3 Stock under the risk-neutral measure

Size: px
Start display at page:

Download "3 Stock under the risk-neutral measure"

Transcription

1 3 Stock under the risk-neutral measure 3 Adapted processes We have seen that the sampling space Ω = {H, T } N underlies the N-period binomial model for the stock-price process Elementary event ω = ω ω N Ω is interpreted as complete information of the development of the stock over the time N Likewise, ω ω n is seen as partial information about the stock available by time n By time n investor has observed n up or down moves of the stock, encoded into coin-tosses ω ω n The stock price at time n depends only on already known outcomes ω ω n, but not on forthcoming coin-tosses ω n+ ω N, namely S n (ω ω n ) = u #heads(ω ω n) d #tails(ω ω n) S 0, () where the time-0 price S 0 is a given constant A sequence of random variables Y 0, Y,, Y N on sampling space Ω is a random process with discrete time variable n = 0,,, N Definition 3 We say that the process is adapted if Y n only depends on n first coin tosses, ie Y n = Y n (ω ω n ) for every n = 0,,, N In particular, Y 0 is constant (ie not random) Example 32 Let I n = ± depending on whether ω j = H or T The process Y n = I + + I n (with, say Y 0 = 0) is adapted Example 33 The stock process S 0,, S N is adapted The delta process defined by equation (9) in Section 2 is adapted Note that the path S (ω ),, S n (ω ω n ) contains the same information as ω ω n, because S j (ω ω j )/S j (ω ω j ) = u ω j = H (hence S j /S j = d ω j = T ); so if we know S,, S n we can recover ω ω n and vice versa (using ()) In view of this Proposition 34 A process is adapted if and only if the value assumed by Y n can be determined from the path S,, S n, for every n N Example 35 The process X n = S n S n is adapted, while Y n = S N S n not Exercise 36 Conclude from equation (7) in Section 2 that the portfolio-worth process X n is adapted 32 Conditional expectations When a probability (aka probability measure) P on Ω is given, we denote E the associated expectation This P could be a market measure, with given probabilities p, q for H, T and independent coin-tosses, or a more general probability measure For risk-neutral probability P(ω) = p #heads(ω) q #tails(ω) (2)

2 the expectation will be denoted Ẽ For instance, for the random variable X(ω) = #heads(ω) N ẼX = j P(X N ( ) N = j) = j p j q N j = N p, j j=0 which is the expectation of a Binomial(N, p) random variable For random variable X, the expectation EX is a number, obtained by averaging over all possible ω Ω: EX = ω Ω P(ω)X(ω) Very often we need to compute a conditional expectation with fixed ω ω n for some n < N: this can be regarded as an estimate or predicted value of X based on the information available at time n Definition 37 Let (Ω, P) be the coin-tossing space with probability measure P, such that P(ω) > 0 for every ω Ω Let X be a random variable For fixed n, a conditional expectation given the information at time n is a random variable, which depends only on ω ω n, and is obtained as j=0 E n [X](ω ω n ) = X(ω ω n ω n+ ω N ) P(ω ω n ω n+ ω N ), P(A ω n+ ω N {H,T } N n ω ω n ) where A ω ω n = {ω ω N Ω : ω = ω,, ω n = ω n }, so P(A ω ω n ) is the probability that n first coin tosses are some fixed outcomes ω ω n In particular, for the risk-neutral probability (2) Ẽ n [X](ω ω n ) = X(ω ω n ω n+ ω N ) p #heads(ωnωn ) q #tails(ωnωn ) ω n+ ω N {H,T } N n The first part of this definition does not assume that the coin tosses under P are independent The value P(ω ω n ω n+ ω N ) P(A ω ω n ) is the conditional probability of ω ω N given the first n tosses ω ω n (Compare with the definition of the conditional probability P(A B) = P(A B)/P(B)) As is common for random variables, we often write E n [X], Ẽn[X] without indicating explicitly the first n coin tosses ω ω n We have seen that under the RN measure but this is the same as S n (ω ω n ) = r + [ ps n+(ω ω n H) + qs n+ (ω ω n T )], (3) S n = r + Ẽn[S n+ ] (4) 2

3 Exercise 38 Give a detailed proof to (4) using (2), (3) and the fact that S 0,, S N is an adapted process The unconditional expectation E may be seen as a special case, E = E 0 The conditional expectation has the property of linearity: E n [ax+by ] = ae n X+bE n Y (for constants a, b), and E n = Other important properties are as follows (i) If X depends on ω ω n only, then E n [XY ] = X E n [Y ] In particular, for such X we have E n X = X (ii) Iterated conditioning or tower property : for 0 n m N E n [E m [X]] = E n X (iii) Under the risk-neutral P, if X is independent of the n first coin tosses, then Ẽ n X = ẼX (conditional expectation is equal to the unconditional expectation) Recall that ω ω n contains the same information as S,, S n This allows us to re-write the conditional expectation E n X as a function of the path S,, S n In these terms, the identity (4) can be also written as Ẽ[S n+ S = s,, S n = s n ] = (r + )s n, where the conditioning is on any admissible values of the first n stock values Example 39 By (i) and by (4) in agreement with pu + qd = r + S2 Ẽ = Ẽ [S 2 ] S S = S (r + )S = r +, Note that by (4) S n+ = r+ẽn+[s n+2 ] Applying Ẽn to both sides and exploiting the tower property so using (4) Ẽ n [S n+ ] = Ẽn r + Ẽn+[S n+2 ] = [Ẽn+ [S n+2 ]] = r + Ẽn r + Ẽn[S n+2 ], S n = (r + ) 2 Ẽn[S n+2 ] Exercise 30 Show a more general formula S n = (r+) k Ẽn[S n+k ], in particular show that S 0 = (r+) N Ẽ[S N] 3

4 33 Martingales Martingales are random processes which have no tendency to decrease or increase Loosely speaking, on the average a martingale stays in the future where it is at present time Example 3 (Random walks: symmetric and biased) Suppose I, I 2, are independent with P(I n = ) = p, P(I n = ) = p = q The sum M n = M 0 + I + + I n is the fortune of a gambler with starting capital M 0 after n games with unit bets on heads, with probability p of winning in each game Consider three cases If p = /2 the game is fair, because EI n = 0 and E n [M n+ ] = E n [M n + I n ] = E n [M n ] = M n After n games, the wealth is M n, and the expected wealth by playing one more game is also M n If p > /2 the game is advantageous, because EI n = p q > 0 and E n [M n+ ] = E n [M n + I n ] = E n [M n ] + p q > M n If p < /2 the game is disadvantageous, because EI n = p q < 0 and E n [M n+ ] = E n [M n + I n ] = E n [M n ] + p q < M n Definition 32 An adapted random process M n (n = 0,, N) is a martingale if E n M n+ = M n, n = 0,, N (5) If instead E n M n+ M n we say that the process is a submartingale, and if E n M n+ M n that a supermartingale Submartingales have a tendency to increase with time, supermartingales to decrease Exercise 33 Consider independent coin-tosses with probabilities p, q for H, T Let X n = #heads(ω ω n ) np, X 0 = 0 Show that X n (n = 0,,, N) is a martingale Exercise 34 Let Y n = #heads(ω ω n ) #tails(ω ω n ), n = 0,, N Is Y n a martingale, sub- or supermartigale? The defining identity (5) can be iterated (using the tower property of conditional expectations) to obtain M n = E n [M m ] for every 0 n m N In particular, EM n = M 0, n = 0,, N the expected value of the martingale is constant over time Theorem 35 Under the risk-neutral measure P the discounted stock price process is a martingale S n ( + r) n, n = 0,, N 4

5 Proof Divide both parts of (4) by ( + r) n and compare with (5) The theorem can be re-formulated as follows: the risk neutral measure P is the probability measure on Ω under which the discounted stock value is a martingale Therefore P is sometimes called the martingale measure Now let ( n, X n ) be a stock+bond portfolio process satisfying the self-financing condition X n+ = n S n+ + (r + )(X n n S n ) (6) Theorem 36 Under the risk-neutral measure, the discounted wealth process is a martingale X n ( + r) n, n = 0,, N Proof Apply Ẽn on both sides of (6) and divide by ( + r) n+ Ẽ n [ X n+ ( + r) n+ ] = Ẽn [ n S n+ ( + r) + X ] n n S n n S n+ = n+ ( + r) n+ Ẽn ( + r) n+ +Ẽn Xn n S n ( + r) n+ We can pull n out of Ẽn because n is adapted (depends on n first coin tosses), and for the same reason cancel Ẽn in the second term S n+ = n Ẽ n + X n n S n ( + r) n+ ( + r) n+ Using the martingale property of the discounted stock = n S n+ ( + r) n+ + X n n S n ( + r) n+ = X n ( + r) n For a given option with payoff V N, let ( n, X n ) (n = 0,, N) be a hedging portfolio Then V n = X n is the no-arbitrage price of the option From Theorem 36 follows Theorem 37 The discounted price of the option is a martingale under P, that is V n ( + r) = Ẽ Vn+ n ( + r) n In particular, the risk-neutral pricing formula holds V 0 = Ẽ V N ( + r) N 5

2 The binomial pricing model

2 The binomial pricing model 2 The binomial pricing model 2. Options and other derivatives A derivative security is a financial contract whose value depends on some underlying asset like stock, commodity (gold, oil) or currency. The

More information

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model Class Notes on No-Arbitrage Pricing Model April 18, 2016 Dr. Riyadh Al-Mosawi Department of Mathematics, College of Education for Pure Sciences, Thiqar University References: 1. Stochastic Calculus for

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n

More information

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012 Finance 65: PDEs and Stochastic Calculus Midterm Examination November 9, 0 Instructor: Bjørn Kjos-anssen Student name Disclaimer: It is essential to write legibly and show your work. If your work is absent

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012 Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012 Instructor: Bjørn Kjos-anssen Student name Disclaimer: It is essential to write legibly and show your work. If your work is

More information

Martingales. Will Perkins. March 18, 2013

Martingales. Will Perkins. March 18, 2013 Martingales Will Perkins March 18, 2013 A Betting System Here s a strategy for making money (a dollar) at a casino: Bet $1 on Red at the Roulette table. If you win, go home with $1 profit. If you lose,

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

6: MULTI-PERIOD MARKET MODELS

6: MULTI-PERIOD MARKET MODELS 6: MULTI-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) 6: Multi-Period Market Models 1 / 55 Outline We will examine

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman December 15, 2017 Contents 0 Introduction 3 0.1 Syllabus......................................... 4 0.2 Problem sheets.....................................

More information

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut Financial Mathematics Spring 22 Richard F. Bass Department of Mathematics University of Connecticut These notes are c 22 by Richard Bass. They may be used for personal use or class use, but not for commercial

More information

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n 6. Martingales For casino gamblers, a martingale is a betting strategy where (at even odds) the stake doubled each time the player loses. Players follow this strategy because, since they will eventually

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin Arbitrage Pricing What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin March 27, 2010 Introduction What is Mathematical Finance?

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in MAT2700 Introduction to mathematical finance and investment theory. Day of examination: Monday, December 14, 2015. Examination

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model

More information

Advanced Probability and Applications (Part II)

Advanced Probability and Applications (Part II) Advanced Probability and Applications (Part II) Olivier Lévêque, IC LTHI, EPFL (with special thanks to Simon Guilloud for the figures) July 31, 018 Contents 1 Conditional expectation Week 9 1.1 Conditioning

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Steve Dunbar Due Mon, October 5, 2009 1. (a) For T 0 = 10 and a = 20, draw a graph of the probability of ruin as a function

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model

Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model International Journal of Basic & Applied Sciences IJBAS-IJNS Vol:3 No:05 47 Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model Sheik Ahmed Ullah

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

MATH 361: Financial Mathematics for Actuaries I

MATH 361: Financial Mathematics for Actuaries I MATH 361: Financial Mathematics for Actuaries I Albert Cohen Actuarial Sciences Program Department of Mathematics Department of Statistics and Probability C336 Wells Hall Michigan State University East

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 13, 2009 Stochastic differential equations deal with continuous random processes. They are idealization of discrete stochastic

More information

B8.3 Week 2 summary 2018

B8.3 Week 2 summary 2018 S p VT u = f(su ) S T = S u V t =? S t S t e r(t t) 1 p VT d = f(sd ) S T = S d t T time Figure 1: Underlying asset price in a one-step binomial model B8.3 Week 2 summary 2018 The simplesodel for a random

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Derivatives Pricing and Stochastic Calculus

Derivatives Pricing and Stochastic Calculus Derivatives Pricing and Stochastic Calculus Romuald Elie LAMA, CNRS UMR 85 Université Paris-Est Marne-La-Vallée elie @ ensae.fr Idris Kharroubi CEREMADE, CNRS UMR 7534, Université Paris Dauphine kharroubi

More information

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures Lecture 3 Fundamental Theorems of Asset Pricing 3.1 Arbitrage and risk neutral probability measures Several important concepts were illustrated in the example in Lecture 2: arbitrage; risk neutral probability

More information

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives Lecture 9 Forward Risk Adjusted Probability Measures and Fixed-income Derivatives 9.1 Forward risk adjusted probability measures This section is a preparation for valuation of fixed-income derivatives.

More information

then for any deterministic f,g and any other random variable

then for any deterministic f,g and any other random variable Martingales Thursday, December 03, 2015 2:01 PM References: Karlin and Taylor Ch. 6 Lawler Sec. 5.1-5.3 Homework 4 due date extended to Wednesday, December 16 at 5 PM. We say that a random variable is

More information

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration Lecture 14: Examples of Martingales and Azuma s Inequality A Short Summary of Bounds I Chernoff (First Bound). Let X be a random variable over {0, 1} such that P [X = 1] = p and P [X = 0] = 1 p. n P X

More information

Keeping Your Options Open: An Introduction to Pricing Options

Keeping Your Options Open: An Introduction to Pricing Options The College of Wooster Libraries Open Works Senior Independent Study Theses 2014 Keeping Your Options Open: An Introduction to Pricing Options Ryan F. Snyder The College of Wooster, rsnyder14@wooster.edu

More information

Stochastic Calculus for Finance

Stochastic Calculus for Finance Stochastic Calculus for Finance Albert Cohen Actuarial Sciences Program Department of Mathematics Department of Statistics and Probability A336 Wells Hall Michigan State University East Lansing MI 48823

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

STOCHASTIC PROCESSES IN FINANCE AND INSURANCE * Leda Minkova

STOCHASTIC PROCESSES IN FINANCE AND INSURANCE * Leda Minkova МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2009 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2009 Proceedings of the Thirty Eighth Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 1

More information

Remarks on Probability

Remarks on Probability omp2011/2711 S1 2006 Random Variables 1 Remarks on Probability In order to better understand theorems on average performance analyses, it is helpful to know a little about probability and random variables.

More information

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree Lecture Notes for Chapter 6 This is the chapter that brings together the mathematical tools (Brownian motion, Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the derivative

More information

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing presented by Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology 1 Parable of the bookmaker Taking

More information

Chapter 6: Risky Securities and Utility Theory

Chapter 6: Risky Securities and Utility Theory Chapter 6: Risky Securities and Utility Theory Topics 1. Principle of Expected Return 2. St. Petersburg Paradox 3. Utility Theory 4. Principle of Expected Utility 5. The Certainty Equivalent 6. Utility

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

To have a concrete example in mind, suppose that we want to price a European call option on a stock that matures in six months.

To have a concrete example in mind, suppose that we want to price a European call option on a stock that matures in six months. A one period model To have a concrete example in mind, suppose that we want to price a European call option on a stock that matures in six months.. The model setup We will start simple with a one period

More information

Why Bankers Should Learn Convex Analysis

Why Bankers Should Learn Convex Analysis Jim Zhu Western Michigan University Kalamazoo, Michigan, USA March 3, 2011 A tale of two financial economists Edward O. Thorp and Myron Scholes Influential works: Beat the Dealer(1962) and Beat the Market(1967)

More information

Help Session 2. David Sovich. Washington University in St. Louis

Help Session 2. David Sovich. Washington University in St. Louis Help Session 2 David Sovich Washington University in St. Louis TODAY S AGENDA 1. Refresh the concept of no arbitrage and how to bound option prices using just the principle of no arbitrage 2. Work on applying

More information

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances

Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Physical Principles in Biology Biology 3550 Fall 2018 Lecture 9: Plinko Probabilities, Part III Random Variables, Expected Values and Variances Monday, 10 September 2018 c David P. Goldenberg University

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Probability without Measure!

Probability without Measure! Probability without Measure! Mark Saroufim University of California San Diego msaroufi@cs.ucsd.edu February 18, 2014 Mark Saroufim (UCSD) It s only a Game! February 18, 2014 1 / 25 Overview 1 History of

More information

How Much Should You Pay For a Financial Derivative?

How Much Should You Pay For a Financial Derivative? City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology Winter 2-26-2016 How Much Should You Pay For a Financial Derivative? Boyan Kostadinov

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Probability Distribution Unit Review

Probability Distribution Unit Review Probability Distribution Unit Review Topics: Pascal's Triangle and Binomial Theorem Probability Distributions and Histograms Expected Values, Fair Games of chance Binomial Distributions Hypergeometric

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

Additional questions for chapter 3

Additional questions for chapter 3 Additional questions for chapter 3 1. Let ξ 1, ξ 2,... be independent and identically distributed with φθ) = IEexp{θξ 1 })

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Spring 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

MORE REALISTIC FOR STOCKS, FOR EXAMPLE

MORE REALISTIC FOR STOCKS, FOR EXAMPLE MARTINGALES BASED ON IID: ADDITIVE MG Y 1,..., Y t,... : IID EY = 0 X t = Y 1 +... + Y t is MG MULTIPLICATIVE MG Y 1,..., Y t,... : IID EY = 1 X t = Y 1... Y t : X t+1 = X t Y t+1 E(X t+1 F t ) = E(X t

More information

Introduction to Financial Mathematics and Engineering. A guide, based on lecture notes by Professor Chjan Lim. Julienne LaChance

Introduction to Financial Mathematics and Engineering. A guide, based on lecture notes by Professor Chjan Lim. Julienne LaChance Introduction to Financial Mathematics and Engineering A guide, based on lecture notes by Professor Chjan Lim Julienne LaChance Lecture 1. The Basics risk- involves an unknown outcome, but a known probability

More information

Discrete Random Variables; Expectation Spring 2014

Discrete Random Variables; Expectation Spring 2014 Discrete Random Variables; Expectation 18.05 Spring 2014 https://en.wikipedia.org/wiki/bean_machine#/media/file: Quincunx_(Galton_Box)_-_Galton_1889_diagram.png http://www.youtube.com/watch?v=9xubhhm4vbm

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

Discrete Random Variables and Probability Distributions

Discrete Random Variables and Probability Distributions Chapter 4 Discrete Random Variables and Probability Distributions 4.1 Random Variables A quantity resulting from an experiment that, by chance, can assume different values. A random variable is a variable

More information

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x)

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x) N. Name: MATH: Mathematical Thinking Sec. 08 Spring 0 Worksheet 9: Solution Problem Compute the expected value of this probability distribution: x 3 8 0 3 P(x) 0. 0.0 0.3 0. Clearly, a value is missing

More information

INTRODUCTION TO ARBITRAGE PRICING OF FINANCIAL DERIVATIVES

INTRODUCTION TO ARBITRAGE PRICING OF FINANCIAL DERIVATIVES INTRODUCTION TO ARBITRAGE PRICING OF FINANCIAL DERIVATIVES Marek Rutkowski Faculty of Mathematics and Information Science Warsaw University of Technology 00-661 Warszawa, Poland 1 Call and Put Spot Options

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

Lecture 8: Asset pricing

Lecture 8: Asset pricing BURNABY SIMON FRASER UNIVERSITY BRITISH COLUMBIA Paul Klein Office: WMC 3635 Phone: (778) 782-9391 Email: paul klein 2@sfu.ca URL: http://paulklein.ca/newsite/teaching/483.php Economics 483 Advanced Topics

More information

Lecture 19: March 20

Lecture 19: March 20 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 19: March 0 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives Lecture 9 Forward Risk Adjusted Probability Measures and Fixed-income Derivatives 9.1 Forward risk adjusted probability measures This section is a preparation for valuation of fixed-income derivatives.

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Hedging and Pricing in the Binomial Model

Hedging and Pricing in the Binomial Model Hedging and Pricing in the Binomial Model Peter Carr Bloomberg LP and Courant Institute, NYU Continuous Time Finance Lecture 2 Wednesday, January 26th, 2005 One Period Model Initial Setup: 0 risk-free

More information

PROBABILITY AND STATISTICS, A16, TEST 1

PROBABILITY AND STATISTICS, A16, TEST 1 PROBABILITY AND STATISTICS, A16, TEST 1 Name: Student number (1) (1.5 marks) i) Let A and B be mutually exclusive events with p(a) = 0.7 and p(b) = 0.2. Determine p(a B ) and also p(a B). ii) Let C and

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

MTH The theory of martingales in discrete time Summary

MTH The theory of martingales in discrete time Summary MTH 5220 - The theory of martingales in discrete time Summary This document is in three sections, with the first dealing with the basic theory of discrete-time martingales, the second giving a number of

More information

How do Variance Swaps Shape the Smile?

How do Variance Swaps Shape the Smile? How do Variance Swaps Shape the Smile? A Summary of Arbitrage Restrictions and Smile Asymptotics Vimal Raval Imperial College London & UBS Investment Bank www2.imperial.ac.uk/ vr402 Joint Work with Mark

More information

Binomial and multinomial distribution

Binomial and multinomial distribution 1-Binomial distribution Binomial and multinomial distribution The binomial probability refers to the probability that a binomial experiment results in exactly "x" successes. The probability of an event

More information

Futures Contracts vs. Forward Contracts

Futures Contracts vs. Forward Contracts Futures Contracts vs. Forward Contracts They are traded on a central exchange. A clearinghouse. Credit risk is minimized. Futures contracts are standardized instruments. Gains and losses are marked to

More information

P (X = x) = x=25

P (X = x) = x=25 Chapter 2 Random variables Exercise 2. (Uniform distribution) Let X be uniformly distributed on 0,,..., 99. Calculate P(X 25). Solution of Exercise 2. : We have P(X 25) P(X 24) F (24) 25 00 3 4. Alternative

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Introduction to Financial Mathematics. Kyle Hambrook

Introduction to Financial Mathematics. Kyle Hambrook Introduction to Financial Mathematics Kyle Hambrook August 7, 2017 Contents 1 Probability Theory: Basics 3 1.1 Sample Space, Events, Random Variables.................. 3 1.2 Probability Measure..............................

More information

An introduction to game-theoretic probability from statistical viewpoint

An introduction to game-theoretic probability from statistical viewpoint .. An introduction to game-theoretic probability from statistical viewpoint Akimichi Takemura (joint with M.Kumon, K.Takeuchi and K.Miyabe) University of Tokyo May 14, 2013 RPTC2013 Takemura (Univ. of

More information

Lecture: Continuous Time Finance Lecturer: o. Univ. Prof. Dr. phil. Helmut Strasser

Lecture: Continuous Time Finance Lecturer: o. Univ. Prof. Dr. phil. Helmut Strasser Lecture: Continuous Time Finance Lecturer: o. Univ. Prof. Dr. phil. Helmut Strasser Part 1: Introduction Chapter 1: Review of discrete time finance Part 2: Stochastic analysis Chapter 2: Stochastic processes

More information

Mathematical Finance in discrete time

Mathematical Finance in discrete time Lecture Notes for Mathematical Finance in discrete time University of Vienna, Faculty of Mathematics, Fall 2015/16 Christa Cuchiero University of Vienna christa.cuchiero@univie.ac.at Draft Version June

More information

Binomial Model for Forward and Futures Options

Binomial Model for Forward and Futures Options Binomial Model for Forward and Futures Options Futures price behaves like a stock paying a continuous dividend yield of r. The futures price at time 0 is (p. 437) F = Se rt. From Lemma 10 (p. 275), the

More information

Lecture 8: Introduction to asset pricing

Lecture 8: Introduction to asset pricing THE UNIVERSITY OF SOUTHAMPTON Paul Klein Office: Murray Building, 3005 Email: p.klein@soton.ac.uk URL: http://paulklein.se Economics 3010 Topics in Macroeconomics 3 Autumn 2010 Lecture 8: Introduction

More information

CAPITAL BUDGETING IN ARBITRAGE FREE MARKETS

CAPITAL BUDGETING IN ARBITRAGE FREE MARKETS CAPITAL BUDGETING IN ARBITRAGE FREE MARKETS By Jörg Laitenberger and Andreas Löffler Abstract In capital budgeting problems future cash flows are discounted using the expected one period returns of the

More information

3.2 No-arbitrage theory and risk neutral probability measure

3.2 No-arbitrage theory and risk neutral probability measure Mathematical Models in Economics and Finance Topic 3 Fundamental theorem of asset pricing 3.1 Law of one price and Arrow securities 3.2 No-arbitrage theory and risk neutral probability measure 3.3 Valuation

More information

MARTINGALES AND LOCAL MARTINGALES

MARTINGALES AND LOCAL MARTINGALES MARINGALES AND LOCAL MARINGALES If S t is a (discounted) securtity, the discounted P/L V t = need not be a martingale. t θ u ds u Can V t be a valid P/L? When? Winter 25 1 Per A. Mykland ARBIRAGE WIH SOCHASIC

More information