mortality table is for United Kindom Males based on data from 2002-2004. Click here to see the table in a different window Compute s(35). a. 0.976680 b. 0.976121

More information

**BEGINNING OF EXAMINATION**

**BEGINNING OF EXAMINATION** Fall 2002 Society of Actuaries **BEGINNING OF EXAMINATION** 1. Given: The survival function s x sbxg = 1, 0 x < 1 b g x d i { } b g, where s x = 1 e / 100, 1 x < 45. b g = s x 0, 4.5 x Calculate µ b4g.

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 6 Benefit premiums Extract from: Arcones Fall 2010 Edition, available at http://wwwactexmadrivercom/ 1/11 In this section, we will consider the funding of insurance products paid at the time of

More information

Stat 475 Winter 2018

Stat 475 Winter 2018 Stat 475 Winter 2018 Homework Assignment 4 Due Date: Tuesday March 6 General Notes: Please hand in Part I on paper in class on the due date Also email Nate Duncan (natefduncan@gmailcom) the Excel spreadsheet

More information

PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM

PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM PSTAT 172A: ACTUARIAL STATISTICS FINAL EXAM March 19, 2008 This exam is closed to books and notes, but you may use a calculator. You have 3 hours. Your exam contains 9 questions and 13 pages. Please make

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Subject ST2 Life Insurance Specialist Technical Syllabus

Subject ST2 Life Insurance Specialist Technical Syllabus Subject ST2 Life Insurance Specialist Technical Syllabus for the 2018 exams 1 June 2017 Aim The aim of the Life Insurance Specialist Technical subject is to instil in successful candidates the main principles

More information

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions Chapter 4 Probability Distributions 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5 The Poisson Distribution

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 10 91. * A random sample, X1, X2,, Xn, is drawn from a distribution with a mean of 2/3 and a variance of 1/18. ˆ = (X1 + X2 + + Xn)/(n-1) is the estimator of the distribution mean θ. Find MSE(

More information

Actuarial Factors Documentation

Actuarial Factors Documentation Actuarial Factors Documentation Version Description of Change Author Date 1.00 Initial Documentation Douglas Hahn Dec 22, 2016 1.01 Corrected error in guaranteed pension Douglas Hahn Jan 6, 2017 Platinum

More information

STA Module 3B Discrete Random Variables

STA Module 3B Discrete Random Variables STA 2023 Module 3B Discrete Random Variables Learning Objectives Upon completing this module, you should be able to 1. Determine the probability distribution of a discrete random variable. 2. Construct

More information

MLC Spring Model Solutions Written Answer Questions

MLC Spring Model Solutions Written Answer Questions MLC Spring 2018 Model Solutions Written Answer Questions 1 Question 1 Model Solution Learning Outcomes: 1(a), 1(b), 1(d), 2(a) Chapter References: AMLCR Chapter 8, Sections 8.2 8.6 a) General comment:

More information

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies ADDITIONAL MLC SAMPLE QUESTIONS AND SOLUTIONS

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies ADDITIONAL MLC SAMPLE QUESTIONS AND SOLUTIONS SOCIETY OF ACTUARIES EXAM MLC Models for Life Contingencies ADDITIONAL MLC SAMPLE QUESTIONS AND SOLUTIONS Copyright 2016 by the Society of Actuaries 319. Kevin is a participant in a defined benefit pension

More information

Policy Values - additional topics

Policy Values - additional topics Policy Values - additional topics Lecture: Week 5 Lecture: Week 5 (STT 456) Policy Values - additional topics Spring 2015 - Valdez 1 / 38 Chapter summary additional topics Chapter summary - additional

More information

Life tables and selection

Life tables and selection 3 Life tables and selection 3.1 Summary In this chapter we define a life table. For a life table tabulated at integer ages only, we show, using fractional age assumptions, how to calculate survival probabilities

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

STA Rev. F Learning Objectives. What is a Random Variable? Module 5 Discrete Random Variables

STA Rev. F Learning Objectives. What is a Random Variable? Module 5 Discrete Random Variables STA 2023 Module 5 Discrete Random Variables Learning Objectives Upon completing this module, you should be able to: 1. Determine the probability distribution of a discrete random variable. 2. Construct

More information

Mortality profit and Multiple life insurance

Mortality profit and Multiple life insurance Lecture 13 Mortality profit and Multiple life insurance Reading: Gerber Chapter 8, CT5 Core Reading Units 3 and 6 13.1 Reserves for life assurances mortality profit Letuslookmorespecificallyattheriskofaninsurerwhohasunderwrittenaportfolioofidentical

More information

INSTITUTE OF ACTUARIES OF INDIA

INSTITUTE OF ACTUARIES OF INDIA INSTITUTE OF ACTUARIES OF INIA EXAMINATIONS 21 st May 2009 Subject CT5 General Insurance, Life and Health Contingencies Time allowed: Three Hours (10.00 13.00 Hrs) Total Marks: 100 INSTRUCTIONS TO THE

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Polynomial and Rational Expressions. College Algebra

Polynomial and Rational Expressions. College Algebra Polynomial and Rational Expressions College Algebra Polynomials A polynomial is an expression that can be written in the form a " x " + + a & x & + a ' x + a ( Each real number a i is called a coefficient.

More information

Chapter 3 - Lecture 4 Moments and Moment Generating Funct

Chapter 3 - Lecture 4 Moments and Moment Generating Funct Chapter 3 - Lecture 4 and s October 7th, 2009 Chapter 3 - Lecture 4 and Moment Generating Funct Central Skewness Chapter 3 - Lecture 4 and Moment Generating Funct Central Skewness The expected value of

More information

b g is the future lifetime random variable.

b g is the future lifetime random variable. **BEGINNING OF EXAMINATION** 1. Given: (i) e o 0 = 5 (ii) l = ω, 0 ω (iii) is the future lifetime random variable. T Calculate Var Tb10g. (A) 65 (B) 93 (C) 133 (D) 178 (E) 333 COURSE/EXAM 3: MAY 000-1

More information