Bayesian Estimation for the Centered Parameterization of the Skew-Normal Distribution

Size: px
Start display at page:

Download "Bayesian Estimation for the Centered Parameterization of the Skew-Normal Distribution"

Transcription

1 Revista Colombiaa de Estadística Jauary 2017, Volume 40, Issue 1, pp. 123 to 140 DOI: Bayesia Estimatio for the Cetered Parameterizatio of the Skew-Normal Distributio Estimació bayesiaa para la parametrizació cetrada de la distribució ormal-asimétrica Paulio Pérez-Rodríguez a, José A. Villaseñor b, Sergio Pérez c, Javier Suárez d Socioecoomía Estadística e Iformática-Estadística, Colegio de Postgraduados, Texcoco, México Abstract The skew-ormal (SN) distributio is a geeralizatio of the ormal distributio, where a shape parameter is added to adopt skewed forms. The SN distributio has some of the properties of a uivariate ormal distributio, which makes it very attractive from a practical stadpoit; however, it presets some iferece problems. Specifically, the maximum likelihood estimator for the shape parameter teds to ifiity with a positive probability. A ew Bayesia approach is proposed i this paper which allows to draw ifereces o the parameters of this distributio by usig improper prior distributios i the cetered parametrizatio for the locatio ad scale parameter ad a Beta-type for the shape parameter. Samples from posterior distributios are obtaied by usig the Metropolis-Hastigs algorithm. A simulatio study shows that the mode of the posterior distributio appears to be a good estimator i terms of bias ad mea squared error. A comparative study with similar proposals for the SN estimatio problem was udertake. Simulatio results provide evidece that the proposed method is easier to implemet tha previous oes. Some applicatios ad comparisos are also icluded. Key words: Metropolis-Hastigs Algorithm, Poit Estimatio, Prior Distributio. a PhD. perpdgo@gmail.com b PhD. jvillasr@colpos.mx c PhD. sergiop@colpos.mx d PhD. sjavier@colpos.mx 123

2 124 Paulio Pérez-Rodríguez, José A. Villaseñor, Sergio Pérez & Javier Suárez Resume La distribució Normal Asimétrica (SN) es ua geeralizació de la distribució ormal, icluye u parámetro extra que le permite adoptar formas asimétricas. La distribució SN tiee alguas de las propiedades de la distribució ormal uivariada, lo que la hace muy atractiva desde el puto de vista práctico; si embargo preseta alguos problemas de iferecia. Particularmete, el estimador de máxima verosimilitud para el parámetro de forma tiede a ifiito co probabilidad positiva. Se propoe ua solució Bayesiaa que permite hacer iferecia sobre los parámetros de esta distribució asigado distribucioes impropias e la parametrizació cetrada para el parámetro de localidad y el de escala y ua distribució tipo Beta para el parámetro de forma. Las muestras de las distribucioes posteriores se obtiee utilizado el algoritmo de Metropolis-Hastigs. U estudio de simulació muestra que la moda de la distribució posterior parece ser u bue estimador, e térmios de sesgo y error cuadrado medio. Se preseta tambié u estudio de simulació dode se compara el procedimieto propuesto cotra otros procedimietos. Los resultados de simulació provee evidecia de que el método propuesto es más fácil de implemetar que las metodologías previas. Se icluye tambié alguas aplicacioes y comparacioes. Palabras clave: algoritmo de Metropolis-Hastigs, distribucioes a priori, estimació putual. 1. Itroductio The skew-ormal distributio is a three parameter class of distributio with locatio, scale ad shape parameters, ad it cotais the ormal distributio whe the shape parameter equals zero. A cotiuous radom variable Z is said to obey the skew-ormal law with shape parameter λ R ad it is deoted by SN(λ) if its desity fuctio is: f Z (z; λ) = 2φ (z) Φ(λz)I (, ) (z), (1) where φ( ) ad Φ( ) deote the desity ad distributio fuctios of a stadard ormal variable. If Y is a radom variable defied by Y = ξ + ωz, with ξ R, ω R +, the Y is said to have a skew-ormal distributio with locatio-scale (ξ, ω) parameters ad shape parameter λ, ad it is deoted by Y SN D (ξ, ω, λ). The subscript D idicates the use of the direct parametrizatio (Azzalii 1985). The desity fuctio of Y is: f Y (y; ξ, ω, λ) = 2 1 ( ) [ y ξ ω φ Φ λ ω ( y ξ ω )] I (, ) (y). (2) Revista Colombiaa de Estadística 40 (2017)

3 Bayesia Estimatio for the Skew-Normal Distributio 125 The mea ad variace of desity i (1) are give by: E(Z) = V ar(z) = 1 2 π 2 λ π, 1 + λ 2 λ λ 2. The coefficiet of skewess of Y is give by: γ 1 = κ 3 = 4 π κ 3/2 2 2 (E(Z)) 3 {1 (E(Z)) 2 } = 4 π 3/2 2 ( 2 π ( 1 2 π ) 3 λ 1+λ 2 ) 3/2, λ 2 1+λ 2 where κ 2, κ 3 are the secod ad third degree cumulats, respectively. The rage of γ 1 is ( c 1, c 1 ) where c 1 = 2(4 π)/(π 2) 3/ The maximum likelihood estimatio of parameters is troublesome. Although the likelihood fuctio ca be calculated without much trouble, several problems arise o maximizig it. For example, if ξ = 0, ω = 1, ad all the observatios are positive (or egative), the the likelihood fuctio is mootoe, ad its maximum occur o the upper (lower) boudary of the parameter space, correspodig to a o fiite estimate of λ. I the case of ukow values for the parameters ξ, ω, λ, the problem ca be eve more difficult because there is always a iflexio poit at λ = 0 for the likelihood fuctio, leadig to the Hessia sigular (Chioga 1998, Azzalii & Geto 2008). The secod problem is solved by usig a cetered parametrizatio of the desity fuctio. The first is a ope problem ad some proposals already exist: Sartori s (2006) stad out, who uses a modificatio of the score fuctio to estimate the λ parameter, combied with maximum likelihood estimators of ξ ad ω. The cetered parametrizatio [Azzalii (1985), Azzalii & Capitaio (1999)] is obtaied as follows give Z SN(λ), the radom variable Y, Y = µ + σ ( Z E(Z) V ar(z) ), is said to be a skew-ormal variable with cetered parameters µ, σ, γ 1, E(Y ) = µ ad V ar(y ) = σ 2. I this case the usual otatio is Y SN C (µ, σ, γ 1 ). Here γ 1 is the skewess parameter of both Y ad Z. Oe ca easily chage from oe parametrizatio to aother by usig the idetities i (3): Revista Colombiaa de Estadística 40 (2017)

4 126 Paulio Pérez-Rodríguez, José A. Villaseñor, Sergio Pérez & Javier Suárez ( 2 λ = sg(γ 1 ) ( 2 ξ = µ σ ω = σ { 1 + ) { 1/3 ( ) 2/3 ( ) } 1/2 γ 1 1/ π π + γ 1 2/3 4 π π 1, ) 1/3, (3) 4 π γ 1 ( 2 4 π γ 1 ) 2/3 } 1/2. Based o the Bayesia approach, a solutio was proposed by Liseo & Loperfido (2006), who focused their iferece o λ, cosiderig ξ, ω as uisace parameters i the direct parameterizatio. Wiper, Giró & Pewsey (2008) also studied the problem i the case of the half-ormal distributio. I this paper we propose a ew Bayesia approach based o the cetered parametrizatio to deal with the estimatio of the shape parameter i the skewormal family. The proposed methodology applies MCMC simulatio techiques by usig the Metropolis Hastigs algorithm (Metropolis, Rosembluth, Teller & Teller 1953). From a classical poit of view, there are at least two reasos to cosider the cetered parametrizatio : i) it provides a more practical iterpretatio of the parameters, ad ii) it solves the well kow problems of the likelihood fuctio uder direct parametrizatio. Arellao-Valle & Azzalii (2008) stated that the stadard likelihood based methods ad also the Bayesia methods are problematic whe they are applied to iferece o the parameters i the direct paramaerizatio ear λ = 0. This is due to the fact that the direct paramerizatio is ot umerically suitable for estimatio. The structure of this paper is the followig: I sectio 2 a Bayesia method is proposed to obtai poit estimates for the cetered parameters, which ca be back trasformed usig the equatios i (3) to obtai poit estimates of the direct parameters. Sectio 3 cotais results from a simulatio study cocerig the proposed methodology. Applicatios are preseted i sectio 4. Some coclusios are icluded i sectio Bayesia Estimatio Let Y = (Y 1,..., Y ) be a radom sample from the skew-ormal distributio with parameters µ, σ, ad γ 1, ad suppose we wish to obtai Bayesia estimators for the parameters. Followig Azzalii (1985), Azzalii & Capitaio (1999), ad Pewsey (2000) we propose to use the cetered parametrizatio to obtai Bayesia estimators for the parameters of iterest. We propose the followig prior distributios: Revista Colombiaa de Estadística 40 (2017)

5 Bayesia Estimatio for the Skew-Normal Distributio 127 p(µ) 1, p(σ) 1 σ, ( ) a 1 ( γ1 + c 1 p(γ 1 ) 1 γ ) b c 1 I ( c1,c1)(γ 1 ). 2c 1 2c 1 Note that we have assiged the stadard prior for locatio-scale parameters to µ ad σ (Box & Tiao 1973). I the case of γ 1, we kow that it takes values o ( c 1, c 1 ), so if W Beta(a, b), the the radom variable γ 1 = 2c 1 W c 1 has a desity the kerel of which is show above. The prior desity for γ 1 depeds o two hyperparameters (a ad b) ad could lead to a rich varieties of shapes, just as i the case of the Beta distributio. I this paper, we set a = b = 1, which leads to a uiform distributio o ( c 1, c 1 ), but other values ca be selected, allowig the icorporatio of prior iformatio. The uiform prior is o-iformative, but proper. A ivariat ad o iformative prior for γ 1 could be derived usig a approach similar to that employed by Liseo & Loperfido (2006); however, that approach is complicated from computatioal poit of view because it ivolves umerical itegratio i the -dimesioal space. The priors proposed i this work allow the implemetatio of the well kow Metropolis-Hastigs algorithm i order to sample the posterior desity. As the sample size icreases, the effect of the prior becomes less relevat. The, uder the assumptio of idepedece, the joit prior desity i the cetered parameterizatio is: p(µ, σ, γ 1 ) 1 σ ( γ1 + c 1 2c 1 ) a 1 ( 1 γ ) b c 1 I ( c1,c1)(γ 1 )I (0, )(σ). 2c 1 Applyig Bayes theorem, from (2) ad (3) the posterior joit distributio of µ, σ, γ 1 is: { } p(µ, σ, γ 1 y) f Yi (y i ; µ, σ, γ 1 ) p(µ, σ, γ 1 ). i=1 The implied prior distributio ca be obtaied o the parameters i the origial parameter space by the radom variable trasformatio formulae, for which the iverse trasformatio turs out to be: Revista Colombiaa de Estadística 40 (2017)

6 128 Paulio Pérez-Rodríguez, José A. Villaseñor, Sergio Pérez & Javier Suárez T 1 ) 1/3 ( 2 µ = w 1 (ξ, ω, λ) = ξ + σ 4 π γ 1 [ ( ) ] 2/3 1/2 2 σ = w 2 (ξ, ω, λ) = ω π γ 1 γ 1 = w 3 (ξ, ω, λ) = 4 π 2 ( 2 π ( 1 2 π ) 3 λ 1+λ 2 ) 3/2, λ 2 1+λ 2 ad its Jacobia is [ J = 12 4 π λ 1 + ( λ ) 1 2 ( ) ] 2/3 1/2 2 ( 4 π g (λ) 1 λ 2 ( λ ) ) ( π π 3 2 ( λ ) 1 2 λ + 1 π ( 2 π ) 3 ( λ λ 2 π λ 2 λ λ 2 ) 3/2 1 + λ 2 ) 1 ad, therefore the implied joit prior desity i the origial parametrizatio is give by p (ξ, ω, λ) p µ,σ,γ1 (w 1 (ξ, ω, λ), w 2 (ξ, ω, λ), w 3 (ξ, ω, λ)) J. This implied origial parameterized joit prior desity is quite differet from the oe used by Liseo & Loperfido (2006). To obtai the margial posterior distributios of iterest p(µ y), p(σ y), p(γ 1 y) it is ecessary to use umerical based itegratio as the Markov Chai Mote Carlo techiques. I the case of the Gibbs sampler, it is ecessary to have the complete coditioals p(µ σ, γ 1, y), p(σ µ, γ 1, y), p(γ 1 µ, σ, y) to implemet it; however, their closed forms are ot available, therefore we propose to use the Metropolis-Hastigs algorithm (e.g. Metropolis et al. 1953, Chib & Greeberg 1995). To apply the Metropolis-Hastigs algorithm, the cadidate geeratig distributio has to be selected first. Oe has to be very careful i this step sice a iadequate selectio of such a distributio ca cause the Metropolis-Hastigs algorithm to have a poor performace due to a high rejectio rate. Pewsey (2000) obtaied large sample theory results for the momet s estimators from the cetered parametrizatio. For Y SN C (µ, σ, γ 1 ), let Revista Colombiaa de Estadística 40 (2017)

7 Bayesia Estimatio for the Skew-Normal Distributio 129 β 2 = 3 + τ 4 (π 3), β 3 = 10γ 1 + τ 5 (3π 2 40π + 96)/4, β 4 = 15 { 1 + τ 4 (2π 6) } τ 6 (9π 2 80π + 160)/2, where τ = (2/(4 π)γ 1 ) 1/3. By usig the delta method, Pewsey (2000) obtaied: V ar( µ) = σ 2 /, V ar( σ) = σ 2 (β 2 1)/4 + O( 3/2 ), V ar( γ 1 ) = { 9 6β 2 3γ 1 β 3 + β 4 + γ 2 1(35 + 9β 2 )/4 } / + O( 3/2 ), Cov( µ, σ) = σ 2 γ 1 /2 + O( 3/2 ), Cov( µ, γ 1 ) = σ(β 2 3 3γ 2 1/2)/ + O( 3/2 ), Cov( σ, γ 1 ) = σ {2β 3 γ 1 (5 + 3β 2 )} /4 + O( 3/2 ), where µ, σ, γ 1 are the momet estimators of µ, σ ad γ 1. As a cosequece of the defiitio of the momet estimators, Slutsky s Theorem ad the Cetral Limit Theorem, the joit distributio of the estimators is asymptotically trivariate ormal. We ca use these results to select the multivariate ormal distributio as the cadidate geerator i the Metropolis-Hastigs algorithm. To star the Metropolis-Hastigs algorithm, the trivariate ormal distributio N 3 ( θ, Σ) is used as a proposal desity, where: Σ = V ar( µ) Cov( µ, σ) Cov( µ, γ 1 ) Cov( µ, σ) V ar( σ) Cov( σ, γ1 ) Cov( µ, γ1 ) Cov( σ, γ1 ), (4) V ar( γ1 ) ad θ = ( µ, σ, γ 1 ) are the momet s estimators of (µ, σ, γ 1 ) i the cetered parametrizatio. The variaces ad covariaces i (4) are obtaied by pluggig i the parameter estimates ito the variace ad covariace formulae give by Pewsey (2000). It is importat to ote that Σ i (4) ca be adjusted i order to mimic the posterior distributio (Carli & Louis 2000). I this paper, routies were writte i the R software (R Core Team 2015) to estimate the posterior distributios of µ, σ, γ 1. These routies are desiged to update the covariace matrix after havig obtaied s Markov Chai Mote Carlo samples from the parameters of iterest. I this work we set s = 1, 000. The variace covariace matrix is estimated as: Σ = 1 s s ( θj θ ) ( θ j θ ), j=1 where j idexes the Markov Chai Mote Carlo samples, θ = 1 j=1 θ j ad θ j is the j-th Markov Chai Mote Carlo sample. Oce the variace covariace-matrix Revista Colombiaa de Estadística 40 (2017)

8 130 Paulio Pérez-Rodríguez, José A. Villaseñor, Sergio Pérez & Javier Suárez is adjusted, the N 3 ( θ, Σ) is used as the proposal distributio. Due to the fact that σ is positive ad γ 1 is restricted to the iterval ( c 1, c 1 ), iadmissible values ca be avoided simply by rejectig samples that do ot meet these coditios. I order to verify the covergece of the Metropolis-Hastigs algorithm, the Gelma & Rubi (1992) covergece test is used. 3. Simulatio Study I this sectio, we preset results from a simulatio study cocerig the proposed Bayesia procedure described i the previous sectio. Samples of size = 20, 50 ad 100 were simulated from SN C (µ, σ, γ 1 ) for differet values of µ, σ ad γ 1. A compariso with the method of momets (Pewsey 2000) ad modified maximum likelihood estimators (Sartori 2006) i terms of the bias ad the mea squared error is also icluded. For this compariso, the estimates i the direct parameterizatio were trasformed to the cetered parameterizatio. Next, the algorithm used to estimate the bias ad mea squared error usig the Bayesia approach is briefly described. 1. Set i = Set (µ, σ, γ 1 ). 3. Geerate a radom sample of size from SN C (µ, σ, γ 1 ). 4. Estimate (µ, σ, γ 1 ) usig the method of momets. 5. Obtai the iitial variace-covariace estimator usig the Pewsey s (2000) result. a) Geerate a trivariate ormal sample usig the results of steps 4) ad 5). b) Reject the samples that do ot meet the coditios: σ > 0 ad γ 1 ( c 1, c 1 ), or keep the samples that meet the coditios to select oe with the Metropolis algorithm. c) Repeat steps a) ad b), B = 30, 000 times; update the variace-covariace matrix of the proposed distributio after 1,000 iteratios. d) Obtai the margial posterior desities of (µ, σ, γ 1 ); discard the first 25,000 iteratios (bur-i). e) Obtai the mode of the margial posterior desity of (µ, σ, γ 1 ) usig the results i step d), say (ˆµ i, ˆσ i, ˆγ 1,i ). 6. Set i = i Repeat steps 3 to 6, 5,000 times. 8. Obtai the mea of ˆµ 1,..., ˆµ 5,000, ˆσ 1,..., ˆσ 5,000, ˆγ 1,1,..., ˆγ 1,5000. Revista Colombiaa de Estadística 40 (2017)

9 Bayesia Estimatio for the Skew-Normal Distributio Compute the bias ad mea squared error of ˆµ, ˆσ ad ˆγ 1. The algorithm to estimate the bias ad mea squared error for the estimators obtaied usig the method of momets is as follows: 1. Set i = Set (µ, σ, γ 1 ). 3. Geerate a radom sample of size from SN C (µ, σ, γ 1 ). 4. Obtai the momet estimators of (µ, σ, γ 1 ) usig Pewsey s (2000) results, say (ˆµ i, ˆσ i, ˆγ 1,i ). 5. Set i = i Repeat steps 3 to 6, 5,000 times. 7. Obtai the mea of µ 1,..., µ 5,000, σ 1,..., σ 5,000, γ 1,1,..., γ 1, Compute the bias ad mea squared error of µ, σ ad γ 1. The algorithm to estimate the bias ad mea squared error for the estimators obtaied usig the modified maximum likelihood (Sartori 2006) is aalogous to that used i the momet s estimator case. However, the estimates i the direct parameterizatio were trasformed to the cetered parameterizatio before computig the bias ad the mea squared error. Tables 1-3 preset the bias ad mea squared error obtaied whe usig the Bayesia approach, the method of momets, ad the modified maximum likelihood method respectively. I all the cases cosidered the bias ad the mea squared error decrease as the sample size icreases for the three methods. The bias for the locatio ad scale parameters are small i geeral. Sartori (2006) poited out that the bias for the shape parameter i the skew-ormal distributio has a lower asymptotic bias tha the maximum likelihood estimator. Revista Colombiaa de Estadística 40 (2017)

10 132 Paulio Pérez-Rodríguez, José A. Villaseñor, Sergio Pérez & Javier Suárez Table 1: Bias ad mea squared error for Bayesia poit estimators. The estimates for µ, σ, ad γ 1 were obtaied from 5,000 simulated samples of size from SN C(µ, σ, γ 1). The mode of the margial posterior desities was used as a poit estimate of the true parameters. µ = , σ = , γ 1 = E(ˆµ µ) E(ˆσ σ) E(ˆγ 1 γ 1 ) E(ˆµ µ) 2 E(ˆσ σ) 2 E(ˆγ 1 γ 1 ) µ = , σ = , γ 1 = E(ˆµ µ) E(ˆσ σ) E(ˆγ 1 γ 1 ) E(ˆµ µ) 2 E(ˆσ σ) 2 E(ˆγ 1 γ 1 ) µ = , σ = , γ 1 = E(ˆµ µ) E(ˆσ σ) E(ˆγ 1 γ 1 ) E(ˆµ µ) 2 E(ˆσ σ) 2 E(ˆγ 1 γ 1 ) µ = , σ = , γ 1 = E(ˆµ µ) E(ˆσ σ) E(ˆγ 1 γ 1 ) E(ˆµ µ) 2 E(ˆσ σ) 2 E(ˆγ 1 γ 1 ) µ = , σ = , γ 1 = E(ˆµ µ) E(ˆσ σ) E(ˆγ 1 γ 1 ) E(ˆµ µ) 2 E(ˆσ σ) 2 E(ˆγ 1 γ 1 ) µ = , σ = , γ 1 = E(ˆµ µ) E(ˆσ σ) E(ˆγ 1 γ 1 ) E(ˆµ µ) 2 E(ˆσ σ) 2 E(ˆγ 1 γ 1 ) Revista Colombiaa de Estadística 40 (2017)

11 Bayesia Estimatio for the Skew-Normal Distributio 133 Table 2: Bias ad mea squared error for modified maximum likelihood estimators (Sartori, 2006). The estimates for µ, σ, ad γ 1 were obtaied from 5,000 simulated samples of size from SN C(µ, σ, γ 1). µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) Revista Colombiaa de Estadística 40 (2017)

12 134 Paulio Pérez-Rodríguez, José A. Villaseñor, Sergio Pérez & Javier Suárez Table 3: Bias ad mea squared error for momet estimates (Pewsey, 2000). The estimates for µ, σ, ad γ 1 were obtaied from 5,000 simulated samples of size from SN C(µ, σ, γ 1). µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) µ = , σ = , γ 1 = E( µ µ) E( σ σ) E( γ 1 γ 1 ) E( µ µ) 2 E( σ σ) 2 E( γ 1 γ 1 ) Revista Colombiaa de Estadística 40 (2017)

13 Bayesia Estimatio for the Skew-Normal Distributio Some Examples I this sectio, we preset three examples of the proposed Bayesia method. For each example, we estimate the margial posterior desities of µ, σ, ad γ 1 usig three parallel Metropolis samplig chais; each are ru for 50,000 iteratios ad a bur-i period of 25,000 iteratios. I all the cases the proposal acceptace rate was at least 30%. Covergece was checked by ispectig trace plots ad applyig the Gelma & Rubi (1992) test Example 1: The Frotier Data The data i this example correspods to = 50 radom umbers geerated from SN D (0, 1, 5) or equivaletly SN C (0.7824, , ). The data are available withi the R s s package (Azzalii 2016). The maximum of the likelihood fuctio occurs o the upper boudary of the parameter space, correspodig to a ifiite estimate of λ. So, oe could expect to obtai a estimate ear for γ 1. Figure 1 shows histograms of simulated draws from the posterior distributio for µ, σ, ad γ 1. Table 4 shows the posterior summaries for µ, σ, ad γ 1. If the posterior mode of the margial posterior distributio is used for estimatio purposes, the ˆµ = , ˆσ = , ˆγ 1 = Note that those poit estimates are similar to those obtaied with the method proposed by Sartori (2006), that is µ = ( ), σ = (0.0777), γ 1 = (0.0570), where the values i paretheses are the stadard errors. Table 5 shows the result for the Gelma & Rubi s test. We used three parallel Metropolis samplig chais with differet iitial values. Approximated covergece is diagosed whe the upper C.I. limit is close to 1. Table 4: Posterior summary for the frotier data. Quatile 2.5% Media Mea Mode Sd Quatile 97.5% µ σ γ Table 5: Results of the covergece test (Gelma & Rubi 1992). Potetial Scale Reductio Factors Poit est. Upper C.I. µ σ γ Multivariate psrf 1.03 Revista Colombiaa de Estadística 40 (2017)

14 136 Paulio Pérez-Rodríguez, José A. Villaseñor, Sergio Pérez & Javier Suárez a) µ b) σ c) γ1 Figure 1: Histogram of simulated draws from the posterior distributios for a)µ, b)σ ad c)γ Example 2: Sartori s Data The data i Table 6 are 20 radom umbers from SN D (0, 1, 10) or equivaletly SN C (0.7939, , ) published i Sartori s article (2006). The usual maximum likelihood estimator for λ ad that obtaied by usig Sartori s method are both fiite. Table 6: Sartori s data Figure 2 shows the histograms of simulated draws from the posterior distributio for µ, σ ad γ 1. Table 7 shows the posterior summaries for the mea, stadard deviatio, ad the coefficiet of skewess. Whe the posterior mode of the margial posterior distributio is used as poit estimate, the ˆµ = , ˆσ = , ˆγ 1 = Note that those poit estimates are similar to those obtaied with the method proposed by Sartori (2006): that is µ = (0.2376), σ = (0.1171), γ 1 = (0.3884). Revista Colombiaa de Estadística 40 (2017)

15 Bayesia Estimatio for the Skew-Normal Distributio 137 a) µ b) σ c) γ1 Figure 2: Histogram of simulated draws from the posterior distributios for a)µ, b)σ ad c)γ 1. Table 7: Posterior summary Sartori s data. Quatile 2.5% Media Mea Mode Sd Quatile 97.5% µ σ γ Example 3: Half-Normal Case Perhaps, oe of the hardest cases to estimate the parameters of the SN D (0, 1, λ) is whe λ is large. Because it is kow that as λ teds to ifiity, ad the SN D (0, 1, λ) teds to the half-ormal desity, we test the proposed estimatio procedure for the half-ormal case ad compared it with the results of Wiper et al. (2008). I this case, we expect to obtai a estimate ear for γ 1. I Table 8, we preset the simulatio results for the proposed estimatio method whe a sample comes from a half-ormal radom variable with parameters ξ = 0, η = 1; HN(0, 1). This is approximately a SN C (0.7979, , ). The poit estimate for γ 1 is very close to the expected value, , whe = 50, 100; this result is a good oe because if oe graphed together the halfor- Revista Colombiaa de Estadística 40 (2017)

16 138 Paulio Pérez-Rodríguez, José A. Villaseñor, Sergio Pérez & Javier Suárez Table 8: Performace of the proposed estimatio method whe a sample comes from a HN(0, 1). The mea square error (mse) ad bias are obtaied whe the mode of the margial posterior desities is used as a poit estimate of µ = , σ = , γ 1 = Results are based o 5,000 samples of size. E(ˆµ µ) E(ˆσ σ) E(ˆγ 1 γ 1 ) E(ˆµ µ) 2 E(ˆσ σ) 2 E(ˆγ 1 γ 1 ) mal ad the SN C (0.7979, , ) desities, the we would ot be able to distiguish betwee the two desities. Results show that the bias ad mea squared error of the ˆγ 1 teds to zero as icreases, which provides evidece that the proposed estimator is cosistet (Table 8). Although the followig is ot a fair compariso because i the Wiper s case oly two parameters are estimated while i the SN case three parameters are estimated, at least we have a idea how well the proposed estimator is workig i this case. For the locatio parameter, the proposed estimator seems to be better sice its mea squared error is smaller tha the oe proposed by Wiper et al. s (2008). For the scale parameter, the Wiper et al. s (2008) estimator seems to be better tha the oe proposed i this paper (Table 9). Table 9: Estimated bias ad mea square error of the Bayesia posterior mea estimators whe a sample comes from HN(0, 1). Take from Wiper s et al. (2008) results. E(ˆξ ξ) E(ˆη η) E(ˆξ ξ) 2 E(ˆη η) Cocludig Remarks The simulatio results i Sectio 3 provide evidece o the advatages of usig the Metropolis Hastigs algorithm to estimate the parameters of the skew ormal family. The results from a simulatio study show that the bias ad the mea squared error decreases as the sample size icreases. Also, it seems that the mode appears to be a precise sytetic idex of the posterior distributio. It turs out that the estimates provided by the ew methodology for the shape parameter are fiite i compariso with the estimates obtaied by usig the direct parameterizatio ad the maximum likelihood method, which ca lead to covergece problems. Sice we are usig the Bayesia approach, it is possible to obtai HPD for the parameters of iterest, similarly to Wiper et al. (2008). Revista Colombiaa de Estadística 40 (2017)

17 Bayesia Estimatio for the Skew-Normal Distributio 139 [ Received: Jauary 2016 Accepted: November 2016 ] Refereces Arellao-Valle, R. B. & Azzalii, A. (2008), The cetred parametrizatio for the multivariate skew-ormal distributio, Joural of Multivariate Aalysis 99, Azzalii, A. (1985), A class of distributios which icludes the ormal oes, Scadiavia Joural of Statistics 12, Azzalii, A. (2016), The R package s: The Skew-Normal ad Skew-t distributios (versio 1.4-0), Uiversità di Padova, Italia. * Azzalii, A. & Capitaio, A. (1999), Statistical applicatios of the multivariate skew ormal distributio, Joural of the Royal Statistical Society 61, Azzalii, A. & Geto, M. G. (2008), Robust likelihood methods based o the skew-t ad related distributios, Iteratioal Statistical Review 76, Box, G. & Tiao, G. (1973), Bayesia iferece i statistical aalysis, Addiso- Wesley series i behavioral sciece: quatitative methods, Addiso-Wesley Pub. Co. Carli, B. P. & Louis, T. A. (2000), Bayes ad Empirical Bayes Methods for Data Aalysis, secod ed, Chapma - Hall/CRC, New York. Chib, S. & Greeberg, E. (1995), Uderstadig the Metropolis-Hastigs Algorithm, The America Statisticia 49(4), Chioga, M. (1998), Some results o the scalar skew-ormal distributio, Joural of the Italia Statistical Society 7, Gelma, A. & Rubi, D. B. (1992), Iferece from iterative simulatio usig multiple sequeces, Statistical Sciece 7, Liseo, B. & Loperfido, N. (2006), A ote o referece priors for the scalar skewormal distributio, Joural of Statistical Plaig ad Iferece 136, Metropolis, N., Rosembluth, A. W., Teller, M. & Teller, E. (1953), Equatios of state calculatios by fast computig machies, Joural of Chememical Physics 21, Pewsey, A. (2000), Problems of iferece for Azzalii s skew-ormal distributio, Joural of Applied Statistics 27, Revista Colombiaa de Estadística 40 (2017)

18 140 Paulio Pérez-Rodríguez, José A. Villaseñor, Sergio Pérez & Javier Suárez R Core Team (2015), R: A Laguage ad Eviromet for Statistical Computig, R Foudatio for Statistical Computig, Viea, Austria. * Sartori, N. (2006), Bias prevetio of maximum likelihood estimates for scalar skew ormal ad skew t distributios, Joural of Statistical Plaig ad Iferece 136, Wiper, M., Giró, F. J. & Pewsey, A. (2008), Objective Bayesia iferece for the half-ormal ad half-t distributios, Commuicatios i Statistics-Theory ad Methods 37(20), Revista Colombiaa de Estadística 40 (2017)

Bayes Estimator for Coefficient of Variation and Inverse Coefficient of Variation for the Normal Distribution

Bayes Estimator for Coefficient of Variation and Inverse Coefficient of Variation for the Normal Distribution Iteratioal Joural of Statistics ad Systems ISSN 0973-675 Volume, Number 4 (07, pp. 7-73 Research Idia Publicatios http://www.ripublicatio.com Bayes Estimator for Coefficiet of Variatio ad Iverse Coefficiet

More information

5. Best Unbiased Estimators

5. Best Unbiased Estimators Best Ubiased Estimators http://www.math.uah.edu/stat/poit/ubiased.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 5. Best Ubiased Estimators Basic Theory Cosider agai

More information

An Empirical Study of the Behaviour of the Sample Kurtosis in Samples from Symmetric Stable Distributions

An Empirical Study of the Behaviour of the Sample Kurtosis in Samples from Symmetric Stable Distributions A Empirical Study of the Behaviour of the Sample Kurtosis i Samples from Symmetric Stable Distributios J. Marti va Zyl Departmet of Actuarial Sciece ad Mathematical Statistics, Uiversity of the Free State,

More information

Parametric Density Estimation: Maximum Likelihood Estimation

Parametric Density Estimation: Maximum Likelihood Estimation Parametric Desity stimatio: Maimum Likelihood stimatio C6 Today Itroductio to desity estimatio Maimum Likelihood stimatio Itroducto Bayesia Decisio Theory i previous lectures tells us how to desig a optimal

More information

Statistics for Economics & Business

Statistics for Economics & Business Statistics for Ecoomics & Busiess Cofidece Iterval Estimatio Learig Objectives I this chapter, you lear: To costruct ad iterpret cofidece iterval estimates for the mea ad the proportio How to determie

More information

A Note About Maximum Likelihood Estimator in Hypergeometric Distribution

A Note About Maximum Likelihood Estimator in Hypergeometric Distribution Comuicacioes e Estadística Juio 2009, Vol. 2, No. 1 A Note About Maximum Likelihood Estimator i Hypergeometric Distributio Ua ota sobre los estimadores de máxima verosimilitud e la distribució hipergeométrica

More information

point estimator a random variable (like P or X) whose values are used to estimate a population parameter

point estimator a random variable (like P or X) whose values are used to estimate a population parameter Estimatio We have oted that the pollig problem which attempts to estimate the proportio p of Successes i some populatio ad the measuremet problem which attempts to estimate the mea value µ of some quatity

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpeCourseWare http://ocwmitedu 430 Itroductio to Statistical Methods i Ecoomics Sprig 009 For iformatio about citig these materials or our Terms of Use, visit: http://ocwmitedu/terms 430 Itroductio

More information

A random variable is a variable whose value is a numerical outcome of a random phenomenon.

A random variable is a variable whose value is a numerical outcome of a random phenomenon. The Practice of Statistics, d ed ates, Moore, ad Stares Itroductio We are ofte more iterested i the umber of times a give outcome ca occur tha i the possible outcomes themselves For example, if we toss

More information

5 Statistical Inference

5 Statistical Inference 5 Statistical Iferece 5.1 Trasitio from Probability Theory to Statistical Iferece 1. We have ow more or less fiished the probability sectio of the course - we ow tur attetio to statistical iferece. I statistical

More information

Lecture 4: Parameter Estimation and Confidence Intervals. GENOME 560 Doug Fowler, GS

Lecture 4: Parameter Estimation and Confidence Intervals. GENOME 560 Doug Fowler, GS Lecture 4: Parameter Estimatio ad Cofidece Itervals GENOME 560 Doug Fowler, GS (dfowler@uw.edu) 1 Review: Probability Distributios Discrete: Biomial distributio Hypergeometric distributio Poisso distributio

More information

Research Article The Probability That a Measurement Falls within a Range of n Standard Deviations from an Estimate of the Mean

Research Article The Probability That a Measurement Falls within a Range of n Standard Deviations from an Estimate of the Mean Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 70806, 8 pages doi:0.540/0/70806 Research Article The Probability That a Measuremet Falls withi a Rage of Stadard Deviatios

More information

Chapter 8. Confidence Interval Estimation. Copyright 2015, 2012, 2009 Pearson Education, Inc. Chapter 8, Slide 1

Chapter 8. Confidence Interval Estimation. Copyright 2015, 2012, 2009 Pearson Education, Inc. Chapter 8, Slide 1 Chapter 8 Cofidece Iterval Estimatio Copyright 2015, 2012, 2009 Pearso Educatio, Ic. Chapter 8, Slide 1 Learig Objectives I this chapter, you lear: To costruct ad iterpret cofidece iterval estimates for

More information

Combining imperfect data, and an introduction to data assimilation Ross Bannister, NCEO, September 2010

Combining imperfect data, and an introduction to data assimilation Ross Bannister, NCEO, September 2010 Combiig imperfect data, ad a itroductio to data assimilatio Ross Baister, NCEO, September 00 rbaister@readigacuk The probability desity fuctio (PDF prob that x lies betwee x ad x + dx p (x restrictio o

More information

Lecture 4: Probability (continued)

Lecture 4: Probability (continued) Lecture 4: Probability (cotiued) Desity Curves We ve defied probabilities for discrete variables (such as coi tossig). Probabilities for cotiuous or measuremet variables also are evaluated usig relative

More information

18.S096 Problem Set 5 Fall 2013 Volatility Modeling Due Date: 10/29/2013

18.S096 Problem Set 5 Fall 2013 Volatility Modeling Due Date: 10/29/2013 18.S096 Problem Set 5 Fall 2013 Volatility Modelig Due Date: 10/29/2013 1. Sample Estimators of Diffusio Process Volatility ad Drift Let {X t } be the price of a fiacial security that follows a geometric

More information

Today: Finish Chapter 9 (Sections 9.6 to 9.8 and 9.9 Lesson 3)

Today: Finish Chapter 9 (Sections 9.6 to 9.8 and 9.9 Lesson 3) Today: Fiish Chapter 9 (Sectios 9.6 to 9.8 ad 9.9 Lesso 3) ANNOUNCEMENTS: Quiz #7 begis after class today, eds Moday at 3pm. Quiz #8 will begi ext Friday ad ed at 10am Moday (day of fial). There will be

More information

AY Term 2 Mock Examination

AY Term 2 Mock Examination AY 206-7 Term 2 Mock Examiatio Date / Start Time Course Group Istructor 24 March 207 / 2 PM to 3:00 PM QF302 Ivestmet ad Fiacial Data Aalysis G Christopher Tig INSTRUCTIONS TO STUDENTS. This mock examiatio

More information

1 Random Variables and Key Statistics

1 Random Variables and Key Statistics Review of Statistics 1 Radom Variables ad Key Statistics Radom Variable: A radom variable is a variable that takes o differet umerical values from a sample space determied by chace (probability distributio,

More information

Introduction to Probability and Statistics Chapter 7

Introduction to Probability and Statistics Chapter 7 Itroductio to Probability ad Statistics Chapter 7 Ammar M. Sarha, asarha@mathstat.dal.ca Departmet of Mathematics ad Statistics, Dalhousie Uiversity Fall Semester 008 Chapter 7 Statistical Itervals Based

More information

ECON 5350 Class Notes Maximum Likelihood Estimation

ECON 5350 Class Notes Maximum Likelihood Estimation ECON 5350 Class Notes Maximum Likelihood Estimatio 1 Maximum Likelihood Estimatio Example #1. Cosider the radom sample {X 1 = 0.5, X 2 = 2.0, X 3 = 10.0, X 4 = 1.5, X 5 = 7.0} geerated from a expoetial

More information

NOTES ON ESTIMATION AND CONFIDENCE INTERVALS. 1. Estimation

NOTES ON ESTIMATION AND CONFIDENCE INTERVALS. 1. Estimation NOTES ON ESTIMATION AND CONFIDENCE INTERVALS MICHAEL N. KATEHAKIS 1. Estimatio Estimatio is a brach of statistics that deals with estimatig the values of parameters of a uderlyig distributio based o observed/empirical

More information

. (The calculated sample mean is symbolized by x.)

. (The calculated sample mean is symbolized by x.) Stat 40, sectio 5.4 The Cetral Limit Theorem otes by Tim Pilachowski If you have t doe it yet, go to the Stat 40 page ad dowload the hadout 5.4 supplemet Cetral Limit Theorem. The homework (both practice

More information

FINM6900 Finance Theory How Is Asymmetric Information Reflected in Asset Prices?

FINM6900 Finance Theory How Is Asymmetric Information Reflected in Asset Prices? FINM6900 Fiace Theory How Is Asymmetric Iformatio Reflected i Asset Prices? February 3, 2012 Referece S. Grossma, O the Efficiecy of Competitive Stock Markets where Traders Have Diverse iformatio, Joural

More information

Maximum Empirical Likelihood Estimation (MELE)

Maximum Empirical Likelihood Estimation (MELE) Maximum Empirical Likelihood Estimatio (MELE Natha Smooha Abstract Estimatio of Stadard Liear Model - Maximum Empirical Likelihood Estimator: Combiatio of the idea of imum likelihood method of momets,

More information

1 Estimating sensitivities

1 Estimating sensitivities Copyright c 27 by Karl Sigma 1 Estimatig sesitivities Whe estimatig the Greeks, such as the, the geeral problem ivolves a radom variable Y = Y (α) (such as a discouted payoff) that depeds o a parameter

More information

Sampling Distributions and Estimation

Sampling Distributions and Estimation Cotets 40 Samplig Distributios ad Estimatio 40.1 Samplig Distributios 40. Iterval Estimatio for the Variace 13 Learig outcomes You will lear about the distributios which are created whe a populatio is

More information

Inferential Statistics and Probability a Holistic Approach. Inference Process. Inference Process. Chapter 8 Slides. Maurice Geraghty,

Inferential Statistics and Probability a Holistic Approach. Inference Process. Inference Process. Chapter 8 Slides. Maurice Geraghty, Iferetial Statistics ad Probability a Holistic Approach Chapter 8 Poit Estimatio ad Cofidece Itervals This Course Material by Maurice Geraghty is licesed uder a Creative Commos Attributio-ShareAlike 4.0

More information

x satisfying all regularity conditions. Then

x satisfying all regularity conditions. Then AMS570.01 Practice Midterm Exam Sprig, 018 Name: ID: Sigature: Istructio: This is a close book exam. You are allowed oe-page 8x11 formula sheet (-sided). No cellphoe or calculator or computer is allowed.

More information

Control Charts for Mean under Shrinkage Technique

Control Charts for Mean under Shrinkage Technique Helderma Verlag Ecoomic Quality Cotrol ISSN 0940-5151 Vol 24 (2009), No. 2, 255 261 Cotrol Charts for Mea uder Shrikage Techique J. R. Sigh ad Mujahida Sayyed Abstract: I this paper a attempt is made to

More information

Topic-7. Large Sample Estimation

Topic-7. Large Sample Estimation Topic-7 Large Sample Estimatio TYPES OF INFERENCE Ò Estimatio: É Estimatig or predictig the value of the parameter É What is (are) the most likely values of m or p? Ò Hypothesis Testig: É Decidig about

More information

Chapter 8: Estimation of Mean & Proportion. Introduction

Chapter 8: Estimation of Mean & Proportion. Introduction Chapter 8: Estimatio of Mea & Proportio 8.1 Estimatio, Poit Estimate, ad Iterval Estimate 8.2 Estimatio of a Populatio Mea: σ Kow 8.3 Estimatio of a Populatio Mea: σ Not Kow 8.4 Estimatio of a Populatio

More information

These characteristics are expressed in terms of statistical properties which are estimated from the sample data.

These characteristics are expressed in terms of statistical properties which are estimated from the sample data. 0. Key Statistical Measures of Data Four pricipal features which characterize a set of observatios o a radom variable are: (i) the cetral tedecy or the value aroud which all other values are buched, (ii)

More information

CHAPTER 8 Estimating with Confidence

CHAPTER 8 Estimating with Confidence CHAPTER 8 Estimatig with Cofidece 8.2 Estimatig a Populatio Proportio The Practice of Statistics, 5th Editio Stares, Tabor, Yates, Moore Bedford Freema Worth Publishers Estimatig a Populatio Proportio

More information

Department of Mathematics, S.R.K.R. Engineering College, Bhimavaram, A.P., India 2

Department of Mathematics, S.R.K.R. Engineering College, Bhimavaram, A.P., India 2 Skewess Corrected Cotrol charts for two Iverted Models R. Subba Rao* 1, Pushpa Latha Mamidi 2, M.S. Ravi Kumar 3 1 Departmet of Mathematics, S.R.K.R. Egieerig College, Bhimavaram, A.P., Idia 2 Departmet

More information

4.5 Generalized likelihood ratio test

4.5 Generalized likelihood ratio test 4.5 Geeralized likelihood ratio test A assumptio that is used i the Athlete Biological Passport is that haemoglobi varies equally i all athletes. We wish to test this assumptio o a sample of k athletes.

More information

A Bayesian perspective on estimating mean, variance, and standard-deviation from data

A Bayesian perspective on estimating mean, variance, and standard-deviation from data Brigham Youg Uiversity BYU ScholarsArchive All Faculty Publicatios 006--05 A Bayesia perspective o estimatig mea, variace, ad stadard-deviatio from data Travis E. Oliphat Follow this ad additioal works

More information

Exam 2. Instructor: Cynthia Rudin TA: Dimitrios Bisias. October 25, 2011

Exam 2. Instructor: Cynthia Rudin TA: Dimitrios Bisias. October 25, 2011 15.075 Exam 2 Istructor: Cythia Rudi TA: Dimitrios Bisias October 25, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 You are i charge of a study

More information

BASIC STATISTICS ECOE 1323

BASIC STATISTICS ECOE 1323 BASIC STATISTICS ECOE 33 SPRING 007 FINAL EXAM NAME: ID NUMBER: INSTRUCTIONS:. Write your ame ad studet ID.. You have hours 3. This eam must be your ow work etirely. You caot talk to or share iformatio

More information

Unbiased estimators Estimators

Unbiased estimators Estimators 19 Ubiased estimators I Chapter 17 we saw that a dataset ca be modeled as a realizatio of a radom sample from a probability distributio ad that quatities of iterest correspod to features of the model distributio.

More information

Exam 1 Spring 2015 Statistics for Applications 3/5/2015

Exam 1 Spring 2015 Statistics for Applications 3/5/2015 8.443 Exam Sprig 05 Statistics for Applicatios 3/5/05. Log Normal Distributio: A radom variable X follows a Logormal(θ, σ ) distributio if l(x) follows a Normal(θ, σ ) distributio. For the ormal radom

More information

Monetary Economics: Problem Set #5 Solutions

Monetary Economics: Problem Set #5 Solutions Moetary Ecoomics oblem Set #5 Moetary Ecoomics: oblem Set #5 Solutios This problem set is marked out of 1 poits. The weight give to each part is idicated below. Please cotact me asap if you have ay questios.

More information

Hopscotch and Explicit difference method for solving Black-Scholes PDE

Hopscotch and Explicit difference method for solving Black-Scholes PDE Mälardale iversity Fiacial Egieerig Program Aalytical Fiace Semiar Report Hopscotch ad Explicit differece method for solvig Blac-Scholes PDE Istructor: Ja Röma Team members: A Gog HaiLog Zhao Hog Cui 0

More information

ii. Interval estimation:

ii. Interval estimation: 1 Types of estimatio: i. Poit estimatio: Example (1) Cosider the sample observatios 17,3,5,1,18,6,16,10 X 8 X i i1 8 17 3 5 118 6 16 10 8 116 8 14.5 14.5 is a poit estimate for usig the estimator X ad

More information

Kernel Density Estimation. Let X be a random variable with continuous distribution F (x) and density f(x) = d

Kernel Density Estimation. Let X be a random variable with continuous distribution F (x) and density f(x) = d Kerel Desity Estimatio Let X be a radom variable wit cotiuous distributio F (x) ad desity f(x) = d dx F (x). Te goal is to estimate f(x). Wile F (x) ca be estimated by te EDF ˆF (x), we caot set ˆf(x)

More information

0.1 Valuation Formula:

0.1 Valuation Formula: 0. Valuatio Formula: 0.. Case of Geeral Trees: q = er S S S 3 S q = er S S 4 S 5 S 4 q 3 = er S 3 S 6 S 7 S 6 Therefore, f (3) = e r [q 3 f (7) + ( q 3 ) f (6)] f () = e r [q f (5) + ( q ) f (4)] = f ()

More information

Confidence Intervals based on Absolute Deviation for Population Mean of a Positively Skewed Distribution

Confidence Intervals based on Absolute Deviation for Population Mean of a Positively Skewed Distribution Iteratioal Joural of Computatioal ad Theoretical Statistics ISSN (220-59) It. J. Comp. Theo. Stat. 5, No. (May-208) http://dx.doi.org/0.2785/ijcts/0500 Cofidece Itervals based o Absolute Deviatio for Populatio

More information

B = A x z

B = A x z 114 Block 3 Erdeky == Begi 6.3 ============================================================== 1 / 8 / 2008 1 Correspodig Areas uder a ormal curve ad the stadard ormal curve are equal. Below: Area B = Area

More information

CAPITAL ASSET PRICING MODEL

CAPITAL ASSET PRICING MODEL CAPITAL ASSET PRICING MODEL RETURN. Retur i respect of a observatio is give by the followig formula R = (P P 0 ) + D P 0 Where R = Retur from the ivestmet durig this period P 0 = Curret market price P

More information

Estimating Proportions with Confidence

Estimating Proportions with Confidence Aoucemets: Discussio today is review for midterm, o credit. You may atted more tha oe discussio sectio. Brig sheets of otes ad calculator to midterm. We will provide Scatro form. Homework: (Due Wed Chapter

More information

Discriminating Between The Log-normal and Gamma Distributions

Discriminating Between The Log-normal and Gamma Distributions Discrimiatig Betwee The Log-ormal ad Gamma Distributios Debasis Kudu & Aubhav Maglick Abstract For a give data set the problem of selectig either log-ormal or gamma distributio with ukow shape ad scale

More information

Standard Deviations for Normal Sampling Distributions are: For proportions For means _

Standard Deviations for Normal Sampling Distributions are: For proportions For means _ Sectio 9.2 Cofidece Itervals for Proportios We will lear to use a sample to say somethig about the world at large. This process (statistical iferece) is based o our uderstadig of samplig models, ad will

More information

Sampling Distributions and Estimation

Sampling Distributions and Estimation Samplig Distributios ad Estimatio T O P I C # Populatio Proportios, π π the proportio of the populatio havig some characteristic Sample proportio ( p ) provides a estimate of π : x p umber of successes

More information

Lecture 5 Point Es/mator and Sampling Distribu/on

Lecture 5 Point Es/mator and Sampling Distribu/on Lecture 5 Poit Es/mator ad Samplig Distribu/o Fall 03 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milto Stewart School of Idustrial Systems & Egieerig Georgia Tech Road map Poit Es/ma/o Cofidece Iterval

More information

Quantitative Analysis

Quantitative Analysis EduPristie www.edupristie.com Modellig Mea Variace Skewess Kurtosis Mea: X i = i Mode: Value that occurs most frequetly Media: Midpoit of data arraged i ascedig/ descedig order s Avg. of squared deviatios

More information

Random Sequences Using the Divisor Pairs Function

Random Sequences Using the Divisor Pairs Function Radom Sequeces Usig the Divisor Pairs Fuctio Subhash Kak Abstract. This paper ivestigates the radomess properties of a fuctio of the divisor pairs of a atural umber. This fuctio, the atecedets of which

More information

Models of Asset Pricing

Models of Asset Pricing 4 Appedix 1 to Chapter Models of Asset Pricig I this appedix, we first examie why diversificatio, the holdig of may risky assets i a portfolio, reduces the overall risk a ivestor faces. The we will see

More information

SELECTING THE NUMBER OF CHANGE-POINTS IN SEGMENTED LINE REGRESSION

SELECTING THE NUMBER OF CHANGE-POINTS IN SEGMENTED LINE REGRESSION 1 SELECTING THE NUMBER OF CHANGE-POINTS IN SEGMENTED LINE REGRESSION Hyue-Ju Kim 1,, Bibig Yu 2, ad Eric J. Feuer 3 1 Syracuse Uiversity, 2 Natioal Istitute of Agig, ad 3 Natioal Cacer Istitute Supplemetary

More information

Twitter: @Owe134866 www.mathsfreeresourcelibrary.com Prior Kowledge Check 1) State whether each variable is qualitative or quatitative: a) Car colour Qualitative b) Miles travelled by a cyclist c) Favourite

More information

Simulation Efficiency and an Introduction to Variance Reduction Methods

Simulation Efficiency and an Introduction to Variance Reduction Methods Mote Carlo Simulatio: IEOR E4703 Columbia Uiversity c 2017 by Marti Haugh Simulatio Efficiecy ad a Itroductio to Variace Reductio Methods I these otes we discuss the efficiecy of a Mote-Carlo estimator.

More information

The Valuation of the Catastrophe Equity Puts with Jump Risks

The Valuation of the Catastrophe Equity Puts with Jump Risks The Valuatio of the Catastrophe Equity Puts with Jump Risks Shih-Kuei Li Natioal Uiversity of Kaohsiug Joit work with Chia-Chie Chag Outlie Catastrophe Isurace Products Literatures ad Motivatios Jump Risk

More information

Models of Asset Pricing

Models of Asset Pricing APPENDIX 1 TO CHAPTER 4 Models of Asset Pricig I this appedix, we first examie why diversificatio, the holdig of may risky assets i a portfolio, reduces the overall risk a ivestor faces. The we will see

More information

Models of Asset Pricing

Models of Asset Pricing APPENDIX 1 TO CHAPTER4 Models of Asset Pricig I this appedix, we first examie why diversificatio, the holdig of may risky assets i a portfolio, reduces the overall risk a ivestor faces. The we will see

More information

FOUNDATION ACTED COURSE (FAC)

FOUNDATION ACTED COURSE (FAC) FOUNDATION ACTED COURSE (FAC) What is the Foudatio ActEd Course (FAC)? FAC is desiged to help studets improve their mathematical skills i preparatio for the Core Techical subjects. It is a referece documet

More information

ST 305: Exam 2 Fall 2014

ST 305: Exam 2 Fall 2014 ST 305: Exam Fall 014 By hadig i this completed exam, I state that I have either give or received assistace from aother perso durig the exam period. I have used o resources other tha the exam itself ad

More information

Rafa l Kulik and Marc Raimondo. University of Ottawa and University of Sydney. Supplementary material

Rafa l Kulik and Marc Raimondo. University of Ottawa and University of Sydney. Supplementary material Statistica Siica 009: Supplemet 1 L p -WAVELET REGRESSION WITH CORRELATED ERRORS AND INVERSE PROBLEMS Rafa l Kulik ad Marc Raimodo Uiversity of Ottawa ad Uiversity of Sydey Supplemetary material This ote

More information

Estimating the Parameters of the Three-Parameter Lognormal Distribution

Estimating the Parameters of the Three-Parameter Lognormal Distribution Florida Iteratioal Uiversity FIU Digital Commos FIU Electroic Theses ad Dissertatios Uiversity Graduate School 3-30-0 Estimatig the Parameters of the Three-Parameter Logormal Distributio Rodrigo J. Aristizabal

More information

Productivity depending risk minimization of production activities

Productivity depending risk minimization of production activities Productivity depedig risk miimizatio of productio activities GEORGETTE KANARACHOU, VRASIDAS LEOPOULOS Productio Egieerig Sectio Natioal Techical Uiversity of Athes, Polytechioupolis Zografou, 15780 Athes

More information

We analyze the computational problem of estimating financial risk in a nested simulation. In this approach,

We analyze the computational problem of estimating financial risk in a nested simulation. In this approach, MANAGEMENT SCIENCE Vol. 57, No. 6, Jue 2011, pp. 1172 1194 iss 0025-1909 eiss 1526-5501 11 5706 1172 doi 10.1287/msc.1110.1330 2011 INFORMS Efficiet Risk Estimatio via Nested Sequetial Simulatio Mark Broadie

More information

Lecture 9: The law of large numbers and central limit theorem

Lecture 9: The law of large numbers and central limit theorem Lecture 9: The law of large umbers ad cetral limit theorem Theorem.4 Let X,X 2,... be idepedet radom variables with fiite expectatios. (i) (The SLLN). If there is a costat p [,2] such that E X i p i i=

More information

SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME

SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME All Right Reserved No. of Pages - 10 No of Questios - 08 SCHOOL OF ACCOUNTING AND BUSINESS BSc. (APPLIED ACCOUNTING) GENERAL / SPECIAL DEGREE PROGRAMME YEAR I SEMESTER I (Group B) END SEMESTER EXAMINATION

More information

Forecasting bad debt losses using clustering algorithms and Markov chains

Forecasting bad debt losses using clustering algorithms and Markov chains Forecastig bad debt losses usig clusterig algorithms ad Markov chais Robert J. Till Experia Ltd Lambert House Talbot Street Nottigham NG1 5HF {Robert.Till@uk.experia.com} Abstract Beig able to make accurate

More information

Basic formula for confidence intervals. Formulas for estimating population variance Normal Uniform Proportion

Basic formula for confidence intervals. Formulas for estimating population variance Normal Uniform Proportion Basic formula for the Chi-square test (Observed - Expected ) Expected Basic formula for cofidece itervals sˆ x ± Z ' Sample size adjustmet for fiite populatio (N * ) (N + - 1) Formulas for estimatig populatio

More information

Sampling Distributions & Estimators

Sampling Distributions & Estimators API-209 TF Sessio 2 Teddy Svoroos September 18, 2015 Samplig Distributios & Estimators I. Estimators The Importace of Samplig Radomly Three Properties of Estimators 1. Ubiased 2. Cosistet 3. Efficiet I

More information

r i = a i + b i f b i = Cov[r i, f] The only parameters to be estimated for this model are a i 's, b i 's, σe 2 i

r i = a i + b i f b i = Cov[r i, f] The only parameters to be estimated for this model are a i 's, b i 's, σe 2 i The iformatio required by the mea-variace approach is substatial whe the umber of assets is large; there are mea values, variaces, ad )/2 covariaces - a total of 2 + )/2 parameters. Sigle-factor model:

More information

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp )

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp ) Proceedigs of the 5th WSEAS It. Cof. o SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 7-9, 005 (pp488-49 Realized volatility estimatio: ew simulatio approach ad empirical study results JULIA

More information

CHANGE POINT TREND ANALYSIS OF GNI PER CAPITA IN SELECTED EUROPEAN COUNTRIES AND ISRAEL

CHANGE POINT TREND ANALYSIS OF GNI PER CAPITA IN SELECTED EUROPEAN COUNTRIES AND ISRAEL The 9 th Iteratioal Days of Statistics ad Ecoomics, Prague, September 0-, 05 CHANGE POINT TREND ANALYSIS OF GNI PER CAPITA IN SELECTED EUROPEAN COUNTRIES AND ISRAEL Lia Alatawa Yossi Yacu Gregory Gurevich

More information

Limits of sequences. Contents 1. Introduction 2 2. Some notation for sequences The behaviour of infinite sequences 3

Limits of sequences. Contents 1. Introduction 2 2. Some notation for sequences The behaviour of infinite sequences 3 Limits of sequeces I this uit, we recall what is meat by a simple sequece, ad itroduce ifiite sequeces. We explai what it meas for two sequeces to be the same, ad what is meat by the -th term of a sequece.

More information

DESCRIPTION OF MATHEMATICAL MODELS USED IN RATING ACTIVITIES

DESCRIPTION OF MATHEMATICAL MODELS USED IN RATING ACTIVITIES July 2014, Frakfurt am Mai. DESCRIPTION OF MATHEMATICAL MODELS USED IN RATING ACTIVITIES This documet outlies priciples ad key assumptios uderlyig the ratig models ad methodologies of Ratig-Agetur Expert

More information

Sequences and Series

Sequences and Series Sequeces ad Series Matt Rosezweig Cotets Sequeces ad Series. Sequeces.................................................. Series....................................................3 Rudi Chapter 3 Exercises........................................

More information

Extremes in operational risk management

Extremes in operational risk management Extremes i operatioal risk maagemet E. A. Medova ad M. N. Kyriacou Cetre for Fiacial Research Judge Istitute of Maagemet Uiversity of Cambridge Abstract Operatioal risk is defied as a cosequece of critical

More information

Minhyun Yoo, Darae Jeong, Seungsuk Seo, and Junseok Kim

Minhyun Yoo, Darae Jeong, Seungsuk Seo, and Junseok Kim Hoam Mathematical J. 37 (15), No. 4, pp. 441 455 http://dx.doi.org/1.5831/hmj.15.37.4.441 A COMPARISON STUDY OF EXPLICIT AND IMPLICIT NUMERICAL METHODS FOR THE EQUITY-LINKED SECURITIES Mihyu Yoo, Darae

More information

Risk Assessment for Project Plan Collapse

Risk Assessment for Project Plan Collapse 518 Proceedigs of the 8th Iteratioal Coferece o Iovatio & Maagemet Risk Assessmet for Project Pla Collapse Naoki Satoh 1, Hiromitsu Kumamoto 2, Norio Ohta 3 1. Wakayama Uiversity, Wakayama Uiv., Sakaedai

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL A SULEMENTAL MATERIAL Theorem (Expert pseudo-regret upper boud. Let us cosider a istace of the I-SG problem ad apply the FL algorithm, where each possible profile A is a expert ad receives, at roud, a

More information

Estimation of Parameters of Three Parameter Esscher Transformed Laplace Distribution

Estimation of Parameters of Three Parameter Esscher Transformed Laplace Distribution Iteratioal Joural of Statistics ad Systems ISSN 0973-675 Volume 1, Number (017), pp. 669-675 Research Idia Publicatios http://www.ripublicatio.com Estimatio of Parameters of Three Parameter Esscher Trasformed

More information

A New Constructive Proof of Graham's Theorem and More New Classes of Functionally Complete Functions

A New Constructive Proof of Graham's Theorem and More New Classes of Functionally Complete Functions A New Costructive Proof of Graham's Theorem ad More New Classes of Fuctioally Complete Fuctios Azhou Yag, Ph.D. Zhu-qi Lu, Ph.D. Abstract A -valued two-variable truth fuctio is called fuctioally complete,

More information

Topic 14: Maximum Likelihood Estimation

Topic 14: Maximum Likelihood Estimation Toic 4: November, 009 As before, we begi with a samle X = (X,, X of radom variables chose accordig to oe of a family of robabilities P θ I additio, f(x θ, x = (x,, x will be used to deote the desity fuctio

More information

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 2

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 2 Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd- Numbered Ed- of- Chapter Exercises: Chapter 2 (This versio August 7, 204) Stock/Watso - Itroductio to

More information

Asymptotics: Consistency and Delta Method

Asymptotics: Consistency and Delta Method ad Delta Method MIT 18.655 Dr. Kempthore Sprig 2016 1 MIT 18.655 ad Delta Method Outlie Asymptotics 1 Asymptotics 2 MIT 18.655 ad Delta Method Cosistecy Asymptotics Statistical Estimatio Problem X 1,...,

More information

Estimation of Population Variance Utilizing Auxiliary Information

Estimation of Population Variance Utilizing Auxiliary Information Iteratioal Joural of Statistics ad Systems ISSN 0973-675 Volume 1, Number (017), pp. 303-309 Research Idia Publicatios http://www.ripublicatio.com Estimatio of Populatio Variace Utilizig Auxiliary Iformatio

More information

(Hypothetical) Negative Probabilities Can Speed Up Uncertainty Propagation Algorithms

(Hypothetical) Negative Probabilities Can Speed Up Uncertainty Propagation Algorithms Uiversity of Texas at El Paso DigitalCommos@UTEP Departmetal Techical Reports (CS) Departmet of Computer Sciece 2-2017 (Hypothetical) Negative Probabilities Ca Speed Up Ucertaity Propagatio Algorithms

More information

Appendix 1 to Chapter 5

Appendix 1 to Chapter 5 Appedix 1 to Chapter 5 Models of Asset Pricig I Chapter 4, we saw that the retur o a asset (such as a bod) measures how much we gai from holdig that asset. Whe we make a decisio to buy a asset, we are

More information

Quantitative Analysis

Quantitative Analysis EduPristie FRM I \ Quatitative Aalysis EduPristie www.edupristie.com Momets distributio Samplig Testig Correlatio & Regressio Estimatio Simulatio Modellig EduPristie FRM I \ Quatitative Aalysis 2 Momets

More information

of Asset Pricing R e = expected return

of Asset Pricing R e = expected return Appedix 1 to Chapter 5 Models of Asset Pricig EXPECTED RETURN I Chapter 4, we saw that the retur o a asset (such as a bod) measures how much we gai from holdig that asset. Whe we make a decisio to buy

More information

1 + r. k=1. (1 + r) k = A r 1

1 + r. k=1. (1 + r) k = A r 1 Perpetual auity pays a fixed sum periodically forever. Suppose a amout A is paid at the ed of each period, ad suppose the per-period iterest rate is r. The the preset value of the perpetual auity is A

More information

of Asset Pricing APPENDIX 1 TO CHAPTER EXPECTED RETURN APPLICATION Expected Return

of Asset Pricing APPENDIX 1 TO CHAPTER EXPECTED RETURN APPLICATION Expected Return APPENDIX 1 TO CHAPTER 5 Models of Asset Pricig I Chapter 4, we saw that the retur o a asset (such as a bod) measures how much we gai from holdig that asset. Whe we make a decisio to buy a asset, we are

More information

Simulation-Based Estimation of Contingent-Claims Prices

Simulation-Based Estimation of Contingent-Claims Prices Simulatio-Based Estimatio of Cotiget-Claims Prices Peter C. B. Phillips Yale Uiversity, Uiversity of Aucklad, Uiversity of York, ad Sigapore Maagemet Uiversity Ju Yu Sigapore Maagemet Uiversity A ew methodology

More information

Calibration of the Vasicek Model: An Step by Step Guide

Calibration of the Vasicek Model: An Step by Step Guide Calibratio of the Vasicek Model: A Step by Step Guide Victor Beral A. April, 06 victor.beral@mathmods.eu Abstract I this report we preset 3 methods for calibratig the OrsteiUhlebeck process to a data set.

More information

Estimating Forward Looking Distribution with the Ross Recovery Theorem

Estimating Forward Looking Distribution with the Ross Recovery Theorem roceedigs of the Asia acific Idustrial Egieerig & Maagemet Systems Coferece 5 Estimatig Forward Lookig Distributio with the Ross Recovery Theorem Takuya Kiriu Graduate School of Sciece ad Techology Keio

More information

An Improved Estimator of Population Variance using known Coefficient of Variation

An Improved Estimator of Population Variance using known Coefficient of Variation J. Stat. Appl. Pro. Lett. 4, No. 1, 11-16 (017) 11 Joural of Statistics Applicatios & Probability Letters A Iteratioal Joural http://dx.doi.org/10.18576/jsapl/04010 A Improved Estimator of Populatio Variace

More information