Exact Sampling of Jump-Diffusion Processes

Size: px
Start display at page:

Download "Exact Sampling of Jump-Diffusion Processes"

Transcription

1 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University

2 Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance and economics Price models: equity, commodity, rates, energy, FX Default timing models (jump component) We develop a method for the exact sampling of a jump-diffusion process with state-dependent drift, volatility, jump intensity, and jump size Leads to unbiased simulation estimators of derivative prices, risk measures, and other quantities The method extends an innovative acceptance/rejection scheme developed by Beskos & Roberts (2005, AAP) and Chen (2009) for diffusions

3 Exact Sampling of Jump-Diffusion Processes 3 Jump-Diffusion Fix a filtered probability space (Ω, F, F, P) For suitable functions µ and σ, consider the SDE dx t = µ(x t )dt + σ(x t )dw t + dj t where W is a standard Brownian motion and J is a jump process J t = n N t c(x T n, Z n ) N is a counting process with event times (T n ) and intensity λ t = Λ(X t ) for a suitable function Λ (Z n ) is a sequence of mark variables valued in E c : D X E D X determines the jump magnitudes J is self-exciting; dependence between jump sizes and frequency

4 Exact Sampling of Jump-Diffusion Processes 4 Jump-Diffusion For a suitable function f and a horizon T we wish to calculate E { f(x T, (J t ) t T ) } Price of a derivative written on X T Price of a credit derivative written on J Alternative approaches Analytical solutions: rare; e.g. Merton and Kou models Semi-analytical transform approaches: AJDs, LQJDs, Lévy PIDE approaches: fewer restrictions Monte Carlo simulation: perhaps the widest scope

5 Exact Sampling of Jump-Diffusion Processes 5 Discretizing the Jump-Diffusion Standard approach to simulating X X is approximated on a discrete-time grid Euler or higher order scheme for diffusion component Thinning or time-scaling scheme for jump times T n Simulation estimator is biased Magnitude of the bias? Confidence intervals? Convergence of scheme? Allocation of computational budget?

6 Exact Sampling of Jump-Diffusion Processes 6 Discretizing the Jump-Diffusion Time-scaling for jumps: T n d = inf{t : t 0 Λ(X s)ds E E n } Intensity Loss Time Time S 6 (ω) S 5 (ω) S 4 (ω) S 3 (ω) S 2 (ω) S 1 (ω) Compensator T 1 (ω) T 2 (ω) T 3 (ω) T 4 (ω) T 5 (ω) T 6 (ω) 0

7 Exact Sampling of Jump-Diffusion Processes 7 Exact Sampling We provide an exact sampling scheme for X that avoids discretization entirely, and leads to unbiased simulation estimators First step: transform X into a unit-diffusion SDE Lamperti transform F (x) = x X 0 1 σ(u) du Then Y t = F (X t ) solves dy t = α(y t )dt + dw t + dj Y t where α(y) = µ(f 1 (y)) σ(f 1 (y)) 1 2 σ (F 1 (y)) Jt Y = (Y T n, Z n ) n N t for (y, z) = F (F 1 (y) + c(f 1 (y), z)) y

8 Exact Sampling of Jump-Diffusion Processes 8 Exact Sampling Assumptions 1. σ(x) is bounded away from 0 2. µ(x) and Λ(x) are continuously differentiable and σ(x) is twice continuously differentiable. 3. Conditions on α(y) and c(x, z) guaranteeing that Y does not reach the boundaries in finite time (known).

9 Exact Sampling of Jump-Diffusion Processes 9 Acceptance/Rejection Scheme The exact method uses an A/R scheme Suppose we want to sample from a density f(y) and there is another density g(y) and a constant c > 0 such that A/R scheme 1. Draw a sample Y from g c f(y) g(y) 1 2. Draw a Bernoulli variable I with success probability c f(y ) g(y ) 3. Accept Y as a sample from f if I = 1

10 Exact Sampling of Jump-Diffusion Processes 10 A/R for Continuous Y Beskos & Roberts (2005, AAP) We wish to sample Y T using the A/R scheme Under Novikov and additional boundedness conditions, [ ( f YT (y) T ] E exp φ(w s )ds) W T = y =: H(y) g(y) where φ = (α + α 2 )/2 and g(y) is a proposal density 0 For the A/R step, note that H(y) = P(M T = 0 W T = y) where M is a doubly-stochastic Poisson process with intensity φ(w s ) The Bernoulli indicator {I = 1} = {M T = 0} can be generated by sampling M T given W T = Y with Y drawn from g If φ(x) π, then this can be done by thinning a Poisson process with intensity π (requires sampling from BB)

11 Exact Sampling of Jump-Diffusion Processes 11 A/R for Continuous Y Localization: Chen (2009)

12 Exact Sampling of Jump-Diffusion Processes 12 A/R for Continuous Y Generating the first piece of Y Target exit time ζ 1 = inf{t 0 : Y t Y 0 L} for L > 0 Proposal exit time τ = inf{t 0 : W t L} The LR between (ζ 1, Y 1 Y 0 ) and (τ, W τ ) is proportional to [ ( τ ) ] E exp φ(y 0 + W s )ds τ, W τ 0 Because of the continuity assumptions, φ(y 0 + W s ) is bounded and thinning can always be used in the acceptance test Need to sample from Brownian meander The density of τ is known and can be sampled from using the method of Burq & Jones (2006)

13 Exact Sampling of Jump-Diffusion Processes 13 A/R for Jump-Diffusion Y Introducing jumps

14 Exact Sampling of Jump-Diffusion Processes 14 A/R for Jump-Diffusion Y Generating the first piece of Y Sample τ as before using a bound L. Suppose τ T. Sample candidate jump times (σ 1,..., σ n ) of Y during [0, τ] from a Poisson process with intensity π Λ(F 1 (Y 0 + y)), y [ L, L] Sample (W σ1,..., W σn, W τ ) from a Brownian meander Perform acceptance tests for the σ i by drawing Bernoulli variables with success probabilities Λ(F 1 (Y 0 + W σi ))/π Perform acceptance test for (ζ 1, Y σ1 Y 0,..., Y σ Y 0 ) given the k proposal (τ, W σ1,..., W σk ), where σ k is the first candidate jump time of Y accepted in the previous step If the skeleton is accepted, draw mark Z 1 and compute Y T1 = Y σ + (Y k σ, Z 1 ) k

15 Exact Sampling of Jump-Diffusion Processes 15 A/R for Jump-Diffusion Y Likelihood ratio The LR for the last acceptance test is proportional to [ ( σk e A(Y 0+W σk ) E exp φ(y 0 + W u )du) τ, W,..., W σ1 σ k where A(x) = x 0 α(u)du and φ = (α + α 2 )/2 0 Generate Bernoulli indicator by generating the jump times of a doubly-stochastic Poisson process with intensity φ(y 0 + W u ) Thinning applies Sample from Brownian meander ]

16 Exact Sampling of Jump-Diffusion Processes 16 Numerical examples Jump-extended CEV model of Carr & Linetsky (2006): dx t = (r + Λ(X t ))X t dt + σ(x t )dw t + dj t where X 0 > 0 and for a > 0, b 0, c 1 2 and β < 0 Λ(x) = b + ca 2 x 2β is the jump intensity σ(x) = ax β+1 is the volatility c(x, z) = xz for z (0, 1) is the jump size The firm defaults at the first jump time T 1 of J The default intensity λ = Λ(X) is unbounded Violates boundedness hypothesis of thinning scheme for jumps (Glasserman & Merener (2003), Casella & Roberts (2010)) Convergence order of discretization scheme unknown

17 Exact Sampling of Jump-Diffusion Processes 17 Numerical examples We are interested in X during [0, T T 1 ] for some T > 0 The target functional takes the form Examples f(x T, (J t ) t T ) = h 1 (X T )1 {JT =0} + h 2 (X T )1 {JT 0} Probability of survival to T : h 1 (x) = 1 and h 2 (x) = 0 European put with strike K and maturity T : h 1 (x) = e rt (K x) + and h 2 (x) = Ke rt Carr & Linetsky (2006) provide analytical solutions to these and other quantities

18 Exact Sampling of Jump-Diffusion Processes 18 Numerical examples We estimate the price of a European put on X We consider the RMSE = Bias 2 + SE 2 for The exact method, for which the bias is 0 The discretization method (Euler plus time-scaling for jumps) The number of time steps is equal to the square root of the number of trials (Duffie & Glynn (1995)) The bias is estimated using 10 million trials Matlab implementation (favors discretization)

19 Exact Sampling of Jump-Diffusion Processes 19 Numerical examples X 0 = 50, β = 1, r = 0.05, a = 50/4, b = 0, c = 0.5, T = 1, strike 5, analytical value Method Trials Steps Value Bias SE RMSE Time (sec) Exact 10K N/A Exact 20K N/A Exact 40K N/A Exact 100K N/A Exact 500K N/A Euler 10K Euler 20K Euler 40K Euler 100K Euler 500K

20 Exact Sampling of Jump-Diffusion Processes 20 Numerical Examples Convergence of RMSEs (log-log plot), strike K = 5

21 Exact Sampling of Jump-Diffusion Processes 21 Numerical examples X 0 = 50, β = 1, r = 0.05, a = 50/4, b = 0, c = 0.5, T = 1, strike 50, analytical value Method Trials Steps Value Bias SE RMSE Time (sec) Exact 10K N/A Exact 20K N/A Exact 40K N/A Exact 100K N/A Exact 500K N/A Euler 10K Euler 20K Euler 40K Euler 100K Euler 500K

22 Exact Sampling of Jump-Diffusion Processes 22 Numerical Examples Convergence of RMSEs (log-log plot), strike K = 50

23 Exact Sampling of Jump-Diffusion Processes 23 Extensions The target functional can take the form E{f((X t ) t S, (J t ) t T )} for a discrete set S of times t [0, T ] Treatment of certain path-dependent payoffs The intensity can take the form λ t = Λ(X t, J t, t)

24 Exact Sampling of Jump-Diffusion Processes 24 Conclusions We develop a method for the exact sampling of a one-dimensional jump-diffusion process with state-dependent drift, volatility, jump intensity and jump size Only mild conditions on the coefficients are required Numerical experiments indicate the advantages of the method over a conventional discretization scheme Future research Efficiency: choice of localization bound Extension to multiple dimensions: stochastic volatility with state-dependent jumps

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

A Continuity Correction under Jump-Diffusion Models with Applications in Finance

A Continuity Correction under Jump-Diffusion Models with Applications in Finance A Continuity Correction under Jump-Diffusion Models with Applications in Finance Cheng-Der Fuh 1, Sheng-Feng Luo 2 and Ju-Fang Yen 3 1 Institute of Statistical Science, Academia Sinica, and Graduate Institute

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Numerical valuation for option pricing under jump-diffusion models by finite differences

Numerical valuation for option pricing under jump-diffusion models by finite differences Numerical valuation for option pricing under jump-diffusion models by finite differences YongHoon Kwon Younhee Lee Department of Mathematics Pohang University of Science and Technology June 23, 2010 Table

More information

Estimating the Greeks

Estimating the Greeks IEOR E4703: Monte-Carlo Simulation Columbia University Estimating the Greeks c 207 by Martin Haugh In these lecture notes we discuss the use of Monte-Carlo simulation for the estimation of sensitivities

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Des Higham Department of Mathematics University of Strathclyde Montreal, Feb. 2006 p.1/17 Lecture 2, Part 2: Mean Exit Times

More information

Supplementary Appendix to The Risk Premia Embedded in Index Options

Supplementary Appendix to The Risk Premia Embedded in Index Options Supplementary Appendix to The Risk Premia Embedded in Index Options Torben G. Andersen Nicola Fusari Viktor Todorov December 214 Contents A The Non-Linear Factor Structure of Option Surfaces 2 B Additional

More information

CS 774 Project: Fall 2009 Version: November 27, 2009

CS 774 Project: Fall 2009 Version: November 27, 2009 CS 774 Project: Fall 2009 Version: November 27, 2009 Instructors: Peter Forsyth, paforsyt@uwaterloo.ca Office Hours: Tues: 4:00-5:00; Thurs: 11:00-12:00 Lectures:MWF 3:30-4:20 MC2036 Office: DC3631 CS

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Generating Random Variables and Stochastic Processes Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Credit Risk using Time Changed Brownian Motions

Credit Risk using Time Changed Brownian Motions Credit Risk using Time Changed Brownian Motions Tom Hurd Mathematics and Statistics McMaster University Joint work with Alexey Kuznetsov (New Brunswick) and Zhuowei Zhou (Mac) 2nd Princeton Credit Conference

More information

American-style Puts under the JDCEV Model: A Correction

American-style Puts under the JDCEV Model: A Correction American-style Puts under the JDCEV Model: A Correction João Pedro Vidal Nunes BRU-UNIDE and ISCTE-IUL Business School Edifício II, Av. Prof. Aníbal Bettencourt, 1600-189 Lisboa, Portugal. Tel: +351 21

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING Semih Yön 1, Cafer Erhan Bozdağ 2 1,2 Department of Industrial Engineering, Istanbul Technical University, Macka Besiktas, 34367 Turkey Abstract.

More information

Likelihood Estimation of Jump-Diffusions

Likelihood Estimation of Jump-Diffusions Likelihood Estimation of Jump-Diffusions Extensions from Diffusions to Jump-Diffusions, Implementation with Automatic Differentiation, and Applications Berent Ånund Strømnes Lunde DEPARTMENT OF MATHEMATICS

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

Unified Credit-Equity Modeling

Unified Credit-Equity Modeling Unified Credit-Equity Modeling Rafael Mendoza-Arriaga Based on joint research with: Vadim Linetsky and Peter Carr The University of Texas at Austin McCombs School of Business (IROM) Recent Advancements

More information

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL FABIO MERCURIO BANCA IMI, MILAN http://www.fabiomercurio.it 1 Stylized facts Traders use the Black-Scholes formula to price plain-vanilla options. An

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

Risk, Return, and Ross Recovery

Risk, Return, and Ross Recovery Risk, Return, and Ross Recovery Peter Carr and Jiming Yu Courant Institute, New York University September 13, 2012 Carr/Yu (NYU Courant) Risk, Return, and Ross Recovery September 13, 2012 1 / 30 P, Q,

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

Self-Exciting Corporate Defaults: Contagion or Frailty?

Self-Exciting Corporate Defaults: Contagion or Frailty? 1 Self-Exciting Corporate Defaults: Contagion or Frailty? Kay Giesecke CreditLab Stanford University giesecke@stanford.edu www.stanford.edu/ giesecke Joint work with Shahriar Azizpour, Credit Suisse Self-Exciting

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models Matthew Dixon and Tao Wu 1 Illinois Institute of Technology May 19th 2017 1 https://papers.ssrn.com/sol3/papers.cfm?abstract

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Exact and Efficient Simulation of Correlated Defaults

Exact and Efficient Simulation of Correlated Defaults 1 Exact and Efficient Simulation of Correlated Defaults Management Science & Engineering Stanford University giesecke@stanford.edu www.stanford.edu/ giesecke Joint work with H. Takada, H. Kakavand, and

More information

Continous time models and realized variance: Simulations

Continous time models and realized variance: Simulations Continous time models and realized variance: Simulations Asger Lunde Professor Department of Economics and Business Aarhus University September 26, 2016 Continuous-time Stochastic Process: SDEs Building

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

"Vibrato" Monte Carlo evaluation of Greeks

Vibrato Monte Carlo evaluation of Greeks "Vibrato" Monte Carlo evaluation of Greeks (Smoking Adjoints: part 3) Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance MCQMC 2008,

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Fast and accurate pricing of discretely monitored barrier options by numerical path integration

Fast and accurate pricing of discretely monitored barrier options by numerical path integration Comput Econ (27 3:143 151 DOI 1.17/s1614-7-991-5 Fast and accurate pricing of discretely monitored barrier options by numerical path integration Christian Skaug Arvid Naess Received: 23 December 25 / Accepted:

More information

Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case

Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case Pricing Variance Swaps under Stochastic Volatility Model with Regime Switching - Discrete Observations Case Guang-Hua Lian Collaboration with Robert Elliott University of Adelaide Feb. 2, 2011 Robert Elliott,

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Weak Reflection Principle and Static Hedging of Barrier Options

Weak Reflection Principle and Static Hedging of Barrier Options Weak Reflection Principle and Static Hedging of Barrier Options Sergey Nadtochiy Department of Mathematics University of Michigan Apr 2013 Fields Quantitative Finance Seminar Fields Institute, Toronto

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans An Chen University of Ulm joint with Filip Uzelac (University of Bonn) Seminar at SWUFE,

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Multilevel quasi-monte Carlo path simulation

Multilevel quasi-monte Carlo path simulation Multilevel quasi-monte Carlo path simulation Michael B. Giles and Ben J. Waterhouse Lluís Antoni Jiménez Rugama January 22, 2014 Index 1 Introduction to MLMC Stochastic model Multilevel Monte Carlo Milstein

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Sensitivity Analysis on Long-term Cash flows

Sensitivity Analysis on Long-term Cash flows Sensitivity Analysis on Long-term Cash flows Hyungbin Park Worcester Polytechnic Institute 19 March 2016 Eastern Conference on Mathematical Finance Worcester Polytechnic Institute, Worceseter, MA 1 / 49

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

Valuation of Asian Option. Qi An Jingjing Guo

Valuation of Asian Option. Qi An Jingjing Guo Valuation of Asian Option Qi An Jingjing Guo CONTENT Asian option Pricing Monte Carlo simulation Conclusion ASIAN OPTION Definition of Asian option always emphasizes the gist that the payoff depends on

More information

Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment

Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment Jean-Pierre Fouque Tracey Andrew Tullie December 11, 21 Abstract We propose a variance reduction method for Monte Carlo

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

An Efficient Numerical Scheme for Simulation of Mean-reverting Square-root Diffusions

An Efficient Numerical Scheme for Simulation of Mean-reverting Square-root Diffusions Journal of Numerical Mathematics and Stochastics,1 (1) : 45-55, 2009 http://www.jnmas.org/jnmas1-5.pdf JNM@S Euclidean Press, LLC Online: ISSN 2151-2302 An Efficient Numerical Scheme for Simulation of

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

Option Pricing for a Stochastic-Volatility Jump-Diffusion Model

Option Pricing for a Stochastic-Volatility Jump-Diffusion Model Option Pricing for a Stochastic-Volatility Jump-Diffusion Model Guoqing Yan and Floyd B. Hanson Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago Conference

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Pricing of some exotic options with N IG-Lévy input

Pricing of some exotic options with N IG-Lévy input Pricing of some exotic options with N IG-Lévy input Sebastian Rasmus, Søren Asmussen 2 and Magnus Wiktorsson Center for Mathematical Sciences, University of Lund, Box 8, 22 00 Lund, Sweden {rasmus,magnusw}@maths.lth.se

More information

induced by the Solvency II project

induced by the Solvency II project Asset Les normes allocation IFRS : new en constraints assurance induced by the Solvency II project 36 th International ASTIN Colloquium Zürich September 005 Frédéric PLANCHET Pierre THÉROND ISFA Université

More information

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Norbert Hilber Seminar of Applied Mathematics ETH Zürich Workshop on Financial Modeling with Jump Processes p. 1/18 Outline

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

Introduction to Sequential Monte Carlo Methods

Introduction to Sequential Monte Carlo Methods Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set

More information

Conditional Density Method in the Computation of the Delta with Application to Power Market

Conditional Density Method in the Computation of the Delta with Application to Power Market Conditional Density Method in the Computation of the Delta with Application to Power Market Asma Khedher Centre of Mathematics for Applications Department of Mathematics University of Oslo A joint work

More information

Parameter estimation in SDE:s

Parameter estimation in SDE:s Lund University Faculty of Engineering Statistics in Finance Centre for Mathematical Sciences, Mathematical Statistics HT 2011 Parameter estimation in SDE:s This computer exercise concerns some estimation

More information

Stochastic Computation in Finance

Stochastic Computation in Finance Stochastic Computation in Finance Chuan-Hsiang Han Dept. of Quantitative Finance, NTHU Dept of Math & CS Education TMUE November 3, 2008 Outline History of Math and Finance: Fundamental Problems in Modern

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS MATHEMATICAL TRIPOS Part III Thursday, 5 June, 214 1:3 pm to 4:3 pm PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry

More information

Lecture 1: Lévy processes

Lecture 1: Lévy processes Lecture 1: Lévy processes A. E. Kyprianou Department of Mathematical Sciences, University of Bath 1/ 22 Lévy processes 2/ 22 Lévy processes A process X = {X t : t 0} defined on a probability space (Ω,

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I January

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Generalized Affine Transform Formulae and Exact Simulation of the WMSV Model

Generalized Affine Transform Formulae and Exact Simulation of the WMSV Model On of Affine Processes on S + d Generalized Affine and Exact Simulation of the WMSV Model Department of Mathematical Science, KAIST, Republic of Korea 2012 SIAM Financial Math and Engineering joint work

More information

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena Dipartimento di Economia Politica Università di Siena 2 March 2010 / Scuola Normale Superiore What is? The definition of volatility may vary wildly around the idea of the standard deviation of price movements

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

PDE Approach to Credit Derivatives

PDE Approach to Credit Derivatives PDE Approach to Credit Derivatives Marek Rutkowski School of Mathematics and Statistics University of New South Wales Joint work with T. Bielecki, M. Jeanblanc and K. Yousiph Seminar 26 September, 2007

More information

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance Saddlepoint Approximation Methods for Pricing Financial Options on Discrete Realized Variance Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology Hong Kong * This is

More information

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

Convergence Analysis of Monte Carlo Calibration of Financial Market Models Analysis of Monte Carlo Calibration of Financial Market Models Christoph Käbe Universität Trier Workshop on PDE Constrained Optimization of Certain and Uncertain Processes June 03, 2009 Monte Carlo Calibration

More information

A Numerical Approach to the Estimation of Search Effort in a Search for a Moving Object

A Numerical Approach to the Estimation of Search Effort in a Search for a Moving Object Proceedings of the 1. Conference on Applied Mathematics and Computation Dubrovnik, Croatia, September 13 18, 1999 pp. 129 136 A Numerical Approach to the Estimation of Search Effort in a Search for a Moving

More information

Regression estimation in continuous time with a view towards pricing Bermudan options

Regression estimation in continuous time with a view towards pricing Bermudan options with a view towards pricing Bermudan options Tagung des SFB 649 Ökonomisches Risiko in Motzen 04.-06.06.2009 Financial engineering in times of financial crisis Derivate... süßes Gift für die Spekulanten

More information

Rough volatility models: When population processes become a new tool for trading and risk management

Rough volatility models: When population processes become a new tool for trading and risk management Rough volatility models: When population processes become a new tool for trading and risk management Omar El Euch and Mathieu Rosenbaum École Polytechnique 4 October 2017 Omar El Euch and Mathieu Rosenbaum

More information

Two-dimensional COS method

Two-dimensional COS method Two-dimensional COS method Marjon Ruijter Winterschool Lunteren 22 January 2013 1/29 Introduction PhD student since October 2010 Prof.dr.ir. C.W. Oosterlee). CWI national research center for mathematics

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1.

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1. Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Lecture 1 p. 1 Geometric Brownian Motion In the case of Geometric Brownian Motion ds t = rs t dt+σs

More information

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option Antony Stace Department of Mathematics and MASCOS University of Queensland 15th October 2004 AUSTRALIAN RESEARCH COUNCIL

More information