Chapters 10&11 - Debt Securities

Similar documents
CHAPTER 14. Bond Characteristics. Bonds are debt. Issuers are borrowers and holders are creditors.

Bond Prices and Yields

Chapter 7 Capital Asset Pricing and Arbitrage Pricing Theory

FINS2624: PORTFOLIO MANAGEMENT NOTES

CIS March 2012 Exam Diet

PRINCIPLES of INVESTMENTS

Valuation: Fundamental Analysis

EQUITIES & INVESTMENT ANALYSIS MAF307 EXAM SUMMARY

FIN 6160 Investment Theory. Lecture 7-10

Calculating EAR and continuous compounding: Find the EAR in each of the cases below.

Chapter 13 Return, Risk, and Security Market Line

2: ASSET CLASSES AND FINANCIAL INSTRUMENTS MONEY MARKET SECURITIES

FIN 6160 Investment Theory. Lecture 9-11 Managing Bond Portfolios

MGT201 Financial Management Solved MCQs A Lot of Solved MCQS in on file

MGT201 Financial Management Solved MCQs

600 Solved MCQs of MGT201 BY

Navigator Taxable Fixed Income

INV2601 DISCUSSION CLASS SEMESTER 2 INVESTMENTS: AN INTRODUCTION INV2601 DEPARTMENT OF FINANCE, RISK MANAGEMENT AND BANKING

FINS2624 Summary. 1- Bond Pricing. 2 - The Term Structure of Interest Rates

Disclaimer: This resource package is for studying purposes only EDUCATION

CHAPTER 8. Valuing Bonds. Chapter Synopsis

Chapter 16. Managing Bond Portfolios

Overview of Concepts and Notation

CHAPTER 18: EQUITY VALUATION MODELS

BOND VALUATION. YTM Of An n-year Zero-Coupon Bond

Portfolio Management Philip Morris has issued bonds that pay coupons annually with the following characteristics:

Investment Analysis & Portfolio Management FIN 630 Fall Quiz # 3 SOLUTION

Solved MCQs MGT201. (Group is not responsible for any solved content)

Chapter 4 Interest Rate Measurement and Behavior Chapter 5 The Risk and Term Structure of Interest Rates

Valuation: Fundamental Analysis. Equity Valuation Models. Models of Equity Valuation. Valuation by Comparables

CHAPTER 16: MANAGING BOND PORTFOLIOS

TREASURY AND INVESTMENT MANAGEMENT EXAMINATION

INTRODUCTION TO YIELD CURVES. Amanda Goldman

B6302 Sample Placement Exam Academic Year

Midterm Review. P resent value = P V =

MBA 203 Executive Summary

CHAPTER 14. Bond Prices and Yields INVESTMENTS BODIE, KANE, MARCUS. Copyright 2011 by The McGraw-Hill Companies, Inc. All rights reserved.

Navigator Tax Free Fixed Income

Bond Analysis, Portfolio Strategies, and Trade Executions AAII Washington, DC Chapter December 6, 2008

12. Cost of Capital. Outline

CHAPTER 9 DEBT SECURITIES. by Lee M. Dunham, PhD, CFA, and Vijay Singal, PhD, CFA

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL

80 Solved MCQs of MGT201 Financial Management By

INV2601 SELF ASSESSMENT QUESTIONS

MGT Financial Management Mega Quiz file solved by Muhammad Afaaq

FINALTERM EXAMINATION Fall 2009 MGT201- Financial Management (Session - 4)

15.414: COURSE REVIEW. Main Ideas of the Course. Approach: Discounted Cashflows (i.e. PV, NPV): CF 1 CF 2 P V = (1 + r 1 ) (1 + r 2 ) 2

Course 103. Agenda. What is a challenge candidate? This is not a formal review course

Before and After Book COR1-GB Foundations of Finance

Finance Concepts I: Present Discounted Value, Risk/Return Tradeoff

I. Introduction to Bonds

Question # 1 of 15 ( Start time: 01:53:35 PM ) Total Marks: 1

INTRODUCTION TO YIELD CURVES. Amanda Goldman

MFE8812 Bond Portfolio Management

I. Interest Rate Sensitivity

FIN3043 Investment Management. Assignment 1 solution

Chapter 5. Valuing Bonds

Chapter 5. Asset Allocation - 1. Modern Portfolio Concepts

For each of the questions 1-6, check one of the response alternatives A, B, C, D, E with a cross in the table below:


Student: 5. Which of the following correctly provides the profit to a long position at contract maturity?

CHAPTER 9: THE CAPITAL ASSET PRICING MODEL

Archana Khetan 05/09/ MAFA (CA Final) - Portfolio Management

Chapter. Bond Basics, I. Prices and Yields. Bond Basics, II. Straight Bond Prices and Yield to Maturity. The Bond Pricing Formula

ACC 501 Quizzes Lecture 1 to 22

PROGRAM. Program: Economics

2. A FRAMEWORK FOR FIXED-INCOME PORTFOLIO MANAGEMENT 3. MANAGING FUNDS AGAINST A BOND MARKET INDEX

Lecture 20: Bond Portfolio Management. I. Reading. A. BKM, Chapter 16, Sections 16.1 and 16.2.

BOND ANALYTICS. Aditya Vyas IDFC Ltd.

OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS. BKM Ch 7

SAMPLE FINAL QUESTIONS. William L. Silber

Certification Examination Detailed Content Outline

SECURITY VALUATION STOCK VALUATION

Cost of Capital (represents risk)

All In One MGT201 Mid Term Papers More Than (10) BY

If you would like more information, please call our Investor Services Team on or visit us online at

Absolute and relative security valuation

4. D Spread to treasuries. Spread to treasuries is a measure of a corporate bond s default risk.

IMPORTANT INFORMATION: This study guide contains important information about your module.

ACC 471 Practice Problem Set # 4 Fall Suggested Solutions

Valuing Bonds. Professor: Burcu Esmer

Investments. Session 10. Managing Bond Portfolios. EPFL - Master in Financial Engineering Philip Valta. Spring 2010

Corporate Finance - Final Exam QUESTIONS 78 terms by trunganhhung

Part III : Debt Securities. o Bond Prices and Yields o Managing Bond Portfolios

CHAPTER 8: INDEX MODELS

CHAPTER 11 RETURN AND RISK: THE CAPITAL ASSET PRICING MODEL (CAPM)

Fixed income security. Face or par value Coupon rate. Indenture. The issuer makes specified payments to the bond. bondholder

Chapter 3: Debt financing. Albert Banal-Estanol

FINANCE II Exercise set 3. Attention:

Learn about bond investing. Investor education

Financial Markets Management 183 Economics 173A. Equity Valuation. Updated 5/13/17

Solutions For the benchmark maturity sectors in the United States Treasury bill markets,

Economics 173A and Management 183 Financial Markets

EXAMINATION II: Fixed Income Valuation and Analysis. Derivatives Valuation and Analysis. Portfolio Management

CHAPTER II THEORETICAL REVIEW

MS-E2114 Investment Science Lecture 2: Fixed income securities

Foundations of Finance

FIXED INCOME I EXERCISES


Terminology of Convertible Bonds

Transcription:

Chapters 10&11 - Debt Securities Bond characteristics Interest rate risk Bond rating Bond pricing Term structure theories Bond price behavior to interest rate changes Duration and immunization Bond investment strategies Bond characteristics Bond: long-term debt security that the issuer makes specified payments of interest (coupon payments) over a specific time period and repays a fixed amount of principal (par or face value) at maturity Face value or par value: usually $1,000 Coupon rate and interest payment Zero-coupon bond: coupon rate is zero, no coupon payment, sells at a discount. For example: a 10 year zero-coupon bond sells at $550 and yields 6.16% per year Maturity date Call provision: the issuer can repurchase bonds during the call period Call premium and call price Convertible bonds: can be converted into common stocks uttable bonds: bondholders can sell bonds back to the issuer before maturity Floating-rate bonds: coupon rates vary with some market rates Indexed bonds: payments are tied to a general price index Junk bonds: high yields with high default risk Government bonds, corporate bonds, international bonds referred stocks: hybrid security, often considered as an equity but usually included in fixed-income securities 41

Interest rate risk Interest rate price risk vs. interest rate reinvestment risk (reinvestment risk) Interest rate price risk: risk that a bond value (price) falls when market interest rates rise Reinvestment risk: risk that the interests received from a bond will be reinvested at a lower rate if market interest rates fall Bond rating Letter grades that designate quality (safety) of bonds (Figure 10.8 - Digital Image) AAA AA Investment grade bonds with low default risk A BBB BB B Speculative grade (junk) bonds with high default risk. Why bond rating? Firm's credit; Borrowing capacity Determinants: Coverage ratios - ratios of earnings to fixed costs Leverage ratio - debt to equity ratio Liquidity ratios - current ratio and quick ratio rofitability ratios - ROA and ROE Cash-flow-to debt ratio - ratio of total cash to outstanding debt Bond pricing Accrued interest and quoted price Invoice price = quoted (flat) price + accrued interest 0 182 days 40 days 142 days remaining until next coupon Suppose annual coupon is $80 and the quoted price is $990, Invoice price = 990 + (40/182)*40 = $998.79 Bond price = present value of coupons + present value of par value The required rate of return serves as the discount rate remium bonds vs. discount bonds 42

A premium bond sells for more than its face value ($1,000) A discount bond sells for less than its face value ($1,000) Annual interest payment valuation model = present value of coupons + present value of par value = C (VIFA r,n ) + V (VIF r,n ), : intrinsic value of the bond C: annual coupon payment r: the required rate of return, the market interest rate for the bond n: the number of years until the bond matures V: par value (face value, $1,000 usually) Semiannual interest payment valuation model: adjust the annual coupon to semiannual (C to C/2), the annual required rate of return to semiannual (r to r/2), and the number of years to maturity to semiannual periods (n to 2n) Overpriced securities vs. underpriced securities If the intrinsic value > the market price, the bond in the market is underpriced If the intrinsic value < the market price, the bond in the market is overpriced If the intrinsic value = the market price, the bond in the market is fairly priced Example: A 30-year 8% coupon bond pays semiannual coupon payments. The market interest rate (required rate of return) on the bond is 10%. What should be the bond price (fair value)? If the market price of the bond is $850.00, should you buy the bond? Answer: n = 60, i/y = 5%, FV = 1,000, MT = 40, solve for V = -810.71 No, you should not buy the bond since the intrinsic value ($810.71) < the market price ($850.00) If the market interest rate for the bond is 8%, what should be the bond price? Answer: V = -1,000 If the market interest rate for the bond is 7%, what should be the bond price? Answer: V = -1,124.72 Bond price and market interest rates have an inverse relationship: keeping other things constant, the higher the market interest rate, the lower the bond price (Figure 10.3 - Digital Image) 43

Yield to maturity (YTM): rate of return from a bond if it is held to maturity Example (continued): what is YTM of the bond? Answer: V = -850, FV = 1,000, MT = 40, n = 60, solve for i/y = 4.76%, YTM = 4.76*2 = 9.52% Yield to call (YTC): rate of return from a bond until it is called Example (continued): suppose the bond can be called after 5 years at a call price of $1,050, what is YTC? Answer: V = -850, FV = 1,050, MT = 40, n = 10, solve for i/y = 6.45%, YTC = 6.45*2 = 12.91% Current yield (CY): annual coupon payment divided by the current bond price Example (continued): what is the current yield of the bond? CY = 80/850 = 9.41% If market interest rates rise what would happen to the current yield of a bond? Answer: the current yield would increase since the bond price would decrease Realized compound return: compound rate of return on a bond with all coupons reinvested until maturity Example: 10.5 (Figure 10.5 - Digital Image) Consider a two-year bond selling at par and paying 10% coupon once a year. The YTM is 10%. If the coupon payment is reinvested at an interest rate of 8% per year, the realized compound return will be less than 10% (actually it will be 9.91%) Term structure theories Term structure of interest rates: relationship between time to maturity and yields for a particular fixed-income security Yield curve: a graphical presentation of the term structure Expectation theory: the yield curve is determined solely by expectations of future short-term interest rates Forward rates: implied short-term interest rates in the future 44

Example: suppose that two-year maturity bonds offer yields to maturity of 6% and three-year bonds have yields of 7%. What is the forward rate for the third year? n n1 Using the formula: (1 yn) (1 yn 1) (1 f n) and solving for f n = 9.02% Approximation: f n = 7%*3 2*6% = 9.00% Liquidity preference theory: investors demand a risk premium on long-term bonds Liquidity premium: the extra expected return to compensate for higher risk of holding longer term bonds Market segmentation theory: investors have their preferences to specific maturity sectors and unwilling to shift from one sector to another Bond price behavior to interest rate changes (1) The value of a bond is inversely related to its yield.: As yields increase, bond prices fall; as yields fall, bond prices rise. (2) An increase in a bond s yield to maturity results in a smaller price change than a decrease in yield of equal magnitude. (3) As the maturity date approaches, the value of a bond approaches to its par value. (4) rices of long-term bonds tend to be more sensitive to interest rate changes than prices of short-term bonds. (5) The sensitivity of bond prices to changes in yields increases at a deceasing rate as maturity increases. (6) Interest rate risk is inversely related to the bond s coupon rate. rices of low-coupon bonds are more sensitive to changes in interest rates than prices of high-coupon bonds. (7) The sensitivity of a bond s price to a change in its yield is inversely related to the yield to maturity at which the bond is currently selling. (Figure 11.1 - Digital Image) 45

Duration and immunization Duration: a measure of the effective maturity of a bond, defined as the weighted average of the times until each payment is made, with weights proportional to the present value of the payment. Measuring duration: Macaulay duration = D = T t 1 t *, where w t w t CFt /(1 y) 0 t Note: T is the number of years until the bond matures, y is the yield to maturity, and 0 is the market price of the bond Example: A 3-year bond with coupon rate of 8%, payable annually, sells for $950.25 (face value is $1,000). What is yield to maturity? What is D? Answer: y = 10%, D = 2.78 years (Spreadsheet 11.1 - Digital Image) Relationship between duration and bond price volatility (1 = - D yy 1 ) = - D * y where D * = D 1 y, is the modified duration Example (continued): What is D*? Answer: D* = D/(1+y) = 2.53 years If the yield drops by 1%, what will happen to the bond price? Answer: the price will increase by 2.53% If the yield rises by 1%, what will happen to the bond price? Answer: the price will decrease by 2.53% Rules for duration (1) for a zero-coupon bond, the duration is equal to the time to maturity (2) the lower the coupon rate, the higher the D (3) the longer the time to maturity, the higher the D (4) the lower the yield, the higher the D (5) for a perpetuity, the D = (1+y)/y Bond immunization: a strategy to shield net worth from interest rate movements; to get interest rate price risk and interest rate reinvestment risk to cancel each other over a certain time period to meet a given promised stream of cash outflows 46

See the example (Table 11.4 - digital Image) Note: immunization works only for small changes in interest rates Cash flow matching: matching cash flows from a fixed-income portfolio with those of an obligation Dedication strategy: refers to multi-period cash flow matching Application of bond immunization: banking management, pension fund management Bond investment strategies assive strategy: lock in specified rates given the risk, or buy and hold Active management strategy: more aggressive and risky; try to timing the market Bond swaps: an investment strategy where an investor liquidates one bond holding and simultaneously buys a different issue (more in FIN 436) Interest rate swaps: a contract between two parties to exchange a series of cash flows based on fixed-income securities (more in FIN 436) Tax swaps: replace a bond that has a capital loss for a similar security in order to offset a gain in another part of an investment portfolio ASSIGNMENTS Chapter 10 1. Concept Checks 2. Key Terms 3. Intermediate: 10-15, CFA 1 and 5 Chapter 11 1. Concept Checks 2. Key Terms 3. Intermediate: 10-11, CFA 1-2, and 10 47

Chapter 12 - Macroeconomic and Industry Analysis Global economy Domestic macro economy Industry analysis Company analysis Global Economy Top-down analysis starts with the global economy: overview of the economic conditions around the world Exchange rate and exchange rate risk olitical risk (country risk) Domestic macro economy To develop an economic outlook for domestic economy Gross domestic product (GD): total value of goods and services produced High grow rate of GD indicates rapid expansion check for inflation Negative grow rate of GD indicates contraction check for recession Demand and/or supply shocks Unemployment rate Inflation: general level of prices for goods and services Interest rates Nominal interest rates vs. real interest rates (Figure 12.3 - Digital Image) Determinants of interest rates Supply side: from savers, mainly households Demand side: from borrowers, mainly business Government side: borrower or saver, through Fed The expected inflation rate Budget deficit: spending exceeds revenue Sentiment: optimism or pessimism of the economy Federal government policy: fiscal and monetary policies Fiscal polity - the government uses spending and taxing to stabilize the economy 48

Monetary policy the Fed uses money supply and interest rate to stabilize the economy (price level) Consumer spending Exchange rates Business cycle: repetitive cycles of recession and recovery (Figure 12.4 - Digital Image) eak vs. trough Cyclical industries: with above average sensitivity to the state of the economy Defensive industries: with below average sensitivity of the state of the economy Economic indicators (Table 12.2 - Digital Image) Leading indicators: rise or fall in advance of the rest of the economy Coincident indicators: rise or fall with the economy Lagging indicators: rise or fall following the economy Industrial analysis To develop an industrial outlook NAICS code to classify industries (Table 12.3 - Digital Image) Sensitivity to the business cycle Sector rotation Industry life cycle Industry structure and performance Threat of entry; Competitors; Substitutes; Bargaining power Technology development Future demand Labor problem Regulations 49

Company analysis Fundamental analysis: intrinsic value, financial statements, ratio analysis, earnings and growth forecast, /E ratio, and required rate of return (risk) Valuation models (covered in Chapter 13) ASSIGNMENT 1. Concept Checks 2. Key Terms 3. Intermediate: 12, 14, and CFA 6 50

Chapter 13 - Equity Valuations Characteristics of common stock Valuation by comparables Dividend discount model (DDM) Alternative models Free cash flow valuation approach Characteristics of common stocks Ownership with residual claims Advantages and disadvantages of common stock ownership Higher returns Easy to buy and sell (liquidity) Higher risk Less current income Cash dividend, stock dividend, and stock split Treasury stocks - repurchased stocks held by a firm Capital gains yield and dividend yield Valuation by comparables Stocks with similar characteristics should sell for similar prices Book value: the net worth of common equity according to a firm s balance sheet Liquidation value: net amount that can be realized by selling the assets of a firm and paying off the debt Replacement cost: cost to replace a firm s assets Tobin s q: the ratio of market value of the firm to replacement cost /E ratio approach rice-to-sales ratio approach Market-to-book value approach rice-to-cash flow approach Example (Table 13.1 - Digital Image) 51

Dividend discount model (DDM) Market price vs. intrinsic value Market price: the actual price that is determined by the demand and supply in the market Intrinsic value: the present value of a firm s expected future net cash flows discounted by the required rate of return In market equilibrium, the required rate of return is the market capitalization rate Net income, retained earnings, and cash dividends General formula: Dt V 0 (1 k) t 1 t Forecasting sales and growth rate: g = ROE * b (b is the retention ratio) Estimating ES and DS (1) Zero growth DDM (g = 0), which means that dividend is a constant (D) D V0 or k E( r) D 0 where k is the required rate of return and E(r) is the expected rate of return Example: if D = $2.00 (constant) and k = 10%, then V 0 = $20.00 referred stocks can be treated as common stocks with zero growth (g = 0) (2) Constant growth DDM (g = a constant) D 1 = D 0 *(1+g) D 2 = D 1 *(1+g) = D 0 *(1+g) 2, and in general, D t = D t-1 *(1+g) = D 0 *(1+g) t D1 D0 (1 g) D1 D0 (1 g) V0 or E( r) g g k g k g Example: assume D 0 = 3.81, g = 5%, k = 12%, then V 0 = 57.15 0 0 52

Stock price and VGO (present value of growth opportunity) Dividend payout ratio (1-b) vs. plowback ratio (b, earnings retention ratio) rice = no-growth value per share + VGO E 1 E 0 VGO, where 1 is the no-growth value per share k k Example: assume E 1 = $5.00, k = 12.5%, ROE = 15% If D 1 = $5.00, then g = 0% (g = ROE * b, b = 0) 0 = 5/0.125 = $40.00 If b = 60%, then g = 15%*0.6 = 9%, D 1 = 5*(1-0.6) = $2.00 0 = $57.14 (from constant DDM) VGO = 57.14 40.00 = $17.14 (3) Life cycle and multistage growth models: the growth rates are different at different stages, but eventually it will be a constant Two-stage growth DDM Example: Honda Motor Co. Expected dividend in next four years: $0.90 in 2009 $0.98 in 2010 $1.06 in 2011 $1.15 in 2012 Dividend growth rate will be steady beyond 2012 Assume ROE = 11%, b = 70%, then long-term growth rate g = 7.7% Honda s beta is 1.05, if the risk-free rate is 3.5% and the market premium is 8%, then k = 11.9% (from CAM) Using constant DDM, 2012 = 1.15*(1 + 0.077) / (0.119-0.077) = $29.49 $29.49 $0.90 $0.98 $1.06 $1.15 2008 2009 2010 2011 2012 Discount all the cash flows to the present at 11.9%, V 2008 = $21.88 Multistage growth DDM: extension of two stage DDM 53

Alternative models /E ratio approach If g = ROE*b, the constant growth DDM is E 0 1 1 b, with k>roe*b. k ( ROE * b) Since /E ratio indicates firm s growth opportunity, /E over g (call EG ratio) should be close to 1. If EG ratio is less than 1, it is a good bargain. For the S& index over the past 20 years, the EG ratio is between 1 and 1.5. rice-to-book ratio approach rice-to-cash flow ratio approach rice-to-sales ratio approach Free cash flow valuation approach Free cash flow: cash flow available to the firm or to the shareholders net of capital expenditures Free cash flow to the firm (FCFF) FCFF = EBIT*(1-t c ) + depreciation capital expenditures increase in NWC Use FCFF to estimate firm s value by discounting all future FCFF (including a terminal value, T ) to the present Free cash flow to equity holders FCFE = FCFF interest expense*(1-t c ) + increases in net debt Use FCFE to estimate equity value by discounting all future FCFE (including a terminal value, T ) to the present Examples ASSIGNMENTS 1. Concept Checks 2. Key Terms 3. Intermediate: 12, 13, 14, and CFA 1-4 54

Chapter 18 - ortfolio erformance and Evaluation Risk-adjusted returns M 2 measure T 2 measure Active and passive portfolio management Market timing Risk-adjusted returns Comparison groups: portfolios are classified into similar risk groups Basic performance-evaluation statistics Starting from the single index model R t R Mt t Where R t is the portfolio s excess return over the risk-free rate, R Mt is the excess return on the market portfolio over the risk-free rate, is the portfolio beta (sensitivity), t is the nonsystematic component, which includes the portfolio s alpha and the residual term t (the residual term t has a mean of zero) The expected return and the standard deviation of the returns on portfolio E( R ) E( R ) and t Mt 2 2 2 M 2 Estimation procedure (1) Obtain the time series of R t and R Mt (enough observations) (2) Calculate the average of R t and R Mt ( R and R M ) (3) Calculate the standard deviation of returns for and M ( and M ) (4) Run a linear regression to estimate (5) Compute portfolio s alpha: E( R ) E( R ) R R M t Mt (6) Calculate the standard deviation of the residual: 2 2 2 M 55

Risk-adjusted portfolio performance measurement (Table 18.1 - Digital Image) (1) The Sharpe measure: measures the risk premium of a portfolio per unit of total risk, reward-to-volatility ratio Sharpe measure = S R (2) The Jensen measure (alpha): uses the portfolio s beta and CAM to calculate its excess return, which may be positive, zero, or negative. It is the difference between actual return and required return E( R ) E( R ) R t Mt R M (3) The Treynor measure: measures the risk premium of a portfolio per unit of systematic risk Treynor measure = T R M 2 measure M 2 measure: is to adjust portfolio such that its risk (volatility) matches the risk (volatility) of a benchmark index, then calculate the difference in returns between the adjusted portfolio and the market M 2 ( S S M ) M Example: Given the flowing information of a portfolio and the market, calculate M 2, assuming the risk-free rate is 6%. ortfolio () Market (M) Average return 35% 28% Beta 1.2 1.0 Standard deviation 42% 30% S for = (0.35-0.06) / 0.42 = 0.69 S for M = (0.28-0.06) / 0.30 = 0.73 M 2 = (0.69-0.73)*0.30 = -0.0129 = -1.29% (Figure 18.2 - Digital Image) 56

E(r) CML r = 35% M r M = 28% r * =26.71% M 2 CAL * r f = 6% M =30% =42% Alternative way: adjust to * (to match the risk of the market) Determining the weights to match the risk of the market portfolio 30/42 = 0.7143 in portfolio 1-0.7143 = 0.2857 in risk-free asset Adjusted portfolio risk = 30% Adjusted portfolio return = 0.7143*35% + 0.2857*6% = 26.71% < 28% M 2 = 26.7% 28% = -1.29% The portfolio underperforms the market T 2 measure T 2 measure: is similar to M 2 measure but by adjusting the market risk - beta T 2 * r p r M Example (continued) Weights: 1/1.2 = 0.8333 in and 1 0.8333 = 0.1667 in risk-free asset The adjusted portfolio has a beta of 1: 1.2*0.8333 + 0*0.1667 = 1 Adjusted portfolio return = 0.8333*35% + 0.1667*6% = 30.17% > 28% T 2 = 30.17% 28% = 2.17% 57

E(r) r = 35% * r * = 30.17% r M = 28% T 2 SML M r f = 6% The portfolio outperforms the market Why M 2 and T 2 are different? m =1 p =1.2 Because is not fully diversified and the standard deviation is too high Active and passive portfolio management Active: attempt to improve portfolio performance either by identifying mispriced securities or by timing the market; it is an aggressive portfolio management technique assive: attempt of holding diversified portfolios; it is a buy and hold strategy Market timing A strategy that moves funds between the risky portfolio and cash, based on forecasts of relative performance (Table 18.7 - Digital Image) When can we time the market? (Figure 18.9 - Digital Image) Can we time the market? 58

Example: Intermediate 6 (Figure - Digital Image) We first distinguish between timing ability and selection ability. The intercept of the scatter diagram is a measure of stock selection ability. If the manager tends to have a positive excess return even when the market s performance is merely neutral (i.e., the market has zero excess return) then we conclude that the manager has, on average, made good stock picks. In other words, stock selection must be the source of the positive excess returns. Timing ability is indicated by the curvature of the plotted line. Lines that become steeper as you move to the right of the graph show good timing ability. The steeper slope shows that the manager maintained higher portfolio sensitivity to market swings (i.e., a higher beta) in periods when the market performed well. This ability to choose more market-sensitive securities in anticipation of market upturns is the essence of good timing. In contrast, a declining slope as you move to the right indicates that the portfolio was more sensitive to the market when the market performed poorly, and less sensitive to the market when the market performed well. This indicates poor timing. We can therefore classify performance ability for the four managers as follows: Selection Ability Timing Ability A Bad Good B Good Good C Good Bad D Bad Bad ASSIGNMENTS 1. Concept Checks 2. Key Terms 3. Intermediate: 5, 6, and CFA 1-4 59

Chapter 19 - International Investing Global equity markets Risk factors in international investing International diversification Exchange rate risk and political risk Global equity markets Developed markets vs. emerging markets (Tables 19.1 and 19.2 - Digital Image) Market capitalization and GD: positive relationship, the slope is 0.66 and R 2 is 0.28, suggesting that an increase of 1% in the ratio of market capitalization to GD is associated with an increase in per capita GD by 0.66% Home-country bias: investors prefer to invest in home-country stocks Risk factors in international investing Exchange rare risk Direct quote vs. indirect quote Direct quote: $ for one unit of foreign currency, for example, $2 for one pound Indirect quote: foreign currency for $1, for example, 0.5 pound for $1 Interest rate parity: F E 0 0 1 r 1 r f f ( US) ( UK) Example: 19.1-19.3 Given: you have $20,000 to invest, r Uk = 10%, E 0 = $2 per pound, the exchange rate after one year is E 1 = $1.80 per pound, what is your rate of return in $? $20,000 = 10,000 pounds, invested at 10% for one year, to get 11,000 pounds Exchange 11,000 pounds at $1.80 per pound, to get $19800, a loss of $200 So your rate of return for the year in $ is -1% = (19,800-20,000) / 20,000 If E 1 = $2.00 per pound, what is your return? How about E1 = $2.20 per pound? 60

If F 0 = $1.93 (futures rate for one year delivery) per pound, what should be the risk-free rate in the U.S.? Answer: r US = 6.15%, using the interest rate parity If F 0 = $1.90 per pound and r US = 6.15%, how can you arbitrage? Step 1: borrow 100 pounds at 10% for one year and convert it to $200 and invest it in U.S. at 6.15% for one year (will receive 200*(1 + 0.0615) = $212.3) Step 2: enter a contract (one year delivery) to sell $212.3 at F 0 Step 3: in one year, you collect $212.3 and covert it to111.74 pounds Step 4: repay the loan plus interest of 110 pounds and count for risk-free profit of 1.74 pounds Country-specific risk (political risk) International diversification Adding international equities in domestic portfolios can further diversify domestic portfolios risk (Figure 19.10 - Digital Image) ortfolio Risk With US stocks only US and international stocks # of stocks in portfolio Adding international stocks expands the opportunity set which enhances portfolio performance (Figure 19.10 - Digital Image) E(r ) US and international stocks With US stocks only (Way? Because investors with more options (choices) will not be worse off) 61

World CML (Figure 19.2 - Digital Image) World CAM Choice of an international diversified portfolio (Figure 19.14 - Digital Image) ASSIGNMENTS 4. Concept Checks 5. Key Terms 6. Intermediate: 5-7 and CFA 1-2 62