Efficient Power Conversion Corporation

Similar documents
Driving egan FETs in High Performance Power Conversion Systems

PMBFJ111; PMBFJ112; PMBFJ113

TOSHIBA Field Effect Transistor Silicon N Channel Junction Type 2SK330

TOSHIBA Field Effect Transistor Silicon N Channel Junction Type 2SK mw

Ultrafast epitaxial rectifier diode in a SOT226 (I2PAK) plastic package. Discontinuous Current Mode (DCM) Power Factor Correction (PFC)

BLF7G20L-160P; BLF7G20LS-160P

BAS70-00-V to BAS70-06-V

BAT54 series 1. Product profile 2. Pinning information Schottky barrier diodes 1.1 General description 1.2 Features and benefits

Is Now Part of To learn more about ON Semiconductor, please visit our website at

50 V, 3 A PNP low VCEsat (BISS) transistor

4. Absolute Maximum Ratings (Note) (Unless otherwise specified, T a = 25 ) Symbol. Note. V RM V R I FM I O P D I FSM T j T stg

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type RFM07U7X

TOSHIBA Transistor Silicon NPN Epitaxial Type TMBT3904

Monolithic Amplifier CMA-83LN+ Low Noise, Wideband, High IP3. 50Ω 0.5 to 8.0 GHz

Cranking Simulator for Automotive Applications

Power dissipation comparable to SOT23 Package height typ mm AEC-Q101 qualified

TOSHIBA Transistor Silicon NPN Epitaxial Planar Type 2SC5086. Characteristics Symbol Test Condition Min Typ. Max Unit

TOSHIBA Transistor Silicon NPN Epitaxial Planar Type 2SC5066. Characteristics Symbol Test Condition Min Typ. Max Unit

Type 943C, Polypropylene Capacitors, for High Pulse, Snubber Very High dv/dt for Snubber Applications

VHF variable capacitance diode

4. Absolute Maximum Ratings (Note) (Unless otherwise specified, T a = 25 ) Symbol. Note. V RM V R I O I FSM T j T stg.

DUAL SCHOTTKY DIODE BRIDGE

Case Material: Molded Plastic. UL Flammability Classification Low Reverse Leakage Current

Top View BAS70WQ BAS70W-04Q BAS70W-05Q BAS70W-06Q

Silicon Epitaxial Planar Diode for High Speed Switching

TOSHIBA Transistor Silicon PNP Triple Diffused Type 2SA1941

RN1401, RN1402, RN1403 RN1404, RN1405, RN1406

TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT process) 2SC2712

Monolithic Amplifier CMA-162LN+ Ultra Low Noise, High IP to 1.6 GHz

RN1421, RN1422, RN1423, RN1424 RN1425, RN1426, RN1427

DISCRETE SEMICONDUCTORS DATA SHEET

CDAUI-8 Chip-to-Module (C2M) System Analysis. Stephane Dallaire and Ben Smith, August 24 th 2015

Electro-Optical Characterization Report Device: SiPM MPPC HAMAMATSU S/N. 1 50µm

FFH60UP60S, FFH60UP60S3. 60 A, 600 V Ultrafast Rectifier

V RM = 600 V, I F(AV) = 0.5 A, t rr = 100 ns Fast Recovery Diode. Description. Package. Features. Applications

Performance Comparison Based on SMG 2 Evaluation Reports: WCDMA vs. WB-TDMA/CDMA

RN1114, RN1115, RN1116, RN1117, RN1118

SPECIFICATION. : 2 x 4G/3G/2G MIMO Antenna (698~960MHz, 1710~2170MHz,2300~2700MHz, MHz) MIMO1 antenna MIMO2 antenna

NLC Solid State Induction Modulator LC02 Update Feb

Indian Institute of Information Technology, Design and Manufacturing, Kurnool (IIITDM Kancheepuram Campus) Chennai Tender Document.

Schottky Barrier Diode Dual Series Schottky Barrier Diode for Mixer and Detector 5V, 30mA, 0.69pF, CP

Monolithic Amplifier CMA-84+ Wideband, High Dynamic Range, Ceramic. DC to 7 GHz. The Big Deal

TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT Process) (Bias Resistor built-in Transistor) RN1910, RN1911

Type 778P/779P, Orange Drop, Polypropylene Film/Foil Capacitors

RN1441, RN1442, RN1443, RN1444

Broadband covering primary wireless communications bands: Cellular, PCS, LTE, WiMAX, SATELLITE IF

CHPT. Company Profile for Investor. August, Chunghwa Precision Test Tech. Co., Ltd.

RN1441,RN1442,RN1443,RN1444

Is Now Part of. To learn more about ON Semiconductor, please visit our website at

DS9638 RS-422 Dual High Speed Differential Line Driver

PHOTO DIODE NR6800 Series

GHz GaAs MMIC Transmitter

K BAND SUPER LOW NOISE AMPLIFIER N-CHANNEL HJ-FET. Drop-In Replacement: CE3520K3. Part Number Order Number Package Quantity Marking Supplying Form

Passivated, sensitive gate thyristors in a SOT54 plastic package. General purpose switching and phase control.

V RSM = 30 V, I F(AV) = 2.0 A Schottky Diode. Description. Package. Features. Applications (1) (2) (1) Cathode (2) Anode

FPGA PUF Based on Programmable LUT Delays

PMP kW Totem-Pole PFC EVM Test Report

[Type text] PMP6007 TPS Vac Non Dimmable 10W LED Driver Reference Design

A Heuristic Method for Statistical Digital Circuit Sizing

A New Redundancy Strategy for High-Availability Power Systems

UD0506T-TL-H. Planar Ultrafast Rectifier Low VF type, 5A, 600V, 1.3V, TP/TP-FA. Features. Specifications

A Physical Unclonable Function based on Capacitor Mismatch in a Charge-Redistribution SAR-ADC

SC-70 Evaluation Board User Guide UG-112

Power Resistors Cooled by Auxiliary Heatsink (Not Supplied) Thick Film Technology

Type 940C, Polypropylene Capacitors, for Pulse, Snubber High dv/dt for Snubber Applications

TB General description. 2. Features and benefits. 3. Applications. 4. Pinning information. 5. Ordering information

EE115C Spring 2013 Digital Electronic Circuits. Lecture 19: Timing Analysis

Creating a new leader in RF Solutions

± 0.2 ppm/ C ± 3 ppm/ C. ± 2.0 ppm/ C

NSVP249SDSF3. PIN Diode Dual series PIN Diode for VHF, UHF and AGC

DISCRETE SEMICONDUCTORS DATA SHEET. BYV29 series Rectifier diodes ultrafast

Debt Covenants and the Macroeconomy: The Interest Coverage Channel

TIP42 / TIP42C PNP Epitaxial Silicon Transistor

Coverage Planning for LTE system Case Study

SRR4818A Series - Shielded Power Inductors

SAW FILTER FOR RKE Murata part number :SAFBC315MSP0T00

Lecture 17: More on Markov Decision Processes. Reinforcement learning

DISCRETE SEMICONDUCTORS DATA SHEET. BT134 series Triacs

Insertion loss (db) TOP VIEW SIDE VIEW BOTTOM VIEW. 4x ± ± Orientation Marker Denotes Pin Location 4x 0.

V RM = 600 V, I F(AV) = 1.0 A General-Purpose Rectifier Diode. Description. Package. Features. Applications

Differential Return Loss for Clause 137 and Matched COM Package Parameters For Comments #92 and #93 Richard Mellitz, Samtec

INVESTOR PRESENTATION

IMPROVED PRODUCT VCS331, VCS332

Designing with an Inverted-F PCB Antenna

Lecture 4: Opamp Review. Inverting Amplifier (Finite A 0 )

FEATURES APPLICATIONS ± [5.18 ± 0.254] [3.0] Max.

INVITATION FOR QUOTATION. TEQIP-III/2018/uiet/Shopping/72

V RSM = 400 V, I F(AV) = 2.0 A General-Purpose Rectifier Diode. Description. Package. Features. Applications (1) (2) (1) Cathode (2) Anode

SOT-23 Single Op Amp Evaluation Board User Guide UG-838

SPECIFICATION. Product Name : 4G/3G/2G Cellular Hinged SMA(M) Mount Monopole

SRR4828A Series - Shielded Power Inductors

A Novel Hybrid Approach For Path Loss Exponent Estimation In Vanet Application

Investor Presentation. August 15, 2017

INVESTOR PRESENTATION

Evaluation Board User Guide UG-129

Anne Bracy CS 3410 Computer Science Cornell University

Practice 10: Ratioed Logic

DISCRETE SEMICONDUCTORS DATA SHEET. BYT79 series Rectifier diodes ultrafast

at 1:00 P.M at 4.00 P.M.

INVESTOR PRESENTATION

Transcription:

The egan FET Journey Continues Using egan FETs for Envelope Tracking Buck Converters Johan Strydom Efficient Power Conversion Corporation EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 1

Agenda Overview of Envelope Tracking Why egan FETs for Envelope Tracking Maximizing Device Performance Experimental Results Current Limitations Summary Q & A egan is a registered trademark of Efficient Power Conversion Corporation EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 2

Overview of Envelope Tracking EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 3

Why Envelope Tracking? Exabytes per Month 12 10 8 6 4 2 0 Source: Cisco VNI Mobile Data Traffic Forecast 2012 2013 2014 2015 2016 2017 66% Compound annual growth rate (CAGR) Same average Reference: Nujira.com website EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 4

Effect of PAPR Average Power Peak Power Fixed supply PAPR = 0dB Peak efficiency up to 65% Average efficiency only 25% Increasing PAPR Output Probability Output Power (dbm) EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 5

Effect of Envelope Tracking Average efficiency ~50% (incl. ET) Only 1/3 the losses Envelope Tracking 60 ~100MHz BW ET for 4G LTE Output Probability Average Power Output Power (dbm) EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 6

Hybrid ET Implementation Improvement in switching device performance buys: Improves overall ET efficiency Increases Switcher stage bandwidth Simplifies Linear stage design / Removes it entirely? Increase system BW which increases RFPA fidelity Kimball, Don, et al. "50% PAE WCDMA basestation amplifier implemented with GaN HFETs." Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC'05. IEEE. IEEE, 2005. EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 7

Why egan FETs for Envelope Tracking EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 8

Idealized Switching V IN T CR T VF V DS I DS V V GS I ON V PL V TH α α t EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 9

Hard-Switching Figure of Merit FOM HS =(Q GD +Q GS S2) R DS(on) (pc Ω) 100 10 1 EPC Gen 4 EPC Gen 2 Vendor A Vendor B Vendor C Vendor D Vendor E 6.1x 3.5x 8.5x 25 250 Drain-to-Source Voltage (V) V DS =0.5 V DSS, I DS =20 A EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 10

High Frequency egan FETs EPC Part No. BV (V) Max. R DS(ON) Min. Typical Charge (pc) (mω) Peak Id (A) (V GS = 5V, (Pulsed, 25 o C, I D = 0.5 A) T pulse = 300 µs) Q G Q GD Q GS Q OSS Q RR Typical Capacitance (pf) (V DS = 20 V; V GS = 0 V) C ISS C OSS C RSS EPC8004 40 125 7.5 358 31 110 493 0 45 17 0.4 EPC8007 40 160 6 302 25 97 406 0 39 14 0.3 EPC8008 40 325 2.9 177 12 67 211 0 25 8 0.2 EPC8009 65 138 7.5 380 36 116 769 0 47 17 0.4 EPC8005 65 275 3.8 218 18 77 414 0 29 9.7 0.2 EPC8002 65 530 2 141 9.4 59 244 0 21 5.9 0.1 EPC8003 100 300 5 315 34 110 1100 0 38 18 0.2 EPC8010 100 160 7.5 354 32 109 1509 0 47 18 0.2 egan is a registered trademark of Efficient Power Conversion Corporation EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 11

Hard Switching FOM EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 12

dv/dt Turn-on Immunity Q GS1 >Q GD 20V 40V Q GS1 Q GD EPC8004 egan FET EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 13

Maximizing Device Performance EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 14

Common Source Inductance V IN T CR T VF V IN T CR T VF I ON I ON I DS V DS I DS V V DS GS V GS V PL V TH α α t EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 15

Drain Packaging Evolution Gate Source Power Loss (W) 2.5 2 1.5 1 0.5 0 egan FET SO-8 LFPAK DirectFET LGA Device Loss Breakdown 82% 18% Package Die 73% 27% 47% 53% V IN =12V V OUT =1.2V I OUT =20A F S =1MHz 18% 82% SO-8 LFPAK DirectFET LGA Efficiency (%) 90 85 80 75 70 SO-8 LFPAK DirectFET LGA 65 0.5 1 1.5 2 2.5 3 3.5 Switching Frequency (MHz) EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 16

Converter Parasitics C in T SR L S : Common Source Inductance L Loop : High Frequency Power Loop Inductance Power Loss(W) 5.5 5.25 5 4.75 4.5 4.25 4 3.75 3.5 3.25 3 Power Loss vs Parasitic Inductance Ls L Loop 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 Parasitic Inductance (nh) V IN =12 V, V OUT =1.2 V, f sw =1 MHz, I OUT = 20 A EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 17

EPC8XXX Package 2050 400 600 600 225 Drain 200 X2 Sub 850 580 Gate Return Source S 400 200 x2 450 200 All dimensions in µm EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 18

Low Parasitic Layout Top Layer Vias to next layer To BUS caps Switch node Supply Return Source S Drain Sub PELS 2014 Gate Current orthogonal to drain current Vias to next layer Ground Source EPC - The Leader in egan FETs Sub Return Bottom Gate Gate Top Gate Gate Drain S www.epc-co.com 19

Low Parasitic Layout First Inner Layer Optimum power loop return To gate drive Drain Sub Optimum gate loop return Gate Return Source S To gate drive Drain Sub Optimum gate loop return Gate Return Source S EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 20

EPC8000 Series Improvements Reduce active area for lower power / higher frequency operation Minimize Hard Switching Figure of Merit Complete dv/dt turn-on immunity Separate gate and power loops Minimize power loop inductance Minimize gate loop inductance EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 21

Experimental Results EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 22

ET Prototype Board 2X, SO-8 footprint Bus caps LM5113 EPC80XX EPC80XX EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 23

20 V BUS, 10 MHz, 4 A Switching EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 24,

Efficien ncy 95% 93% 91% 89% 87% 85% 83% 81% 79% 77% 75% 73% 71% Near 90% @ >4:1 step down ratio 15 V IN to 3.3 V OUT, 10 MHz 0 1 2 3 4 5 6 7 Output Power (W) EPC8007 EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 25 1.2 1 0.8 0.6 0.4 0.2 0 Power Los ss (W)

42 V IN at 1 A OUT No measureable overshoot dv/dt interval 75V/ns slew rate di/dt interval Rise time ~1.0 ns Total switching time ~1.2 ns 2 ns/div and 10 V/div, 1 GHz 100:1 1pF TM probe EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 26,

42 V IN, 20 V OUT, 10 MHz Conduction Switching C OSS Additional losses EPC8005 EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 27

Current Limitations EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 28

Parasitic Losses Bootstra ap diode Reverse recovery charge V DD IC capacitance Level Shift V DD Switch-node rising edge half-bridge driver EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 29

No-load Switching 10 MHz switching, no load, large dead-time 10 V/div, 100 ma/div, 10 ns/div Expected commutation based on egan FET C OSS Initially slow rising edge Actual voltage commutation slopes are different, even though currents are the same EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 30

Loss Breakdown 10 MHz switching, no load, large dead-time 10 V/div, 100 ma/div, 10 ns/div Switch-node voltage Bootstrap Q RR Actual commutation based on total C OSS including IC capacitance EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 31

42 V IN, 20 V OUT, 10 MHz Conduction Switching C OSS C OSS Gate Driver Switching Q RR Bootstrap diode EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 32

egan FET Limited Efficiency Calculated efficiency improvement EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 33

Summary New devices enable higher switching frequencies Switching 42 V, 40 W at 10 MHz at 89% possible. Driver parasitics limit performance light load losses can be cut in half, and full load losses can be reduced by 25% EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 34

Thank you! Questions? EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 35

The end of the road for silicon.. is the beginning of the egan FET journey! EPC - The Leader in egan FETs PELS 2014 www.epc-co.com 36 36