Mathematics for Management Science Notes 07 prepared by Professor Jenny Baglivo

Size: px
Start display at page:

Download "Mathematics for Management Science Notes 07 prepared by Professor Jenny Baglivo"

Transcription

1 Mathematics for Management Science Notes 07 prepared by Professor Jenny Baglivo Jenny A. Baglivo All rights reserved. Calculus and nonlinear programming (NLP): In nonlinear programming (NLP), either the objective function or the constraints or both are nonlinear functions of the decision variables. Solver will use a sequence of approximations to search for a solution. There are several important things to note about Solver implementations: You need to supply a valid feasible point as a starting point of the search. (In all of the previous cases, initializing all the changing cells with zero was fine. In fact, the algorithms never looked at the initial values in the changing cells.) The algorithm then takes steps in its search for an optimal solution. At each point, the direction of the search is the one judged to give the maximum improvement in the objective function value. At the point where the algorithm judges that no improvement is possible from the current position, it declares victory and reports the results. You may not get the optimum solution. (1) You may be at a local optimum instead of a global optimum. (2) The step size may not be set correctly to judge whether or not searching further would improve the optimum value. To counteract problem (1), you can start the search at many different initial values, using points that are of the same magnitude as where you expect the solution to be. To counteract problem (2), you can use an automatic scaling option in the Solver options box. Ideas from calculus are central to NLP problems. So, we will review one-variable calculus and introduce ideas from two-variable calculus. Example 1: Consider the one-variable function f(x) = 3 x x x when 0 x 3, whose graph is at the top of the next page. Notice that The maximum value is f(2)=72, which occurs at an interior point of the interval and The minimum value is f(3)=13, which occurs at an endpoint of the interval. page 1 of 17

2 We will consider the slope of the curve at various points in the interval. For example, the slope at the point (1,f(1)) = (1,53) is obtained as the limit of a sequence of approximations, as illustrated below: x f(x) Slope = (f(x)-f(1))/(x-1) The slope of the curve when x=1 is the limit of the approximations: f (1) = 24. page 2 of 17

3 Rules for finding the derivative function (f (x)) in simple cases: (1) The derivative of a constant function is 0: d(c)/dx = 0 where C is a constant. (2) The derivative of a linear function is its slope: d(m x + b)/dx = m where m and b are constants. (3) The derivative of a simple power function is as follows: d(x n )/dx = n x n-1 where n is a constant power. (4) The derivative of the sum of two functions is the sum of the derivatives: d(f(x)+g(x))/dx = d(f(x))/dx + d(g(x))/dx = f (x) + g (x). (5) The derivative of a constant multiple of a function is the constant times the derivative of the function. d(c f(x))/dx = C d(f(x))/dx = C f (x). When a function has a derivative, it is said to be differentiable. Example 1, continued: Fill-in the blanks f (x) = f (1) = f (2) = f (3) = page 3 of 17

4 Example 2: Consider the function f(x) = 2500/x x 2 when 10 x 400. Fill-in the blanks: f (x) = f (100) = f (200) = f (300) = page 4 of 17

5 Local and global optimum points: f(x) has a local maximum at x=c (or at (x,y)=(c,f(c))) when f(c) is the largest value of the function for all x near C. f(x) has a local minimum at x=c (or at (x,y)=(c,f(c))) when f(c) is the smallest value of the function for all x near C. f(x) has a global maximum at x=c (or at (x,y)=(c,f(c))) when f(c) is the largest value of the function for all x under consideration. f(x) has a global minimum at x=c (or at (x,y)=(c,f(c))) when f(c) is the smallest value of the function for all x under consideration. If f(x) is continuous on a x b, then f assumes a global maximum and a global minimum on that interval. Example 1 (the interval is 0 x 3): Fill-in the blanks Local maximum at Local minimum at Global maximum at Global minimum at Example 2 (the interval is 10 x 400): Fill-in the blanks Local maximum at Local minimum at Global maximum at Global minimum at page 5 of 17

6 The second derivative test for finding local maxima and local minima: Suppose that f (C) = 0. Then C is said to be a critical value of the function and the point (C,f(C)) is said to be a critical point of the function. Recall that the second derivative function (f (x)) is the derivative of the derivative function. The second derivative is related to the concavity of the function: 1. If f (x) > 0, then the curve is concave up (or cupped up) at (x, f(x)). 2. If f (x) < 0, then the curve is concave down (cupped down) at (x, f(x)). The second derivative test can be used to determine local maxima and local minima when f (C) = 0 and f (C) 0. If f (C) = 0 and f (C) > 0, then there is a local minimum at x = C. If f (C) = 0 and f (C) < 0, then there is a local maximum at x = C. Example 2, continued: Use the second derivative test to check that (100,f(100)) is a local minimum point. page 6 of 17

7 Example 3: Consider the following function f(x) = 3 x x x for all real numbers x. (a) Find all critical values and critical points of f(x). (b) For each critical point, use the second derivative to determine if that point is a local maximum or a local minimum for the function. page 7 of 17

8 Example 4: A manufacturer has been selling 1000 TV sets a week at $450 each. A market survey indicates that for each $10 rebate offered to the buyer, the number of sets sold will increase by 100 per week. Let x equal the number of TV sets sold in a given week. (a) Write weekly revenue as a function of x. (b) Use calculus to determine how large a rebate the company should offer in order to maximize its revenue. (c) If the company's weekly cost is C(x) = x, how should it set the size of the rebate in order to maximize its profit? page 8 of 17

9 Application type: economic order quantity (EOQ) model Assume that demand for a certain product is constant over the year and that each new order is delivered in full when the inventory level reaches zero. The problem is to determine the optimal number of units of a product to purchase whenever an order is placed. Standard notation: D C H R Total demand during the year Unit purchase cost Cost of holding one unit in inventory (often given as a percent of C) Cost of placing an order (reorder cost) Let x equal the number of items ordered at one time (the order quantity). Then the total cost can be written as follows: Total Cost = Purchasing Cost + Inventory Cost + Ordering Cost f(x) = D C + H (x/2) + R (D/x). The basic model is: Minimize f(x) subject to 1 x D. Notes: (1) Since the demand is assumed to be constant, the average number of units on hand is x/2. (2) If the total demand is D and you order x at a time, then you place D/x orders. (3) You may have further limitations to worry about. page 9 of 17

10 Example 5: Alan Wang is responsible for purchasing the paper used in all the copy machines and laser printers at the corporate headquarters of MetroBank. Alan projects that in the coming year he will need to purchase a total of 24,000 boxes of paper, which will be used at a fairly steady rate throughout the year. Each box of paper costs $35. Alan estimates that it costs $50 each time an order is placed (this includes the cost of placing an order and the related costs of shipping and receiving). MetroBank assigns a cost of 18% to funds allocated to supplies and inventories because such funds are the lifeline of the bank and could be lent out to credit card customers who are willing to pay this rate on money borrowed from the bank. Alan has been placing paper orders once a quarter, but he wants to determine if another ordering pattern would be better. He wants to determine the most economical order quantity to use in purchasing paper. Use calculus to solve Alan's problem. page 10 of 17

11 Example 5 solution and formulas sheets: A B C D E F G Metro Bank Annual demand Holding cost as % of unit cost 18% Cost per box 35 Reorder cost 50 Minimum Maximum Reorder bounds M O D E L Decision Variable Order Quantity #Boxes Purchase cost: Inventory cost: Reorder cost: Minimize total cost: Subject to L H S R H S Minimum ordered >= 1 Maximum ordered <= Minimize B20 By Changing B15 (initial value 100) Subject to B24 >= D24 B25 <= D25 Options: Use Automatic Scaling Assume non-negative A B C D Metro Bank Annual demand Holding cost as % of unit cost 0.18 Cost per box 35 Reorder cost 50 Minimum Maximum Reorder bounds M O D E L Decision Variable Order Quantity #Boxes 100 Purchase cost: =B3*B5 Inventory cost: =(B4*B5)*(B15/2) Reorder cost: =B6*(B3/B15) Minimize total cost: =SUM(B17:B19) Subject to L H S Minimum ordered =B15 >= =B9 Maximum ordered =B15 <= =C9 R H S page 11 of 17

12 Example 6: Keith Shoe Store carries a basic black dress shoe for men that sells at an approximate constant rate of 500 pairs of shoes every three months. Keith's current buying policy is to order 500 pairs each time an order is placed. It costs Keith $150 to place an order. The annual holding cost rate is 25%. With the order quantity of 500, Keith obtains shoes at the lowest possible unit cost of $32 per pair. Other quantity discounts offered by the manufacturer are as follows: Order Quantity: Price per pair: $ $ or more $32 (a) What is the minimum cost order quantity for the shoes? (b) What are the annual savings of the minimum cost plan over the policy currently being used by Keith? page 12 of 17

13 Example 6 solution sheet: A B C D E F G Keith's Shoe Store Annual demand 2000 Holding cost as % of unit cost 25% Reorder cost 150 (1) Quantities MODEL 1: Cost per pair 36 Reorder minimum 1 Decision Variable Reorder maximum 149 Order Quantity #Pairs: 149 (2) Quantities Purchase cost: Inventory cost: Reorder cost: Minimize total cost: Subject to L H S R H S Minimum ordered 149 >= 1 Maximum ordered 149 <= 149 MODEL 2: Cost per pair 34 Reorder minimum 150 Decision Variable Reorder maximum 299 Order Quantity #Pairs: (3) Quantities 300+ Purchase cost: Inventory cost: Reorder cost: Minimize total cost: Subject to L H S R H S Minimum ordered >= 150 Maximum ordered <= 299 MODEL 3: Cost per pair 32 Reorder minimum 300 Decision Variable Reorder maximum 2000 Order Quantity #Pairs: 300 Purchase cost: Inventory cost: 1200 Reorder cost: 1000 Minimize total cost: Subject to L H S R H S Minimum ordered 300 >= 300 Maximum ordered 300 <= 2000 page 13 of 17

14 Properties of the total cost function in the EOQ model: The function f(x) is concave up throughout its domain and has a unique critical point. Thus, that critical point corresponds to the global minimum. At the global minimum, the inventory and order costs are equal. The curve is very flat in the vicinity of the global minimum. (When you rely on Solver to get the solution, it may stop far away from the minimum. ) Footnote on the Keith Shoe Problem: There are three distinct total cost functions. The function for the first range (1-149) has its global minimum at x=258.2, the function for the second range ( ) has its global minimum at x=265.7, and the function for the third range (300 or more) has its global minimum at the point where x=274. Only in the second case was the global minimum in the range of interest in the problem. Footnotes on functions with one critical point: 1. If f''(x) > 0 throughout the domain of interest and f has a unique critical point when x=a, then (a,f(a)) is the global minimum point. 2. If f''(x) < 0 throughout the domain of interest and f has a unique critical point when x=a, then (a,f(a)) is the global maximum point. page 14 of 17

15 These attachments are for examples in the next set of notes (notes08): Solution and sensitivity reports for Example 4 of notes08 with an inequality constraint: A B C D E F G H Lawn King, Inc. Max advertising (thous): 2 M O D E L Decision Variables Radio Direct Mail Thousands dollars: 1 1 Maximize sales: 32 Subject to L H S R H S Advertising budget 2 <= 2 Maximize B11 By Changing B9:C9 (Initial values 0.50, 0.50) Subject to: B14 <= D14 Solver options: Assume Non-negative Use Automatic Scaling Adjustable Cells F i n a l Reduced C e l l N a m e V a l u e G r a d i e n t $B$9 Thousands dollars: Radio 1 0 $C$9 Thousands dollars: Direct Mail 1 0 Constraints F i n a l L a g r a n g e C e l l N a m e V a l u e M u l t i p l i e r $B$14 Advertising budget LHS page 15 of 17

16 Solution and sensitivity sheets for Example 6 of notes08: T M C A B C D E F G H Project 1 Project 2 Project 3 Probability constant NPV (in thousands) Engineers Available 36 M O D E L Decision Variables Project 1 Project 2 Project 3 #Engineers: Expected P(Success): Maximize Expected NPV Subject to: L H S R H S Total Engineers 36 <= 36 Maximize B17 By Changing B12:D12 (Several initial values,including 0,0,0) Subject to: B20 <= D20 Options: Assume Non-negative Use Automatic Scaling Adjustable Cells F i n a l Reduced C e l l N a m e V a l u e G r a d i e n t $B$12 #Engineers: Project $C$12 #Engineers: Project $D$12 #Engineers: Project Constraints F i n a l L a g r a n g e C e l l N a m e V a l u e M u l t i p l i e r $B$20 Total Engineers LHS page 16 of 17

17 Formulas sheets for Examples 4 and 6 of notes08: A B C D Lawn King, Inc. Max advertising (thous): 2 M O D E L Decision Variables Radio Direct Mail Thousands dollars: Maximize sales: =-2*B9^2-10*C9^2-8*B9*C9+18*B9+34*C9 Subject to L H S R H S Advertising budget =B9+C9 <= =B T M C A B C D Project 1 Project 2 Project 3 Probability constant NPV (in thousands) Engineers Available 36 M O D E L Decision Variables Project 1 Project 2 Project 3 #Engineers: Expected P(Success): =B12/(B12+B4) =C12/(C12+C4) =D12/(D12+D4) Maximize Expected NPV =SUMPRODUCT(B5:D5,B14:D14) Subject to: L H S R H S Total Engineers =SUM(B12:D12) <= =B7 page 17 of 17

x x x1

x x x1 Mathematics for Management Science Notes 08 prepared by Professor Jenny Baglivo Graphical representations As an introduction to the calculus of two-variable functions (f(x ;x 2 )), consider two graphical

More information

Mathematics for Management Science Notes 06 prepared by Professor Jenny Baglivo

Mathematics for Management Science Notes 06 prepared by Professor Jenny Baglivo Mathematics for Management Science Notes 0 prepared by Professor Jenny Baglivo Jenny A. Baglivo 00. All rights reserved. Integer Linear Programming (ILP) When the values of the decision variables in a

More information

Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization

Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization 1 of 6 Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization 1. Which of the following is NOT an element of an optimization formulation? a. Objective function

More information

Mathematics for Management Science Notes 04 prepared by Professor Jenny Baglivo

Mathematics for Management Science Notes 04 prepared by Professor Jenny Baglivo Mathematics for Management Science Notes 04 prepared by Professor Jenny Baglivo Jenny A. Baglivo 2002. All rights reserved. Application type 1: blending problems Blending problems arise when a manager

More information

Penalty Functions. The Premise Quadratic Loss Problems and Solutions

Penalty Functions. The Premise Quadratic Loss Problems and Solutions Penalty Functions The Premise Quadratic Loss Problems and Solutions The Premise You may have noticed that the addition of constraints to an optimization problem has the effect of making it much more difficult.

More information

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later Sensitivity Analysis with Data Tables Time Value of Money: A Special kind of Trade-Off: $100 @ 10% annual interest now =$110 one year later $110 @ 10% annual interest now =$121 one year later $100 @ 10%

More information

Final Exam Sample Problems

Final Exam Sample Problems MATH 00 Sec. Final Exam Sample Problems Please READ this! We will have the final exam on Monday, May rd from 0:0 a.m. to 2:0 p.m.. Here are sample problems for the new materials and the problems from the

More information

Calculus Chapter 3 Smartboard Review with Navigator.notebook. November 04, What is the slope of the line segment?

Calculus Chapter 3 Smartboard Review with Navigator.notebook. November 04, What is the slope of the line segment? 1 What are the endpoints of the red curve segment? alculus: The Mean Value Theorem ( 3, 3), (0, 0) ( 1.5, 0), (1.5, 0) ( 3, 3), (3, 3) ( 1, 0.5), (1, 0.5) Grade: 9 12 Subject: ate: Mathematics «date» 2

More information

Math 118 Final Exam December 14, 2011

Math 118 Final Exam December 14, 2011 Math 118 Final Exam December 14, 2011 Name (please print): Signature: Student ID: Directions. Fill out your name, signature and student ID number on the lines above right now before starting the exam!

More information

t g(t) h(t) k(t)

t g(t) h(t) k(t) Problem 1. Determine whether g(t), h(t), and k(t) could correspond to a linear function or an exponential function, or neither. If it is linear or exponential find the formula for the function, and then

More information

Intro to Economic analysis

Intro to Economic analysis Intro to Economic analysis Alberto Bisin - NYU 1 The Consumer Problem Consider an agent choosing her consumption of goods 1 and 2 for a given budget. This is the workhorse of microeconomic theory. (Notice

More information

1 Economical Applications

1 Economical Applications WEEK 4 Reading [SB], 3.6, pp. 58-69 1 Economical Applications 1.1 Production Function A production function y f(q) assigns to amount q of input the corresponding output y. Usually f is - increasing, that

More information

Linear Programming: Sensitivity Analysis and Interpretation of Solution

Linear Programming: Sensitivity Analysis and Interpretation of Solution 8 Linear Programming: Sensitivity Analysis and Interpretation of Solution MULTIPLE CHOICE. To solve a linear programming problem with thousands of variables and constraints a personal computer can be use

More information

1 4. For each graph look for the points where the slope of the tangent line is zero or f (x) = 0.

1 4. For each graph look for the points where the slope of the tangent line is zero or f (x) = 0. Name: Homework 6 solutions Math 151, Applied Calculus, Spring 2018 Section 4.1 1-4,5,20,23,24-27,38 1 4. For each graph look for the points where the slope of the tangent line is zero or f (x) = 0. 5.

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.053, Spring 013 Problem Set (Second Group of Students) Students with first letter of surnames I Z Due: February 1, 013 Problem Set Rules: 1. Each student

More information

Math 103: The Mean Value Theorem and How Derivatives Shape a Graph

Math 103: The Mean Value Theorem and How Derivatives Shape a Graph Math 03: The Mean Value Theorem and How Derivatives Shape a Graph Ryan Blair University of Pennsylvania Thursday October 27, 20 Math 03: The Mean Value Theorem and How Derivatives Thursday October Shape

More information

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 5

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 5 Contents 0 Review: Lines, Fractions, Exponents 3 0.1 Lines................................... 3 0.2 Fractions................................ 4 0.3 Rules of exponents........................... 5 1 Functions

More information

1 The EOQ and Extensions

1 The EOQ and Extensions IEOR4000: Production Management Lecture 2 Professor Guillermo Gallego September 16, 2003 Lecture Plan 1. The EOQ and Extensions 2. Multi-Item EOQ Model 1 The EOQ and Extensions We have explored some of

More information

Math 229 FINAL EXAM Review: Fall Final Exam Monday December 11 ALL Projects Due By Monday December 11

Math 229 FINAL EXAM Review: Fall Final Exam Monday December 11 ALL Projects Due By Monday December 11 Math 229 FINAL EXAM Review: Fall 2018 1 Final Exam Monday December 11 ALL Projects Due By Monday December 11 1. Problem 1: (a) Write a MatLab function m-file to evaluate the following function: f(x) =

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

Unit #7 : Optimization, Optimal Marginal Rates

Unit #7 : Optimization, Optimal Marginal Rates Unit #7 : Optimization, Optimal Marginal Rates Goals: Review the first derivative test and the second derivative test for identifying local maxima and minima. Distinguish global vs. local extrema. Practice

More information

Final Exam Review - Business Calculus - Spring x x

Final Exam Review - Business Calculus - Spring x x Final Exam Review - Business Calculus - Spring 2016 Name: 1. (a) Find limit lim x 1 x 1 x 1 (b) Find limit lim x 0 x + 2 4 x 1 2. Use the definition of derivative: dy dx = lim f(x + h) f(x) h 0 h Given

More information

Questions 3-6 are each weighted twice as much as each of the other questions.

Questions 3-6 are each weighted twice as much as each of the other questions. Mathematics 107 Professor Alan H. Stein December 1, 005 SOLUTIONS Final Examination Questions 3-6 are each weighted twice as much as each of the other questions. 1. A savings account is opened with a deposit

More information

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25 Math 101 Final Exam Review Revised FA17 (through section 5.6) The following problems are provided for additional practice in preparation for the Final Exam. You should not, however, rely solely upon these

More information

Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well!

Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well! Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well! x 2 1 1. Calculate lim x 1 x + 1. (a) 2 (b) 1 (c) (d) 2 (e) the limit

More information

Choice. A. Optimal choice 1. move along the budget line until preferred set doesn t cross the budget set. Figure 5.1.

Choice. A. Optimal choice 1. move along the budget line until preferred set doesn t cross the budget set. Figure 5.1. Choice 34 Choice A. Optimal choice 1. move along the budget line until preferred set doesn t cross the budget set. Figure 5.1. Optimal choice x* 2 x* x 1 1 Figure 5.1 2. note that tangency occurs at optimal

More information

ISyE 6201: Manufacturing Systems Instructor: Spyros Reveliotis Spring 2007 Solutions to Homework 1

ISyE 6201: Manufacturing Systems Instructor: Spyros Reveliotis Spring 2007 Solutions to Homework 1 ISyE 601: Manufacturing Systems Instructor: Spyros Reveliotis Spring 007 Solutions to Homework 1 A. Chapter, Problem 4. (a) D = 60 units/wk 5 wk/yr = 310 units/yr h = ic = 0.5/yr $0.0 = $0.005/ yr A =

More information

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE GÜNTER ROTE Abstract. A salesperson wants to visit each of n objects that move on a line at given constant speeds in the shortest possible time,

More information

I. More Fundamental Concepts and Definitions from Mathematics

I. More Fundamental Concepts and Definitions from Mathematics An Introduction to Optimization The core of modern economics is the notion that individuals optimize. That is to say, individuals use the resources available to them to advance their own personal objectives

More information

25 Increasing and Decreasing Functions

25 Increasing and Decreasing Functions - 25 Increasing and Decreasing Functions It is useful in mathematics to define whether a function is increasing or decreasing. In this section we will use the differential of a function to determine this

More information

36106 Managerial Decision Modeling Sensitivity Analysis

36106 Managerial Decision Modeling Sensitivity Analysis 1 36106 Managerial Decision Modeling Sensitivity Analysis Kipp Martin University of Chicago Booth School of Business September 26, 2017 Reading and Excel Files 2 Reading (Powell and Baker): Section 9.5

More information

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization March 9 16, 2018 1 / 19 The portfolio optimization problem How to best allocate our money to n risky assets S 1,..., S n with

More information

Section 3.1 Relative extrema and intervals of increase and decrease.

Section 3.1 Relative extrema and intervals of increase and decrease. Section 3.1 Relative extrema and intervals of increase and decrease. 4 3 Problem 1: Consider the function: f ( x) x 8x 400 Obtain the graph of this function on your graphing calculator using [-10, 10]

More information

Monotone, Convex and Extrema

Monotone, Convex and Extrema Monotone Functions Function f is called monotonically increasing, if Chapter 8 Monotone, Convex and Extrema x x 2 f (x ) f (x 2 ) It is called strictly monotonically increasing, if f (x 2) f (x ) x < x

More information

Math Fundamental Principles of Calculus Final - Fall 2015 December 14th, 2015

Math Fundamental Principles of Calculus Final - Fall 2015 December 14th, 2015 Math 118 - Fundamental Principles of Calculus Final - Fall 2015 December 14th, 2015 Directions. Fill out your name, signature and student ID number on the lines below right now, before starting the exam!

More information

Exam 2 Review (Sections Covered: and )

Exam 2 Review (Sections Covered: and ) Exam 2 Review (Sections Covered: 4.1-4.5 and 5.1-5.6) 1. Find the derivative of the following. (a) f(x) = 1 2 x6 3x 4 + 6e x (b) A(s) = s 1/2 ln s ln(13) (c) f(x) = 5e x 8 ln x 2. Given below is the price-demand

More information

EXAM #2 Review. Spring Name: MATH 142, Drost Section # Seat #

EXAM #2 Review. Spring Name: MATH 142, Drost Section # Seat # Spring 2010 1 EXAM #2 Review Name: MATH 142, Drost Section # Seat # 1. Katy s Kitchen has a total cost function of C(x) = x + 25 to make x jars of jam, and C(x) is measured in dollars. The revenue in dollars,

More information

Section 1.1 Notes. May 29, 2018

Section 1.1 Notes. May 29, 2018 Section 1.1 Notes May 29, 2018 Mathematical Models Goal: Recall the following facts about lines: 1) Equation: 2) Slope: 3) x-intercept: 4) y-intercept: Definition 1. Let D and R be two collections of objects.

More information

Assignment 2 Answers Introduction to Management Science 2003

Assignment 2 Answers Introduction to Management Science 2003 Assignment Answers Introduction to Management Science 00. a. Top management will need to know how much to produce in each quarter. Thus, the decisions are the production levels in quarters,,, and. The

More information

$0.00 $0.50 $1.00 $1.50 $2.00 $2.50 $3.00 $3.50 $4.00 Price

$0.00 $0.50 $1.00 $1.50 $2.00 $2.50 $3.00 $3.50 $4.00 Price Orange Juice Sales and Prices In this module, you will be looking at sales and price data for orange juice in grocery stores. You have data from 83 stores on three brands (Tropicana, Minute Maid, and the

More information

Chapter 5 Integration

Chapter 5 Integration Chapter 5 Integration Integration Anti differentiation: The Indefinite Integral Integration by Substitution The Definite Integral The Fundamental Theorem of Calculus 5.1 Anti differentiation: The Indefinite

More information

BARUCH COLLEGE MATH 2003 SPRING 2006 MANUAL FOR THE UNIFORM FINAL EXAMINATION

BARUCH COLLEGE MATH 2003 SPRING 2006 MANUAL FOR THE UNIFORM FINAL EXAMINATION BARUCH COLLEGE MATH 003 SPRING 006 MANUAL FOR THE UNIFORM FINAL EXAMINATION The final examination for Math 003 will consist of two parts. Part I: Part II: This part will consist of 5 questions similar

More information

Math 122 Calculus for Business Admin. and Social Sciences

Math 122 Calculus for Business Admin. and Social Sciences Math 122 Calculus for Business Admin. and Social Sciences Instructor: Ann Clifton Name: Exam #1 A July 3, 2018 Do not turn this page until told to do so. You will have a total of 1 hour 40 minutes to complete

More information

Morningstar Fixed-Income Style Box TM

Morningstar Fixed-Income Style Box TM ? Morningstar Fixed-Income Style Box TM Morningstar Methodology Effective Apr. 30, 2019 Contents 1 Fixed-Income Style Box 4 Source of Data 5 Appendix A 10 Recent Changes Introduction The Morningstar Style

More information

American Journal of Business Education December 2009 Volume 2, Number 9

American Journal of Business Education December 2009 Volume 2, Number 9 A MATLAB-Aided Method For Teaching Calculus-Based Business Mathematics Jiajuan Liang, University of New Haven, USA William S. Y. Pan, University of New Haven, USA ABSTRACT MATLAB is a powerful package

More information

Graphs Details Math Examples Using data Tax example. Decision. Intermediate Micro. Lecture 5. Chapter 5 of Varian

Graphs Details Math Examples Using data Tax example. Decision. Intermediate Micro. Lecture 5. Chapter 5 of Varian Decision Intermediate Micro Lecture 5 Chapter 5 of Varian Decision-making Now have tools to model decision-making Set of options At-least-as-good sets Mathematical tools to calculate exact answer Problem

More information

A Derivation of the Normal Distribution. Robert S. Wilson PhD.

A Derivation of the Normal Distribution. Robert S. Wilson PhD. A Derivation of the Normal Distribution Robert S. Wilson PhD. Data are said to be normally distributed if their frequency histogram is apporximated by a bell shaped curve. In practice, one can tell by

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit 3 Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 3: Sensitivity and Duality 3 3.1 Sensitivity

More information

Calculus for Business Economics Life Sciences and Social Sciences 13th Edition Barnett SOLUTIONS MANUAL Full download at:

Calculus for Business Economics Life Sciences and Social Sciences 13th Edition Barnett SOLUTIONS MANUAL Full download at: Calculus for Business Economics Life Sciences and Social Sciences 1th Edition Barnett TEST BANK Full download at: https://testbankreal.com/download/calculus-for-business-economics-life-sciencesand-social-sciences-1th-edition-barnett-test-bank/

More information

Issued On: 21 Jan Morningstar Client Notification - Fixed Income Style Box Change. This Notification is relevant to all users of the: OnDemand

Issued On: 21 Jan Morningstar Client Notification - Fixed Income Style Box Change. This Notification is relevant to all users of the: OnDemand Issued On: 21 Jan 2019 Morningstar Client Notification - Fixed Income Style Box Change This Notification is relevant to all users of the: OnDemand Effective date: 30 Apr 2019 Dear Client, As part of our

More information

Notation for the Derivative:

Notation for the Derivative: Notation for the Derivative: MA 15910 Lesson 13 Notes Section 4.1 (calculus part of textbook, page 196) Techniques for Finding Derivatives The derivative of a function y f ( x) may be written in any of

More information

MS-E2114 Investment Science Exercise 4/2016, Solutions

MS-E2114 Investment Science Exercise 4/2016, Solutions Capital budgeting problems can be solved based on, for example, the benet-cost ratio (that is, present value of benets per present value of the costs) or the net present value (the present value of benets

More information

f x f x f x f x x 5 3 y-intercept: y-intercept: y-intercept: y-intercept: y-intercept of a linear function written in function notation

f x f x f x f x x 5 3 y-intercept: y-intercept: y-intercept: y-intercept: y-intercept of a linear function written in function notation Questions/ Main Ideas: Algebra Notes TOPIC: Function Translations and y-intercepts Name: Period: Date: What is the y-intercept of a graph? The four s given below are written in notation. For each one,

More information

Linear Modeling Business 5 Supply and Demand

Linear Modeling Business 5 Supply and Demand Linear Modeling Business 5 Supply and Demand Supply and demand is a fundamental concept in business. Demand looks at the Quantity (Q) of a product that will be sold with respect to the Price (P) the product

More information

MLC at Boise State Polynomials Activity 3 Week #5

MLC at Boise State Polynomials Activity 3 Week #5 Polynomials Activity 3 Week #5 This activity will be discuss maximums, minimums and zeros of a quadratic function and its application to business, specifically maximizing profit, minimizing cost and break-even

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MS(QE) Syllabus for ME I (Mathematics), 2012

SYLLABUS AND SAMPLE QUESTIONS FOR MS(QE) Syllabus for ME I (Mathematics), 2012 SYLLABUS AND SAMPLE QUESTIONS FOR MS(QE) 2012 Syllabus for ME I (Mathematics), 2012 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations and Combinations, Theory

More information

INTERNATIONAL UNIVERSITY OF JAPAN Public Management and Policy Analysis Program Graduate School of International Relations

INTERNATIONAL UNIVERSITY OF JAPAN Public Management and Policy Analysis Program Graduate School of International Relations Hun Myoung Park (4/18/2018) LP Interpretation: 1 INTERNATIONAL UNIVERSITY OF JAPAN Public Management and Policy Analysis Program Graduate School of International Relations DCC5350 (2 Credits) Public Policy

More information

COMM 290 MIDTERM REVIEW SESSION ANSWER KEY BY TONY CHEN

COMM 290 MIDTERM REVIEW SESSION ANSWER KEY BY TONY CHEN COMM 290 MIDTERM REVIEW SESSION ANSWER KEY BY TONY CHEN TABLE OF CONTENTS I. Vocabulary Overview II. Solving Algebraically and Graphically III. Understanding Graphs IV. Fruit Juice Excel V. More on Sensitivity

More information

Laboratory I.9 Applications of the Derivative

Laboratory I.9 Applications of the Derivative Laboratory I.9 Applications of the Derivative Goals The student will determine intervals where a function is increasing or decreasing using the first derivative. The student will find local minima and

More information

2016 EXAMINATIONS ACCOUNTING TECHNICIAN PROGRAMME PAPER TC 3: BUSINESS MATHEMATICS & STATISTICS

2016 EXAMINATIONS ACCOUNTING TECHNICIAN PROGRAMME PAPER TC 3: BUSINESS MATHEMATICS & STATISTICS EXAMINATION NO. 16 EXAMINATIONS ACCOUNTING TECHNICIAN PROGRAMME PAPER TC : BUSINESS MATHEMATICS & STATISTICS WEDNESDAY 0 NOVEMBER 16 TIME ALLOWED : HOURS 9.00 AM - 12.00 NOON INSTRUCTIONS 1. You are allowed

More information

( ) 4 ( )! x f) h(x) = 2cos x + 1

( ) 4 ( )! x f) h(x) = 2cos x + 1 Chapter Prerequisite Skills BLM -.. Identifying Types of Functions. Identify the type of function (polynomial, rational, logarithmic, etc.) represented by each of the following. Justify your response.

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Lecture 3. Understanding the optimizer sensitivity report 4 Shadow (or dual) prices 4 Right hand side ranges 4 Objective coefficient ranges

Lecture 3. Understanding the optimizer sensitivity report 4 Shadow (or dual) prices 4 Right hand side ranges 4 Objective coefficient ranges Decision Models Lecture 3 1 Lecture 3 Understanding the optimizer sensitivity report 4 Shadow (or dual) prices 4 Right hand side ranges 4 Objective coefficient ranges Bidding Problems Summary and Preparation

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools Financial Algebra 42 Financial Algebra 42 BOE Approved 04/08/2014 1 FINANCIAL ALGEBRA 42 Financial Algebra focuses on real-world financial literacy, personal finance,

More information

Introduction to Operations Research

Introduction to Operations Research Introduction to Operations Research Unit 1: Linear Programming Terminology and formulations LP through an example Terminology Additional Example 1 Additional example 2 A shop can make two types of sweets

More information

Notes on a Basic Business Problem MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W

Notes on a Basic Business Problem MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W Notes on a Basic Business Problem MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W This simple problem will introduce you to the basic ideas of revenue, cost, profit, and demand.

More information

56:171 Operations Research Midterm Exam Solutions Fall 1994

56:171 Operations Research Midterm Exam Solutions Fall 1994 56:171 Operations Research Midterm Exam Solutions Fall 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3. Simplex

More information

UNIVERSITY OF KWAZULU-NATAL

UNIVERSITY OF KWAZULU-NATAL UNIVERSITY OF KWAZULU-NATAL EXAMINATIONS: June 006 Subject, course and code: Mathematics 34 (MATH34P Duration: 3 hours Total Marks: 00 INTERNAL EXAMINERS: Mrs. A. Campbell, Mr. P. Horton, Dr. M. Banda

More information

Online Shopping Intermediaries: The Strategic Design of Search Environments

Online Shopping Intermediaries: The Strategic Design of Search Environments Online Supplemental Appendix to Online Shopping Intermediaries: The Strategic Design of Search Environments Anthony Dukes University of Southern California Lin Liu University of Central Florida February

More information

Name Date Student id #:

Name Date Student id #: Math1090 Final Exam Spring, 2016 Instructor: Name Date Student id #: Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems

More information

Production Management Winter 2002 Odette School of Business University of Windsor. Midterm Exam 2 Solution Tuesday, March 26, 7:00 9:00 pm

Production Management Winter 2002 Odette School of Business University of Windsor. Midterm Exam 2 Solution Tuesday, March 26, 7:00 9:00 pm Name (print, please) ID Production Management 7-604 Winter 00 Odette School of Business University of Windsor Midterm Exam Solution Tuesday, March 6, 7:00 9:00 pm Instructor: Mohammed Fazle Baki Aids Permitted:

More information

The homework is due on Wednesday, September 7. Each questions is worth 0.8 points. No partial credits.

The homework is due on Wednesday, September 7. Each questions is worth 0.8 points. No partial credits. Homework : Econ500 Fall, 0 The homework is due on Wednesday, September 7. Each questions is worth 0. points. No partial credits. For the graphic arguments, use the graphing paper that is attached. Clearly

More information

Derivative Applications

Derivative Applications Derivative Applications MAC 2233 Instantaneous Rates of Change of a Function The derivative is: The slope of the tangent line at a point The instantaneous rate of change of the function Marginal Analysis

More information

Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals.

Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals. Theory of Consumer Behavior First, we need to define the agents' goals and limitations (if any) in their ability to achieve those goals. We will deal with a particular set of assumptions, but we can modify

More information

Mean-Variance Portfolio Choice in Excel

Mean-Variance Portfolio Choice in Excel Mean-Variance Portfolio Choice in Excel Prof. Manuela Pedio 20550 Quantitative Methods for Finance August 2018 Let s suppose you can only invest in two assets: a (US) stock index (here represented by the

More information

Using derivatives to find the shape of a graph

Using derivatives to find the shape of a graph Using derivatives to find the shape of a graph Example 1 The graph of y = x 2 is decreasing for x < 0 and increasing for x > 0. Notice that where the graph is decreasing the slope of the tangent line,

More information

Part I OPTIMIZATION MODELS

Part I OPTIMIZATION MODELS Part I OPTIMIZATION MODELS Chapter 1 ONE VARIABLE OPTIMIZATION Problems in optimization are the most common applications of mathematics. Whatever the activity in which we are engaged, we want to maximize

More information

56:171 Operations Research Midterm Exam Solutions October 19, 1994

56:171 Operations Research Midterm Exam Solutions October 19, 1994 56:171 Operations Research Midterm Exam Solutions October 19, 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3.

More information

14.54 International Trade Lecture 3: Preferences and Demand

14.54 International Trade Lecture 3: Preferences and Demand 14.54 International Trade Lecture 3: Preferences and Demand 14.54 Week 2 Fall 2016 14.54 (Week 2) Preferences and Demand Fall 2016 1 / 29 Today s Plan 1 2 Utility maximization 1 2 3 4 Budget set Preferences

More information

Lecture Notes on Anticommons T. Bergstrom, April 2010 These notes illustrate the problem of the anticommons for one particular example.

Lecture Notes on Anticommons T. Bergstrom, April 2010 These notes illustrate the problem of the anticommons for one particular example. Lecture Notes on Anticommons T Bergstrom, April 2010 These notes illustrate the problem of the anticommons for one particular example Sales with incomplete information Bilateral Monopoly We start with

More information

Symmetric Game. In animal behaviour a typical realization involves two parents balancing their individual investment in the common

Symmetric Game. In animal behaviour a typical realization involves two parents balancing their individual investment in the common Symmetric Game Consider the following -person game. Each player has a strategy which is a number x (0 x 1), thought of as the player s contribution to the common good. The net payoff to a player playing

More information

Lecture 10: The knapsack problem

Lecture 10: The knapsack problem Optimization Methods in Finance (EPFL, Fall 2010) Lecture 10: The knapsack problem 24.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Anu Harjula The knapsack problem The Knapsack problem is a problem

More information

AP CALCULUS AB CHAPTER 4 PRACTICE PROBLEMS. Find the location of the indicated absolute extremum for the function. 1) Maximum 1)

AP CALCULUS AB CHAPTER 4 PRACTICE PROBLEMS. Find the location of the indicated absolute extremum for the function. 1) Maximum 1) AP CALCULUS AB CHAPTER 4 PRACTICE PROBLEMS Find the location of the indicated absolute extremum for the function. 1) Maximum 1) A) No maximum B) x = 0 C) x = 2 D) x = -1 Find the extreme values of the

More information

ECON 3020 Intermediate Macroeconomics

ECON 3020 Intermediate Macroeconomics ECON 3020 Intermediate Macroeconomics Chapter 4 Consumer and Firm Behavior The Work-Leisure Decision and Profit Maximization 1 Instructor: Xiaohui Huang Department of Economics University of Virginia 1

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION. MATH 110 FINAL EXAM **Test** December 14, 2009 TEST VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number

More information

TN 2 - Basic Calculus with Financial Applications

TN 2 - Basic Calculus with Financial Applications G.S. Questa, 016 TN Basic Calculus with Finance [016-09-03] Page 1 of 16 TN - Basic Calculus with Financial Applications 1 Functions and Limits Derivatives 3 Taylor Series 4 Maxima and Minima 5 The Logarithmic

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

4. Introduction to Prescriptive Analytics. BIA 674 Supply Chain Analytics

4. Introduction to Prescriptive Analytics. BIA 674 Supply Chain Analytics 4. Introduction to Prescriptive Analytics BIA 674 Supply Chain Analytics Why is Decision Making difficult? The biggest sources of difficulty for decision making: Uncertainty Complexity of Environment or

More information

y > 2x! 4 0 > 2(0)! 4

y > 2x! 4 0 > 2(0)! 4 y > 2x! 4 0 > 2(0)! 4? 0 >!4 y 6 4 2-10 -5 5 10 x -2-4 -6 y! " 1 3 x + 3 y 6 0! 3 4 2-10 -5 5 10 x -2-4 -6 y > 2x! 4 0 >? 2(0)! 4 0 >!4 y 6 y! " 1 3 x + 3 0! 3 4 2-10 -5 5 10 x -2-4 -6 Linear Programming

More information

Mathematics for Business and Economics - Fall 2015

Mathematics for Business and Economics - Fall 2015 NAME: Mathematics for Business and Economics - Fall 2015 Final Exam, December 14, 2015 In all non-multiple choice problems you are required to show all your work and provide the necessary explanations

More information

Chapter 2 Linear programming... 2 Chapter 3 Simplex... 4 Chapter 4 Sensitivity Analysis and duality... 5 Chapter 5 Network... 8 Chapter 6 Integer

Chapter 2 Linear programming... 2 Chapter 3 Simplex... 4 Chapter 4 Sensitivity Analysis and duality... 5 Chapter 5 Network... 8 Chapter 6 Integer 目录 Chapter 2 Linear programming... 2 Chapter 3 Simplex... 4 Chapter 4 Sensitivity Analysis and duality... 5 Chapter 5 Network... 8 Chapter 6 Integer Programming... 10 Chapter 7 Nonlinear Programming...

More information

m

m Chapter 1: Linear Equations a. Solving this problem is equivalent to finding an equation of a line that passes through the points (0, 24.5) and (30, 34). We use these two points to find the slope: 34 24.5

More information

Do Not Write Below Question Maximum Possible Points Score Total Points = 100

Do Not Write Below Question Maximum Possible Points Score Total Points = 100 University of Toronto Department of Economics ECO 204 Summer 2012 Ajaz Hussain TEST 2 SOLUTIONS TIME: 1 HOUR AND 50 MINUTES YOU CANNOT LEAVE THE EXAM ROOM DURING THE LAST 10 MINUTES OF THE TEST. PLEASE

More information

2 Maximizing pro ts when marginal costs are increasing

2 Maximizing pro ts when marginal costs are increasing BEE14 { Basic Mathematics for Economists BEE15 { Introduction to Mathematical Economics Week 1, Lecture 1, Notes: Optimization II 3/12/21 Dieter Balkenborg Department of Economics University of Exeter

More information

2. Find the marginal profit if a profit function is (2x 2 4x + 4)e 4x and simplify.

2. Find the marginal profit if a profit function is (2x 2 4x + 4)e 4x and simplify. Additional Review Exam 2 MATH 2053 The only formula that will be provided is for economic lot size (section 12.3) as announced in class, no WebWork questions were given on this. km q = 2a Please note not

More information

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 38 27 Piotr P luciennik A MODIFIED CORRADO-MILLER IMPLIED VOLATILITY ESTIMATOR Abstract. The implied volatility, i.e. volatility calculated on the basis of option

More information

Chapter 6 Analyzing Accumulated Change: Integrals in Action

Chapter 6 Analyzing Accumulated Change: Integrals in Action Chapter 6 Analyzing Accumulated Change: Integrals in Action 6. Streams in Business and Biology You will find Excel very helpful when dealing with streams that are accumulated over finite intervals. Finding

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 Solutions to Problem Set Theory of Banking - Academic Year 06-7 Maria Bachelet maria.jua.bachelet@gmail.com February 4, 07 Exercise. An individual consumer has an income stream (Y 0, Y ) and can borrow

More information

Online Supplement: Price Commitments with Strategic Consumers: Why it can be Optimal to Discount More Frequently...Than Optimal

Online Supplement: Price Commitments with Strategic Consumers: Why it can be Optimal to Discount More Frequently...Than Optimal Online Supplement: Price Commitments with Strategic Consumers: Why it can be Optimal to Discount More Frequently...Than Optimal A Proofs Proof of Lemma 1. Under the no commitment policy, the indifferent

More information