Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Similar documents
Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Approximation of Jump Diffusions in Finance and Economics

Law of the Minimal Price

Properties of a Diversified World Stock Index

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Numerical schemes for SDEs

IEOR E4703: Monte-Carlo Simulation

The stochastic calculus

Parameters Estimation in Stochastic Process Model

"Pricing Exotic Options using Strong Convergence Properties

VaR Estimation under Stochastic Volatility Models

THE MARTINGALE METHOD DEMYSTIFIED

Asymmetric information in trading against disorderly liquidation of a large position.

Monte Carlo Simulations

Hedging under Arbitrage

Hedging of Contingent Claims under Incomplete Information

AMH4 - ADVANCED OPTION PRICING. Contents

Basic Concepts and Examples in Finance

Risk Minimization Control for Beating the Market Strategies

M5MF6. Advanced Methods in Derivatives Pricing

Exponential utility maximization under partial information

A model for a large investor trading at market indifference prices

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

An overview of some financial models using BSDE with enlarged filtrations

Basic Concepts in Mathematical Finance

Minimal Variance Hedging in Large Financial Markets: random fields approach

Multilevel quasi-monte Carlo path simulation

Pricing in markets modeled by general processes with independent increments

Exact Sampling of Jump-Diffusion Processes

Non-semimartingales in finance

Convergence of Discretized Stochastic (Interest Rate) Processes with Stochastic Drift Term.

Risk Neutral Valuation

Monte Carlo Methods in Financial Engineering

Simulating Stochastic Differential Equations

Math 416/516: Stochastic Simulation

Lecture 8: The Black-Scholes theory

Pricing and Hedging for Incomplete Jump Diffusion Benchmark Models

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

Option Pricing with Delayed Information

1.1 Basic Financial Derivatives: Forward Contracts and Options

RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK. JEL Codes: C51, C61, C63, and G13

CS 774 Project: Fall 2009 Version: November 27, 2009

Credit Risk : Firm Value Model

Conditional Density Method in the Computation of the Delta with Application to Power Market

Hedging with Life and General Insurance Products

Credit Risk Models with Filtered Market Information

Bluff Your Way Through Black-Scholes

Continuous Time Finance. Tomas Björk

Are stylized facts irrelevant in option-pricing?

Stochastic Dynamical Systems and SDE s. An Informal Introduction

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models

PDE Approach to Credit Derivatives

"Vibrato" Monte Carlo evaluation of Greeks

Practical example of an Economic Scenario Generator

Applied Stochastic Processes and Control for Jump-Diffusions

Fast and accurate pricing of discretely monitored barrier options by numerical path integration

Extended Libor Models and Their Calibration

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

Monte Carlo Methods for Uncertainty Quantification

Stochastic Volatility (Working Draft I)

Likelihood Estimation of Jump-Diffusions

The Birth of Financial Bubbles

A note on the existence of unique equivalent martingale measures in a Markovian setting

Testing for non-correlation between price and volatility jumps and ramifications

Pricing and Hedging of Credit Derivatives via Nonlinear Filtering

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

A Numerical Approach to the Estimation of Search Effort in a Search for a Moving Object

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

Lévy models in finance

An Explicit Example of a Shadow Price Process with Stochastic Investment Opportunity Set

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Operational Risk. Robert Jarrow. September 2006

Supplementary Appendix to The Risk Premia Embedded in Index Options

Replication and Absence of Arbitrage in Non-Semimartingale Models

Monte Carlo Simulation of Stochastic Processes

A Hybrid Importance Sampling Algorithm for VaR

Pricing Volatility Derivatives under the Modified Constant Elasticity of Variance Model

Quadratic hedging in affine stochastic volatility models

A Continuity Correction under Jump-Diffusion Models with Applications in Finance

Rough volatility models: When population processes become a new tool for trading and risk management

Toward a coherent Monte Carlo simulation of CVA

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

Help Session 2. David Sovich. Washington University in St. Louis

Stochastic modelling of electricity markets Pricing Forwards and Swaps

An Efficient Numerical Scheme for Simulation of Mean-reverting Square-root Diffusions

Valuing Early Stage Investments with Market Related Timing Risk

Universität Regensburg Mathematik

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

( ) since this is the benefit of buying the asset at the strike price rather

Hedging Credit Derivatives in Intensity Based Models

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena

Stochastic Runge Kutta Methods with the Constant Elasticity of Variance (CEV) Diffusion Model for Pricing Option

Enlargement of filtration

Hedging under arbitrage

Insiders Hedging in a Stochastic Volatility Model with Informed Traders of Multiple Levels

Multilevel Monte Carlo Simulation

Transcription:

Numerical Solution of Stochastic Differential Equations with Jumps in Finance Eckhard Platen School of Finance and Economics and School of Mathematical Sciences University of Technology, Sydney Kloeden, P.E.&Pl, E.: Numerical Solution of Stochastic Differential Equations Springer, Applications of Mathematics 23 (1992,1995,1999). Pl, E.&Heath, D.: A Benchmark Approach to Quantitative Finance, Springer Finance (2010). Pl, E.&Bruti-Niberati, N.: Numerical Solution of SDEs with Jumps in Finance, Springer, Stochastic Modelling and Applied Probability 64 (2010).

Jump-Diffusion Multi-Factor Models Björk, Kabanov & Runggaldier (1997) Øksendal & Sulem (2005) Markovian explicit transition densities in special cases benchmark framework discrete time approximations suitable for simulation Markov chain approximations c Copyright E. Platen SDE Jump 1

Pathwise Approximations: scenario simulation of entire markets testing statistical techniques on simulated trajectories filtering hidden state variables Pl. & Runggaldier (2005, 2007) hedge simulation dynamic financial analysis extreme value simulation stress testing = higher order strong schemes predictor-corrector methods c Copyright E. Platen SDE Jump 2

Probability Approximations: derivative prices sensitivities expected utilities portfolio selection risk measures long term risk management = Monte Carlo simulation, higher order weak schemes, predictor-corrector, variance reduction, Quasi Monte Carlo, or Markov chain approximations, lattice methods c Copyright E. Platen SDE Jump 3

Essential Requirements: parsimonious models respect no-arbitrage in discrete time approximation numerically stable methods efficient methods for high-dimensional models higher order schemes, predictor-corrector c Copyright E. Platen SDE Jump 4

Continuous and Event Driven Risk Wiener processes W k, k {1,2,..., m} counting processes p k intensity h k jump martingaleq k dw m+k t = dq k t = ( dp k t hk t dt)( h k t ) 1 2 k {1,2,...,d m} W t = (W 1 t,...,wm t,q 1 t,...,qd m t ) c Copyright E. Platen SDE Jump 5

Primary Security Accounts Assumption 1 ds j t = S j t ( b j,k t a j t dt + d k=1 h k m t b j,k t dw k t ) k {m + 1,...,d}. Assumption 2 Generalized volatility matrixb t = [b j,k t ] d j,k=1 invertible. c Copyright E. Platen SDE Jump 6

market price of risk θ t = (θ 1 t,...,θd t ) = b 1 t [a t r t 1] primary security account ds j t = S j t ( r t dt + d k=1 b j,k t (θ k t dt + dwk t ) ) portfolio ds δ t = d j=0 δ j t ds j t c Copyright E. Platen SDE Jump 7

fraction π j δ,t = δj t S j t S δ t portfolio ds δ t = Sδ t { } r t dt + π δ,t b t(θ t dt + dw t ) c Copyright E. Platen SDE Jump 8

Assumption 3 h k m t > θ k t generalized GOP volatility c k t = θ k t for k {1,2,...,m} θ k t 1 θ k t (hk m t ) 1 2 for k {m + 1,...,d} GOP fractions π δ,t = (π 1 δ,t,...,πd δ,t ) = ( c t b 1 t ) c Copyright E. Platen SDE Jump 9

Growth Optimal Portfolio ( ) ds δ t = S δ t r t dt + c t (θ tdt + dw t ) optimal growth rate m g δ t = r t + 1 2 d k=1 k=m+1 (θ k t )2 h k m t ln 1 + θ k t h k m t θ k t + θk t h k m t c Copyright E. Platen SDE Jump 10

benchmarked portfolio Ŝ δ t = Sδ t S δ t Theorem 4 Any nonnegative benchmarked portfolio Ŝ δ is an (A, P)-supermartingale. = no strong arbitrage but there may exist: free lunch with vanishing risk (Delbaen & Schachermayer (2006)) free snacks or cheap thrills (?)) c Copyright E. Platen SDE Jump 11

Multi-Factor Model model mainly: benchmarked primary security accounts j {0,1,...,d} Ŝ j t = Sj t S δ t supermartingales, often SDE driftless, local martingales, sometimes martingales c Copyright E. Platen SDE Jump 12

savings account S 0 t = exp { t 0 } r s ds = GOP S δ t = S0 t Ŝ 0 t = stock S j t = Ŝ j t S δ t additionally dividend rates foreign interest rates c Copyright E. Platen SDE Jump 13

Example Black-Scholes Type Market dŝ j t = Ŝ j t d k=1 σ j,k t dw k t h j t, σ j,k t, r t c Copyright E. Platen SDE Jump 14

Examples Merton jump-diffusion model dx t = X t (µdt + σdw t + dp t ), N t X t = X 0 e (µ 1 2 σ2 )t+σw t i=1 ξ i Bates model ds t = S t ( αdt + V t dw S t + dp t ) dv t = ξ(η V t )dt + θ V t dw V t c Copyright E. Platen SDE Jump 15

3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 time Figure 1: Simulated benchmarked primary security accounts. c Copyright E. Platen SDE Jump 16

10 9 8 7 6 5 4 3 2 1 0 0 5 10 15 20 time Figure 2: Simulated primary security accounts. c Copyright E. Platen SDE Jump 17

4.5 GOP EWI 4 3.5 3 2.5 2 1.5 1 0.5 0 5 10 15 20 time Figure 3: Simulated GOP and EWI ford = 50. c Copyright E. Platen SDE Jump 18

4.5 GOP index 4 3.5 3 2.5 2 1.5 1 0.5 0 5 10 15 20 time Figure 4: Simulated accumulation index and GOP. c Copyright E. Platen SDE Jump 19

Diversification diversified portfolios π j δ,t K 2 d 1 2 +K 1 c Copyright E. Platen SDE Jump 20

Theorem 5 In a regular market any diversified portfolio is an approximate GOP. Pl. (2005) robust characterization similar to Central Limit Theorem model independent c Copyright E. Platen SDE Jump 21

60 50 40 30 20 10 0 0 5 9 14 18 23 27 32 Figure 5: Benchmarked primary security accounts. c Copyright E. Platen SDE Jump 22

450 400 350 300 250 200 150 100 50 0 0 5 9 14 18 23 27 32 Figure 6: Primary security accounts under the MMM. c Copyright E. Platen SDE Jump 23

100 90 EWI GOP 80 70 60 50 40 30 20 10 0 0 5 9 14 18 23 27 32 Figure 7: GOP and EWI. c Copyright E. Platen SDE Jump 24

100 90 Market index GOP 80 70 60 50 40 30 20 10 0 0 5 9 14 18 23 27 32 Figure 8: GOP and market index. c Copyright E. Platen SDE Jump 25

fair security benchmarked security (A,P)-martingale fair minimal replicating portfolio fair nonnegative portfolio S δ with S δ τ = H τ = minimal nonnegative replicating portfolio fair pricing formula V Hτ (t) = S δ t E ( Hτ S δ τ ) A t No need for equivalent risk neutral probability measure! c Copyright E. Platen SDE Jump 26

Fair Hedging fair portfolio S δ t benchmarked fair portfolio martingale representation ( ) H τ Hτ = E A t + S δ τ S δ τ Ŝ δ t = E ( Hτ S δ τ d k=1 τ t ) A t x k H τ (s)dw k s + M H τ (t) M Hτ -(A,P)-martingale (pooled) E ([ M Hτ,W k] t) = 0 Föllmer & Schweizer (1991), Pl. & Du (2011) No need for equivalent risk neutral probability measure! c Copyright E. Platen SDE Jump 27

Simulation of SDEs with Jumps strong schemes (paths) Taylor explicit derivative-free implicit balanced implicit predictor-corrector weak schemes (probabilities) Taylor simplified explicit derivative-free implicit, predictor-corrector c Copyright E. Platen SDE Jump 28

intensity of jump process regular schemes = high intensity jump-adapted schemes = low intensity c Copyright E. Platen SDE Jump 29

SDE with Jumps dx t = a(t,x t )dt + b(t,x t )dw t + c(t,x t )dp t X 0 R d p t = N t : Poisson process, intensity λ < p t = N t i=1 (ξ i 1): compound Poisson, ξ i i.i.d r.v. Poisson random measure c(t,x t,v)p φ (dv dt) {(τ i,ξ i ),i = 1,2,...,N T } E c Copyright E. Platen SDE Jump 30

Numerical Schemes time discretization t n = n discrete time approximation Y n+1 = Y n + a(y n ) + b(y n ) W n + c(y n ) p n c Copyright E. Platen SDE Jump 31

Strong Convergence Applications: scenario analysis, filtering and hedge simulation strong order γ if ε s ( ) = E( XT Y N 2) K γ c Copyright E. Platen SDE Jump 32

Weak Convergence Applications: derivative pricing, utilities, risk measures weak order β if ε w ( ) = E(g(X T )) E(g(Y N )) K β c Copyright E. Platen SDE Jump 33

Literature on Strong Schemes with Jumps Pl (1982), Mikulevicius&Pl (1988) = γ {0.5, 1,...} Taylor schemes and jump-adapted Maghsoodi (1996, 1998) = strong schemes γ 1.5 Jacod & Protter (1998) = Euler scheme for semimartingales Gardoǹ (2004) = γ {0.5, 1,...} strong schemes Higham & Kloeden (2005) = implicit Euler scheme Bruti-Liberati & Pl (2007) = γ {0.5,1,...} explicit, implicit, derivative-free, predictor-corrector c Copyright E. Platen SDE Jump 34

Euler Scheme Euler scheme where Y n+1 = Y n + a(y n ) + b(y n ) W n + c(y n ) p n W n N(0, ) and p n = N tn+1 N tn Poiss(λ ) γ = 0.5 c Copyright E. Platen SDE Jump 35

Strong Taylor Scheme Wagner-Platen expansion = Y n+1 = Y n + a(y n ) + b(y n ) W n + c(y n ) p n + b(y n )b (Y n )I (1,1) +b(y n )c (Y n )I (1, 1) + {b(y n + c(y n )) b(y n )}I ( 1,1) +{c(y n + c(y n )) c(y n )}I ( 1, 1) with I (1,1) = 1 {( W 2 n) 2 }, I ( 1, 1) = 1 2 {( p n) 2 p n } I (1, 1) = N(t n+1 ) i=n(t n )+1 W τ i p n W tn, I ( 1,1) = p n W n I (1, 1) simulation jump times τ i : W τi = I (1, 1) and I ( 1,1) Computational effort heavily dependent on intensity λ c Copyright E. Platen SDE Jump 36

Derivative-Free Strong Schemes avoid computation of derivatives order1.0 derivative-free strong scheme c Copyright E. Platen SDE Jump 37

Implicit Strong Schemes wide stability regions implicit Euler scheme order1.0 implicit strong Taylor scheme c Copyright E. Platen SDE Jump 38

Predictor-Corrector Euler Scheme corrector Y n+1 = Y n + ( ) θā η (Ȳ n+1 ) + (1 θ)ā η (Y n ) n + ā η = a ηbb ( ) ηb(ȳ n+1 ) + (1 η)b(y n ) W n + p(t n+1 ) i=p(t n )+1 c(ξ i ) predictor Ȳ n+1 = Y n + a(y n ) n + b(y n ) W n + p(t n+1 ) i=p(t n )+1 c(ξ i ) θ, η [0, 1] degree of implicitness c Copyright E. Platen SDE Jump 39

Jump-Adapted Time Discretization t 0 t 1 t 2 t 3 = T regular τ 1 τ 2 jump times jump-adapted t 0 t 1 t 2 t 3 t 4 t 5 = T c Copyright E. Platen SDE Jump 40

Jump-Adapted Strong Approximations jump-adapted time discretisation jump times included in time discretisation jump-adapted Euler scheme and Y tn+1 = Y tn + a(y tn ) tn + b(y tn ) W tn Y tn+1 = Y tn+1 + c(y tn+1 ) p n γ = 0.5 c Copyright E. Platen SDE Jump 41

Merton SDE :µ = 0.05, σ = 0.2, ψ = 0.2, λ = 10, X 0 = 1, T = 1 1 0.8 0.6 X 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 T Figure 9: Plot of a jump-diffusion path. c Copyright E. Platen SDE Jump 42

0.0005 0.00025 0 Error -0.00025-0.0005-0.00075-0.001-0.00125 0 0.2 0.4 0.6 0.8 1 T Figure 10: Plot of the strong error for Euler(red) and 1.0 Taylor(blue) scheme. c Copyright E. Platen SDE Jump 43

Merton SDE :µ = 0.05, σ = 0.1, λ = 1, X 0 = 1, T = 0.5-10 Log 2 Error -15-20 -25 Euler EulerJA 1Taylor 1TaylorJA 15TaylorJA -10-8 -6-4 -2 0 Log 2 dt Figure 11: Log-log plot of strong error versus time step size. c Copyright E. Platen SDE Jump 44

Literature on Weak Schemes with Jumps Mikulevicius & Pl (1991) = jump-adapted order β {1, 2...} weak schemes Liu & Li (2000) = order β {1,2...} weak Taylor, extrapolation and simplified schemes Kubilius&Pl (2002) and Glasserman & Merener (2003) = jump-adapted Euler with weaker assumptions on coefficients Bruti-Liberati&Pl (2006) = jump-adapted orderβ {1,2...} derivative-free, implicit and predictor-corrector schemes c Copyright E. Platen SDE Jump 45

Simplified Euler Scheme Euler scheme = β = 1 simplified Euler scheme Y n+1 = Y n + a(y n ) + b(y n ) Ŵ n + c(y n )(ˆξ n 1) ˆp n if Ŵ n and ˆp n match the first 3 moments of W n and p n up to an O( 2 ) error = β = 1 P( W n = ± ) = 1 2 c Copyright E. Platen SDE Jump 46

Jump-Adapted Taylor Approximations jump-adapted Euler scheme = β = 1 jump-adapted order 2 weak Taylor scheme Y tn+1 = Y tn + a tn + b W tn + bb ) (( W tn ) 2 tn + a b Z tn 2 + 1 (aa + 12 ) 2 a b 2 2 t n + (ab + 12 ) b b 2 { W tn tn Z tn } and Y tn+1 = Y tn+1 + c(y tn+1 ) p n β = 2 c Copyright E. Platen SDE Jump 47

Predictor-Corrector Schemes predictor-corrector = stability and efficiency jump-adapted predictor-corrector Euler scheme Y tn+1 = Y tn + 1 2 { } a(ȳ tn+1 ) + a tn + b W tn with predictor Ȳ tn+1 = Y tn + a tn + b W tn β = 1 c Copyright E. Platen SDE Jump 48

3 EulerJA 2 ImplEulerJA PredCorrJA Log 2 Error 1 0-1 -2-5 -4-3 -2-1 Log 2 dt Figure 12: Log-log plot of weak error versus time step size. c Copyright E. Platen SDE Jump 49

Regular Approximations higher order schemes : time, Wiener and Poisson multiple integrals random jump size difficult to handle higher order schemes: computational effort dependent on intensity c Copyright E. Platen SDE Jump 50

Conclusions low intensity = jump-adapted higher order predictor-corrector high intensity = regular schemes distinction between strong and weak predictor-corrector schemes c Copyright E. Platen SDE Jump 51

References Björk, T., Y. Kabanov, & W. J. Runggaldier (1997). Bond market structure in the presence of marked point processes. Math. Finance 7, 211 239. Bruti-Liberati, N. & E. Platen (2006). On weak predictor-corrector schemes for jump-diffusion processes in finance. Technical report, University of Technology, Sydney. QFRC Research Paper 179. Bruti-Liberati, N. & E. Platen (2007). Strong approximations of stochastic differential equations with jumps. J. Comput. Appl. Math. 205(2), 982 1001. Delbaen, F. & W. Schachermayer (2006). The Mathematics of Arbitrage. Springer Finance. Springer. Föllmer, H. & M. Schweizer (1991). Hedging of contingent claims under incomplete information. In M. H. A. Davis and R. J. Elliott (Eds.), Applied Stochastic Analysis, Volume 5 of Stochastics Monogr., pp. 389 414. Gordon and Breach, London/New York. Gardoǹ, A. (2004). The order of approximations for solutions of Itô-type stochastic differential equations with jumps. Stochastic Anal. Appl. 22(3), 679 699. Glasserman, P. & N. Merener (2003). Numerical solution of jump-diffusion LIBOR market models. Finance Stoch. 7(1), 1 27. Higham, D. J. & P. E. Kloeden (2005). Numerical methods for nonlinear stochastic differential equations with jumps. Numer. Math. 110(1), 101 119. Jacod, J. & P. Protter (1998). Asymptotic error distribution for the Euler method for stochastic differential equations. Ann. Probab. 26(1), 267 307. Kubilius, K. & E. Platen (2002). Rate of weak convergence of the Euler approximation for diffusion c Copyright E. Platen SDE Jump 52

processes with jumps. Monte Carlo Methods Appl. 8(1), 83 96. Liu, X. Q. & C. W. Li (2000). Weak approximation and extrapolations of stochastic differential equations with jumps. SIAM J. Numer. Anal. 37(6), 1747 1767. Maghsoodi, Y. (1996). Mean-square efficient numerical solution of jump-diffusion stochastic differential equations. SANKHYA A 58(1), 25 47. Maghsoodi, Y. (1998). Exact solutions and doubly efficient approximations of jump-diffusion Itô equations. Stochastic Anal. Appl. 16(6), 1049 1072. Mikulevicius, R. & E. Platen (1988). Time discrete Taylor approximations for Ito processes with jump component. Math. Nachr. 138, 93 104. Mikulevicius, R. & E. Platen (1991). Rate of convergence of the Euler approximation for diffusion processes. Math. Nachr. 151, 233 239. Øksendal, B. & A. Sulem (2005). Applied stochastic control of jump-duffusions. Universitext. Springer. Platen, E. (1982). An approximation method for a class of Itô processes with jump component. Liet. Mat. Rink. 22(2), 124 136. Platen, E. (2005). Diversified portfolios with jumps in a benchmark framework. Asia-Pacific Financial Markets 11(1), 1 22. Platen, E. & K. Du (2011). Benchmarked risk minimization for jump diffusion markets. UTS Working Paper. Platen, E. & W. J. Runggaldier (2005). A benchmark approach to filtering in finance. Asia-Pacific Financial Markets 11(1), 79 105. Platen, E. & W. J. Runggaldier (2007). A benchmark approach to portfolio optimization under partial c Copyright E. Platen SDE Jump 53

information. Asia-Pacific Financial Markets 14(1-2), 25 43. c Copyright E. Platen SDE Jump 54