Anumericalalgorithm for general HJB equations : a jump-constrained BSDE approach

Similar documents
European option pricing under parameter uncertainty

AMH4 - ADVANCED OPTION PRICING. Contents

Continuous-time Stochastic Control and Optimization with Financial Applications

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

"Pricing Exotic Options using Strong Convergence Properties

An overview of some financial models using BSDE with enlarged filtrations

Illiquidity, Credit risk and Merton s model

Analytical formulas for local volatility model with stochastic. Mohammed Miri

IEOR E4703: Monte-Carlo Simulation

Constructing Markov models for barrier options

Equity correlations implied by index options: estimation and model uncertainty analysis

Pricing in markets modeled by general processes with independent increments

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

Financial Mathematics and Supercomputing

Modelling Credit Spread Behaviour. FIRST Credit, Insurance and Risk. Angelo Arvanitis, Jon Gregory, Jean-Paul Laurent

Continuous Time Mean Variance Asset Allocation: A Time-consistent Strategy

Semi-Markov model for market microstructure and HFT

Optimal Trade Execution: Mean Variance or Mean Quadratic Variation?

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Robust Portfolio Choice and Indifference Valuation

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models

Math 416/516: Stochastic Simulation

Regression estimation in continuous time with a view towards pricing Bermudan options

Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions

Toward a coherent Monte Carlo simulation of CVA

Hedging with Life and General Insurance Products

Two-dimensional COS method

Optimal liquidation with market parameter shift: a forward approach

Numerical Methods for Pricing Energy Derivatives, including Swing Options, in the Presence of Jumps

Monte Carlo Methods for Uncertainty Quantification

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

Asymmetric information in trading against disorderly liquidation of a large position.

Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models

Multi-period mean variance asset allocation: Is it bad to win the lottery?

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

CS 774 Project: Fall 2009 Version: November 27, 2009

2.1 Mean-variance Analysis: Single-period Model

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models

Valuing American Options by Simulation

The Evaluation of Swing Contracts with Regime Switching. 6th World Congress of the Bachelier Finance Society Hilton, Toronto June

Help Session 2. David Sovich. Washington University in St. Louis

1.1 Basic Financial Derivatives: Forward Contracts and Options

Gamma. The finite-difference formula for gamma is

The Uncertain Volatility Model

Financial Risk Management

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

Exact replication under portfolio constraints: a viability approach

Exact Sampling of Jump-Diffusion Processes

Doubly reflected BSDEs with jumps and generalized Dynkin games

Puttable Bond and Vaulation

Dynamic Portfolio Choice II

IMPA Commodities Course : Forward Price Models

Risk Neutral Valuation

arxiv: v1 [q-fin.pm] 13 Mar 2014

Optimal Selling Strategy With Piecewise Linear Drift Function

Multilevel quasi-monte Carlo path simulation

LECTURE 4: BID AND ASK HEDGING

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Modeling the dependence between a Poisson process and a continuous semimartingale

Asset Pricing Models with Underlying Time-varying Lévy Processes

Simulating Stochastic Differential Equations

IEOR E4703: Monte-Carlo Simulation

Exponential utility maximization under partial information

Risk minimizing strategies for tracking a stochastic target

Pricing and hedging in incomplete markets

Overnight Index Rate: Model, calibration and simulation

Valuing Early Stage Investments with Market Related Timing Risk

On worst-case investment with applications in finance and insurance mathematics

Utility Indifference Pricing and Dynamic Programming Algorithm

Multilevel Monte Carlo Methods for American Options

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models

Callable Bond and Vaulation

Monte Carlo Based Numerical Pricing of Multiple Strike-Reset Options

Application of Stochastic Calculus to Price a Quanto Spread

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Evaluating the Longstaff-Schwartz method for pricing of American options

Optimal Securitization via Impulse Control

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as:

Rough volatility models: When population processes become a new tool for trading and risk management

Optimal decumulation into annuity after retirement: a stochastic control approach

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error

Dynamic pricing with diffusion models

Interest Rate Bermudan Swaption Valuation and Risk

Notes. Cases on Static Optimization. Chapter 6 Algorithms Comparison: The Swing Case

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS

Anurag Sodhi University of North Carolina at Charlotte

Pricing Early-exercise options

Portfolio Management and Optimal Execution via Convex Optimization

Monte Carlo Methods for Uncertainty Quantification

Robust Portfolio Decisions for Financial Institutions

M.I.T Fall Practice Problems

Transcription:

Anumericalalgorithm for general HJB equations : a jump-constrained BSDE approach Nicolas Langrené Univ. Paris Diderot - Sorbonne Paris Cité, LPMA, FiME Joint work with Idris Kharroubi (Paris Dauphine), Huyên Pham (Paris Diderot) Workshop on Stochastic Games, Equilibrium, and Applications to Energy & Commodities Markets - Fields Institute, August 29, 2013 Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 1/20

Modeling volatility of an asset price S t Constant : σ>0 Deterministic : σ (t) Local : σ (t, S t ) Stochastic : dσ t =... Uncertain : σ [σ min,σ max ] Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 2/20

Uncertain Volatility Model Example ds t = σs t dw t σ [σ min,σ max ] uncertain Super-replication price Payoff Φ=Φ(T, S T ) P + 0 =sup E Q [Φ (T, S T )] Q Q Q = Q σ Q ; σ min σ Q σ max Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 3/20

Stochastic control problem with controlled driver & drift & volatility Formulation dx α s = b (X α s, α s ) ds + σ (X α s, α s ) dw s T v (t, x) =supe t,x f (Xs α, α s ) ds + g (XT α ) α A t General HJB equation v b t +sup (x, a).d x v + 12 tr σσ (x, a) Dx 2 v + f (x, a) =0 a A v (T, x) =g (x), x R d on [0,T ) R d Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 4/20

STEP 1 : Randomization of controls Poisson random measure µ A (dt, da) on R + A, W associated to the marked point process I (τ i,ζ i ) i,valuedina I t = ζ i, τ i t <τ i+1 Uncontrolled randomized problem Linear FBSDE Y t = g (X T )+ dx s = b (X s, I s ) ds + σ (X s, I s ) dw s T v (t, x, a) =E t,x,a f (X s, I s ) ds + g (X T ) T Y t v (t, X t, I t ) t f (X s, I s ) ds t T t Z s dw s T t A U s (a) µ A (ds, da) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 5/20

STEP 2 : Constraint on jumps U t (a) =v (t, X t, a) v (t, X t, I t ) Now, how to retrieve HJB? Add the constraint U t (a) 0 (t, a)! Jump-constrained BSDE Minimal solution (Y, Z, U, K) of Y t = g (X T )+ T + K T K t t f (X s, I s, Y s, Z s ) ds T subject to U t (a) 0 (t, a) t A T t Z s dw s U s (a) µ A (ds, da), 0 t T Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 6/20

Link with general HJB equations (X, I ) Markov v = v (t, x, a) s.t.y t = v (t, X t, I t ) Key Lemma v = v (t, x, a) does not depend on a! v = v (t, x) Theorem v = v (t, x) is solution of the HJB equation v b(x,a).d t +sup x v + 12 tr σσ (x,a)dx 2 v +f x,a,y,σ (x,a).d x v =0 a A v (T, x) =g (x), x R d on [0,T ) R d Proofs : cf. [Kharroubi, Pham, 2012] Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 7/20

Numerical scheme U t (a) =v (t, X t, a) v (t, X t, I t ) 0 (t, a) v (t, X t, I t ) sup a A v (t, X t, a) Minimal solution v (t, X t, I t )=sup a A v (t, X t, a) v (t, X t, I t ) v (t, X t, I t ) K t K t Forward-Backward numerical scheme Y N = g (X N ) Z i = E i Y i+1 W i / i Y i = E i [Y i+1 + f i (X i, I i, Y i+1, Z i ) i ] Y i = sup A A i E i,a [Y i ] where E i,a [.] :=E [. X i, I i = A] Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 8/20

Towards an implementable scheme How to compute the conditional expectations? (quantification, Malliavin calculus, empirical regression,...) cf. comparative tests in [Bouchard, Warin, 2012] Conditional expectation approximation E [U F ti ]=arg inf V L(F ti,p) E (V U) 2 where S L (F ti, P) 1 Ê [U F ti ]=arg inf V S M M (V m U m ) 2 m=1 Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 9/20

Empirical regression schemes First algorithm ( Tsitsiklis - van Roy ) Ŷ N = g (X N ) Ŷ i = Ê i Ŷ i+1 + f i (X i, I i ) i Ŷ i = sup A A i E i,a Ŷi Upward biased (up to Monte Carlo error & regression bias) Second algorithm ( Longstaff - Schwartz ) ˆα i =arg sup E i,a Ŷi A A i ˆX i+1 = b( ˆX i, ˆα i ) i + σ( ˆX i, ˆα i ) W i ˆv (t 0, x 0 )= 1 M N f ( ˆX i+1, ˆα i ) i + g( ˆX N ) M m=1 i=1 Downward biased (up to Monte Carlo error) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 10 /20

Uncertain correlation model Model dst i = σ i StdW i t i, i =1, 2 dw 1 t, dwt 2 = ρdt 1 ρ min ρ ρ max 1 Super-replication price Payoff Φ=Φ T, ST 1, ST 2 P 0 + =sup E Q Φ T, ST 1, S 2 T Q Q Q = Q ρ Q ; ρ min ρ Q ρ max Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 11 /20

Call spread on spread S 1 (T ) S 2 (T ) Φ=(S 1 (T) S 2 (T) K 1 ) + (S 1 (T) S 2 (T) K 2 ) + S 1 (0) S 2 (0) σ 1 σ 2 ρ min ρ max K 1 K 2 T 50 50 0.4 0.3 0.8 0.8 5 5 0.25 Regression basis φ (t, s 1, s 2,ρ)=(K 2 K 1 ) S(β 0 +β 1 s 1 +β 2 s 2 +β 3 ρ+β 4 ρs 1 +β 5 ρs 2 ) S (x) =1/ (1 + exp ( x)) Bang-bang optimal control ρ (t, s 1, s 2 )=argmax α φ (t, s 1, s 2,ρ)=ρ max if β 3 +β 4 s 1 +β 5 s 2 0 = ρ min else Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 12 /20

Results Price of Call Spread on S1(T) S2(T) Superhedging ρ=ρ max ρ=0 ρ=ρ min Subhedging 10 9 8 7 6 5 4 3 2 1 20 15 10 5 0 5 10 15 20 25 0 Moneyness ( = S1(0) S2(0) ) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 13 /20

Impact of correlation range 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Correlation Ranges (+ ) Price of Call Spread on S1(T) S2(T) 15 10 5 0 5 10 15 20 25 0 Moneyness ( = S1(0) S2(0) ) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 14 /20 10 9 8 7 6 5 4 3 2 1

Call Spread (S (T ) K 1 ) + (S (T ) K 2 ) + S (0) = 100, K 1 =90,K 2 =110,T =1,uncertainσ [0.1, 0.2] Estimated superreplication price: Algorithm 1 Time Step 11.5 1/128 11.4 11.3 1/64 11.2 1/32 11.1 1/16 11.0 1/8 10.9 16 17 18 19 20 21 log2(m) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 15 /20

Call Spread (S (T ) K 1 ) + (S (T ) K 2 ) + S (0) = 100, K 1 =90,K 2 =110,T =1,uncertainσ [0.1, 0.2] Estimated superreplication price: Algorithm 2 Time Step 11.5 1/128 11.4 11.3 1/64 11.2 1/32 11.1 1/16 11.0 1/8 10.9 16 17 18 19 20 21 log2(m) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 16 /20

Outperformer Spread (S 2 (T ) K 1 S 1 (T )) + (S 2 (T ) K 2 S 1 (T )) + S i (0) = 100, K 1 =0.9,K 2 =1.1,T =1,uncertainσ i [0.1, 0.2], ρ = 0.5 Estimated superreplication price: Algorithm 1 Time Step 12.0 1/128 11.8 11.6 1/64 11.4 1/32 11.2 1/16 11.0 1/8 10.8 16 17 18 19 20 21 log2(m) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 17 /20

Outperformer Spread (S 2 (T ) K 1 S 1 (T )) + (S 2 (T ) K 2 S 1 (T )) + S i (0) = 100, K 1 =0.9,K 2 =1.1,T =1,uncertainσ i [0.1, 0.2], ρ = 0.5 Estimated superreplication price: Algorithm 2 Time Step 12.0 1/128 11.8 11.6 1/64 11.4 1/32 11.2 1/16 11.0 1/8 10.8 16 17 18 19 20 21 log2(m) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 18 /20

Summary 1 Probabilistic representation of stochastic control problem with controlled volatility : jump-constrained BSDE 2 Numerical scheme for jump-constrained BSDEs 3 Application to pricing under uncertain volatility 4 Extension : stochastic games, HJB-Isaacs equations Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 19 /20

???? Thank you! Questions? Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 20 /20

???? References J-P. Lemor and E. Gobet and X. Warin (2006) Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations J. Guyon and P. Henry-Labordère (2011) Uncertain volatility model : a Monte Carlo approach E. Gobet and P. Turkedjiev (2011) Approximation of discrete BSDE using least-squares regression B. Bouchard and X. Warin (2012) Monte Carlo valorisation of American options : facts and new algorithms to improve existing methods I. Kharroubi and H. Pham (2012) Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDE S. Alanko and M. Avellaneda (2013) Reducing variance in the numerical solution of BSDEs Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 21 /20

???? Example A linear-quadratic stochastic control problem Problem dx α s =( µ 0 X α s + µ 1 α s ) ds +(σ 0 + σ 1 α s ) dw s X0 α =0 T v (t, x) =supe λ 0 α A t (α s ) 2 ds λ 1 (X α T ) 2 Set of parameters µ 0 µ 1 σ 0 σ 1 λ 0 λ 1 T 0.02 0.5 0.2 0.1 20 200 2 Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 22 /20

???? Numerical parameters n = 52 M = 10 6 time steps Monte Carlo simulations Regression basis φ (t, x,α)=β 0 + β 1 x + β 2 α + β 3 xα + β 4 x 2 + β 5 α 2 Linear optimal control α (t, x) =argmaxφ (t, x,α)=a (t) x + B (t) α A (t) = 0.5 β 3 /β 5 B (t) = 0.5 β 2 /β 5 Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 23 /20

???? Estimated optimal controls Optimal Control α (t, x) 3 2 1 0 1 2 3 0.5 0 Diffusion value x 0.5 1.5 1 0.5 Time t 0 Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 24 /20

???? Control impact (1/2) : no control Uncontrolled diffusion 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Interquantile Ranges 0.6 0.4 0.2 0 0.2 0.4 0.6 0.5 1 1.5 2 Time Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 25 /20

???? Control impact (2/2) : optimal control Optimally controlled diffusion 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Interquantile Ranges 0.6 0.4 0.2 0 0.2 0.4 0.6 0.5 1 1.5 2 Time Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 26 /20

???? Accuracy 0 1 2 3 Comparison of control coefficients A(t) and B(t) B(t) estimated theoretical Value Function ˆv(0,0)= 5.761 v(0,0)= 5.705 Relative Error : 1% 4 A(t) estimated theoretical 0 0.5 1 1.5 2 Time t Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 27 /20

???? Convergence rate 1 Localizations 2 Theoretical regressions 3 Empirical regressions Assumptions p 1, L g, L f, C f,0 > 0s.t. i =0,...,N 1 g (x) g (x ) L g x p x p f i (x,a,y,z) f i (x,a,y,z ) L f ( x p x p + a p a p + y y + z z ) f i (0, 0, 0, 0) C f,0 Bounded control domain A R d : Ā > 0s.t. a A, a Ā Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 28 /20

???? Theoretical regression (1/2) Definition ˆλ i (U) :=arg inf E (λ.p (X i, I i ) U) 2 λ R B P i (U) :=ˆλ i (U).p (X i, I i ) Associated scheme Ŷ N = g (X N ) ˆλ Y i = regression coefficients at time t i Ŷ i = sup A A i ˆλ Y i.p i (X i, A) Problem : Ŷ i is not itself the projection of some random variable... Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 29 /20

???? Theoretical regression (2/2) Alternative definition ˆλ i,a (U) :=arg inf E (λ.p (X i, A) U A ) 2 λ R B P i,a (U) :=ˆλ i (U).p (X i, A) Regression error Yi 2 Zi 2 max Ŷ i, i Ẑ i N 1 e C(T t i ) k=i E sup Y k,a Pk,A Y (Y k,a ) 2 A A k +C k E sup Zk,A Pk,A Z (Z k,a ) 2 A A k But its empirical version cannot be (efficiently) implemented... Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 30 /20

???? Outperformer (S 1 (T ) S 2 (T )) + S i (0) = 100, T =1,uncertainσ i [0.1, 0.2], ρ =0 Estimated superreplication price: Algorithm 1 Time Step 12 1/128 1/64 11.5 1/32 11 1/16 10.5 16 17 18 19 20 21 log2(m) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 31 /20 1/8

???? Outperformer (S 1 (T ) S 2 (T )) + S i (0) = 100, T =1,uncertainσ i [0.1, 0.2], ρ =0 Estimated superreplication price: Algorithm 2 Time Step 12 1/128 1/64 11.5 1/32 11 1/16 10.5 16 17 18 19 20 21 log2(m) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 32 /20 1/8

???? Outperformer Spread (S 2 (T ) K 1 S 1 (T )) + (S 2 (T ) K 2 S 1 (T )) + S i (0) = 100, K 1 =0.9,K 2 =1.1,T =1,uncertainσ i [0.1, 0.2] & ρ [ 0.5, 0.5] Estimated superreplication price: Algorithm 1 Time Step 14 1/128 13.5 1/64 13 1/32 12.5 1/16 12 11.5 16 17 18 19 20 21 log2(m) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 33 /20 1/8

???? Outperformer Spread (S 2 (T ) K 1 S 1 (T )) + (S 2 (T ) K 2 S 1 (T )) + S i (0) = 100, K 1 =0.9,K 2 =1.1,T =1,uncertainσ i [0.1, 0.2] & ρ [ 0.5, 0.5] Estimated superreplication price: Algorithm 2 Time Step 14 1/128 13.5 1/64 13 1/32 12.5 1/16 12 11.5 16 17 18 19 20 21 log2(m) Nicolas Langrené A numerical algorithm for general HJB equations : a jump-constrained BSDE approach 34 /20 1/8