Homework solutions, Chapter 8

Size: px
Start display at page:

Download "Homework solutions, Chapter 8"

Transcription

1 Homework solutions, Chapter 8 NOTE: We might think of 8.1 as being a section devoted to setting up the networks and 8.2 as solving them, but only 8.2 has a homework section. Section Use Dijkstra s algorithm to find the shortest path from Figure 4. I ll type asterisks in place of the boxes we used in class (easier to typeset) The shortest path is 14, and the path is Repeat problem 2 as a transshipment problem. SOLUTION: Node 1 is the supply node, and node 5 is the demand node, and the other nodes are transshipment nodes. We set the supply equal to 1, which is also our s. Node 2 Node 3 Node 4 Node 5 Supply 2 8 M M Node Node 2 1 M 0 5 M Node 3 1 M M 0 10 Node 4 Demand

2 4. If we use Dijkstra s algorithm, we get the path 1 3 4, but there is a shorter path, Dijkstra s algorithm assumes that because node 3 is not connected to node 1 by an arc, node 3 would have to go through node 2, which should make the distance greater than 2. With a negative path, it made the distance zero- Dijkstra s algorithm only works for networks with positive edges. 5. Just as in Example 2, we let node 1 be the beginning of year 1, and node 7 to be the end of year 6/beginning of year 7. Therefore, a table of our edges would be the following, where position (i, j) is C ij : Using Dijkstra s algorithm, we have the following (in hundreds): We see the best solution is with a value of = Problem 6 is identical in flavor to 5 (and Example 2). Here are the costs involved (in tens). We have nodes 1-7 for years beginning 1-6. Because we may only keep the phone 2

3 for at most 5 years, then node 1 is not connected to node / This tells us that is the shortest path at $260. That is, we buy the phone and keep it for three years, then buy another phone and keep it for three years to the end of year 6 (beginning of year 7). 7. Done in class (and solution posted to the class website). 8. Done in class. 9. The box factory. For this one, notice that there is a fixed cost of $1000 to produce any particular box. This is, in essence, a penalty on the number of different sizes we will use. We will assume that, for j > i, then x ij will be the situation where we use box type i in place of box types i, i + 1, i + 2,, j 1. Therefore, for example, x 47 = Box type 4 in place of types 4 and 5 Here are a couple of sample computations: C 13 = = C 47 = = And here is the cost matrix (in hundreds):

4 Therefore, the shortest path is , with costs C 13 +C 34 +C 45 +C 58 = This means we use box type 1 in place of box types 1 and 2, box type 3 for its own demand, box type 4 for its own, then box type 5 for the remainder (types 5, 6, 7). Section

5

6 Section 8.4 5(a) 6. (a) One big thing to note. Once we separated activities C and D branching off of node 3, we had to bring them together again for activity E. The only way to do that (without violating the rule about two nodes being connected by at most one edge) is to create a dummy edge so that the two activities can be brought together again at node 5. (b) The linear program may be formulated a couple of different ways. We ll show both, although only the first one was used in class. SOLUTION 1: Let x ij = {0, 1}. Although this isn t strictly a linear program, it turns out that the x ij will take on the values either 0 or 1 in the optimal solution. 6

7 We ll have seven variables (one for each edge): max z = 2x x x x x x x 56 such that (each node has outflow-inflow expressions): x 12 = 1 Node 1 (Supply) x 23 x 12 = 0 Node 2 x 34 + x 35 + x 36 x 23 = 0 Node 3 x 45 x 34 = 0 Node 4 x 56 x 45 x 35 = 0 Node 5 x 56 x 36 = 1 Node 6 (Demand) with x ij 0. For this problem, here is the output from LINDO. You might notice something interesting with the Reduced Cost column. LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE 1) VARIABLE VALUE REDUCED COST X X X X X X X ROW SLACK OR SURPLUS DUAL PRICES 2) ) ) ) ) ) SOLUTION 2: Our textbook author suggests the following setup. Let x j be the time at which event j will take place. These are relative times, so x j is URS. Then: 7

8 min w = x 6 x 1 st x 2 x x 3 x x 4 x x 5 x x 5 x 4 x 6 x x 6 x 3 + x 4 Here is the LINDO output: min x6-x1 st -x1+x2>2 -x2+x3>4 -x3+x4>2 -x3+x5>3 -x4+x5>0 x6-x5>10 -x3+x6>4 end free x1 free x2 free x3 free x4 free x5 free x6 LP OPTIMUM FOUND AT STEP 5 OBJECTIVE FUNCTION VALUE 1) VARIABLE VALUE REDUCED COST X X X X X X ROW SLACK OR SURPLUS DUAL PRICES 2) ) ) ) ) ) ) For exercise 7, use the same techniques as exercise 6. What s really new is building the network model, so you might focus on that aspect, then build the linear program. 8

9 The linear program is much like the one for Exercise 6 (Solution 1): max z = 3x x x x x x 67 st x 12 = 1 x 12 + x 25 + x 23 = 0 x 23 + x 34 = 0 x 34 + x 45 = 0 x 25 x 45 + x 56 = 0 with x ij 0 (in the optimal path, they will be either 0 or 1). x 56 + x 67 = 0 x Explain why the total float will always be bigger than the free float. SOLUTION: Looking at how these are computed on activity (i, j): = 1 F F (i, j) = ET (j) ET (i) t ij T F (i, j) = LT (j) ET (i) t ij And by definition, LT (j) is always larger than (or equal to) ET (j). 9

10 10. Diagram is below. We needed a dummy edge to make it all work. 16. Basic set of computations. See below. 17. Same techniques as 16, you should find that the critical path has length

Advanced Operations Research Prof. G. Srinivasan Dept of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Dept of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Dept of Management Studies Indian Institute of Technology, Madras Lecture 23 Minimum Cost Flow Problem In this lecture, we will discuss the minimum cost

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 21 Successive Shortest Path Problem In this lecture, we continue our discussion

More information

56:171 Operations Research Midterm Exam Solutions October 22, 1993

56:171 Operations Research Midterm Exam Solutions October 22, 1993 56:171 O.R. Midterm Exam Solutions page 1 56:171 Operations Research Midterm Exam Solutions October 22, 1993 (A.) /: Indicate by "+" ="true" or "o" ="false" : 1. A "dummy" activity in CPM has duration

More information

LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE

LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE The Wilson Problem: Graph is at the end. LP OPTIMUM FOUND AT STEP 2 1) 5520.000 X1 360.000000 0.000000 X2 300.000000 0.000000 2) 0.000000 1.000000 3) 0.000000 2.000000 4) 140.000000 0.000000 5) 200.000000

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

56:171 Operations Research Midterm Examination October 25, 1991 PART ONE

56:171 Operations Research Midterm Examination October 25, 1991 PART ONE 56:171 O.R. Midterm Exam - 1 - Name or Initials 56:171 Operations Research Midterm Examination October 25, 1991 Write your name on the first page, and initial the other pages. Answer both questions of

More information

Sensitivity Analysis LINDO INPUT & RESULTS. Maximize 7X1 + 10X2. Subject to X1 < 500 X2 < 500 X1 + 2X2 < 960 5X1 + 6X2 < 3600 END

Sensitivity Analysis LINDO INPUT & RESULTS. Maximize 7X1 + 10X2. Subject to X1 < 500 X2 < 500 X1 + 2X2 < 960 5X1 + 6X2 < 3600 END Sensitivity Analysis Sensitivity Analysis is used to see how the optimal solution is affected by the objective function coefficients and to see how the optimal value is affected by the right- hand side

More information

56:171 Operations Research Midterm Exam Solutions Fall 1994

56:171 Operations Research Midterm Exam Solutions Fall 1994 56:171 Operations Research Midterm Exam Solutions Fall 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3. Simplex

More information

Introduction to Operations Research

Introduction to Operations Research Introduction to Operations Research Unit 1: Linear Programming Terminology and formulations LP through an example Terminology Additional Example 1 Additional example 2 A shop can make two types of sweets

More information

Roll No. :... Invigilator s Signature :.. CS/B.TECH(IT)/SEM-5/M(CS)-511/ OPERATIONS RESEARCH AND OPTIMIZATION TECHNIQUES

Roll No. :... Invigilator s Signature :.. CS/B.TECH(IT)/SEM-5/M(CS)-511/ OPERATIONS RESEARCH AND OPTIMIZATION TECHNIQUES Name : Roll No. :.... Invigilator s Signature :.. CS/B.TECH(IT)/SEM-5/M(CS)-511/2011-12 2011 OPERATIONS RESEARCH AND OPTIMIZATION TECHNIQUES Time Allotted : 3 Hours Full Marks : 70 The figures in the margin

More information

Optimizing the service of the Orange Line

Optimizing the service of the Orange Line Optimizing the service of the Orange Line Overview Increased crime rate in and around campus Shuttle-UM Orange Line 12:00am 3:00am late night shift A student standing or walking on and around campus during

More information

Profit Maximization and Strategic Management for Construction Projects

Profit Maximization and Strategic Management for Construction Projects Profit Maximization and Strategic Management for Construction Projects Hakob Avetisyan, Ph.D. 1 and Miroslaw Skibniewski, Ph.D. 2 1 Department of Civil and Environmental Engineering, E-209, 800 N. State

More information

56:171 Operations Research Midterm Exam Solutions October 19, 1994

56:171 Operations Research Midterm Exam Solutions October 19, 1994 56:171 Operations Research Midterm Exam Solutions October 19, 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3.

More information

56:171 Operations Research Midterm Examination Solutions PART ONE

56:171 Operations Research Midterm Examination Solutions PART ONE 56:171 Operations Research Midterm Examination Solutions Fall 1997 Answer both questions of Part One, and 4 (out of 5) problems from Part Two. Possible Part One: 1. True/False 15 2. Sensitivity analysis

More information

Do all of Part One (1 pt. each), one from Part Two (15 pts.), and four from Part Three (15 pts. each) <><><><><> PART ONE <><><><><>

Do all of Part One (1 pt. each), one from Part Two (15 pts.), and four from Part Three (15 pts. each) <><><><><> PART ONE <><><><><> 56:171 Operations Research Final Exam - December 13, 1989 Instructor: D.L. Bricker Do all of Part One (1 pt. each), one from Part Two (15 pts.), and four from

More information

56:171 Operations Research Midterm Examination October 28, 1997 PART ONE

56:171 Operations Research Midterm Examination October 28, 1997 PART ONE 56:171 Operations Research Midterm Examination October 28, 1997 Write your name on the first page, and initial the other pages. Answer both questions of Part One, and 4 (out of 5) problems from Part Two.

More information

Game Theory Tutorial 3 Answers

Game Theory Tutorial 3 Answers Game Theory Tutorial 3 Answers Exercise 1 (Duality Theory) Find the dual problem of the following L.P. problem: max x 0 = 3x 1 + 2x 2 s.t. 5x 1 + 2x 2 10 4x 1 + 6x 2 24 x 1 + x 2 1 (1) x 1 + 3x 2 = 9 x

More information

56:171 Operations Research Midterm Examination Solutions PART ONE

56:171 Operations Research Midterm Examination Solutions PART ONE 56:171 Operations Research Midterm Examination Solutions Fall 1997 Write your name on the first page, and initial the other pages. Answer both questions of Part One, and 4 (out of 5) problems from Part

More information

CHAPTER 13: A PROFIT MAXIMIZING HARVEST SCHEDULING MODEL

CHAPTER 13: A PROFIT MAXIMIZING HARVEST SCHEDULING MODEL CHAPTER 1: A PROFIT MAXIMIZING HARVEST SCHEDULING MODEL The previous chapter introduced harvest scheduling with a model that minimized the cost of meeting certain harvest targets. These harvest targets

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming Dynamic programming is a technique that can be used to solve many optimization problems. In most applications, dynamic programming obtains solutions by working backward

More information

IEOR E4004: Introduction to OR: Deterministic Models

IEOR E4004: Introduction to OR: Deterministic Models IEOR E4004: Introduction to OR: Deterministic Models 1 Dynamic Programming Following is a summary of the problems we discussed in class. (We do not include the discussion on the container problem or the

More information

Chapter 2 Linear programming... 2 Chapter 3 Simplex... 4 Chapter 4 Sensitivity Analysis and duality... 5 Chapter 5 Network... 8 Chapter 6 Integer

Chapter 2 Linear programming... 2 Chapter 3 Simplex... 4 Chapter 4 Sensitivity Analysis and duality... 5 Chapter 5 Network... 8 Chapter 6 Integer 目录 Chapter 2 Linear programming... 2 Chapter 3 Simplex... 4 Chapter 4 Sensitivity Analysis and duality... 5 Chapter 5 Network... 8 Chapter 6 Integer Programming... 10 Chapter 7 Nonlinear Programming...

More information

1 Shapley-Shubik Model

1 Shapley-Shubik Model 1 Shapley-Shubik Model There is a set of buyers B and a set of sellers S each selling one unit of a good (could be divisible or not). Let v ij 0 be the monetary value that buyer j B assigns to seller i

More information

Examinations for Semester II. / 2011 Semester I

Examinations for Semester II. / 2011 Semester I PROGRAMME MBA-Human Resources & knowledge Management MBA- Project Management Master of Business Administration General MBA-Marketing Management COHORT MBAHR/11/PT MBAPM/11/PT MBAG/11/PT MBAMM/11/PT Examinations

More information

Chapter 11: PERT for Project Planning and Scheduling

Chapter 11: PERT for Project Planning and Scheduling Chapter 11: PERT for Project Planning and Scheduling PERT, the Project Evaluation and Review Technique, is a network-based aid for planning and scheduling the many interrelated tasks in a large and complex

More information

Project Planning. Jesper Larsen. Department of Management Engineering Technical University of Denmark

Project Planning. Jesper Larsen. Department of Management Engineering Technical University of Denmark Project Planning jesla@man.dtu.dk Department of Management Engineering Technical University of Denmark 1 Project Management Project Management is a set of techniques that helps management manage large-scale

More information

Master of Business Administration - General. Cohort: MBAG/14/PT Mar. Examinations for Semester II / 2014 Semester I

Master of Business Administration - General. Cohort: MBAG/14/PT Mar. Examinations for Semester II / 2014 Semester I Master of Business Administration - General Cohort: MBAG/14/PT Mar Examinations for 2013 2014 Semester II / 2014 Semester I MODULE: OPERATIONS RESEARCH MODULE CODE: MGMT5214 DURATION: 3 HOURS Instructions

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

LINEAR PROGRAMMING. Homework 7

LINEAR PROGRAMMING. Homework 7 LINEAR PROGRAMMING Homework 7 Fall 2014 Csci 628 Megan Rose Bryant 1. Your friend is taking a Linear Programming course at another university and for homework she is asked to solve the following LP: Primal:

More information

y 3 z x 1 x 2 e 1 a 1 a 2 RHS 1 0 (6 M)/3 M 0 (3 5M)/3 10M/ / /3 10/ / /3 4/3

y 3 z x 1 x 2 e 1 a 1 a 2 RHS 1 0 (6 M)/3 M 0 (3 5M)/3 10M/ / /3 10/ / /3 4/3 AMS 341 (Fall, 2016) Exam 2 - Solution notes Estie Arkin Mean 68.9, median 71, top quartile 82, bottom quartile 58, high (3 of them!), low 14. 1. (10 points) Find the dual of the following LP: Min z =

More information

Operations Research I: Deterministic Models

Operations Research I: Deterministic Models AMS 341 (Spring, 2010) Estie Arkin Operations Research I: Deterministic Models Exam 1: Thursday, March 11, 2010 READ THESE INSTRUCTIONS CAREFULLY. Do not start the exam until told to do so. Make certain

More information

Interior-Point Algorithm for CLP II. yyye

Interior-Point Algorithm for CLP II.   yyye Conic Linear Optimization and Appl. Lecture Note #10 1 Interior-Point Algorithm for CLP II Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Chapter 15: Dynamic Programming

Chapter 15: Dynamic Programming Chapter 15: Dynamic Programming Dynamic programming is a general approach to making a sequence of interrelated decisions in an optimum way. While we can describe the general characteristics, the details

More information

Operations Research I: Deterministic Models

Operations Research I: Deterministic Models AMS 341 (Spring, 2009) Estie Arkin Operations Research I: Deterministic Models Exam 1: Thursday, March 12, 2009 READ THESE INSTRUCTIONS CAREFULLY. Do not start the exam until told to do so. Make certain

More information

{List Sales (1 Trade Discount) Total Cost} (1 Tax Rate) = 0.06K

{List Sales (1 Trade Discount) Total Cost} (1 Tax Rate) = 0.06K FINAL CA MAY 2018 ADVANCED MANAGEMENT ACCOUNTING Test Code F84 Branch: Date : 04.03.2018 (50 Marks) Note: All questions are compulsory. Question 1(4 Marks) (c) Selling Price to Yield 20% Return on Investment

More information

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense May 22, 2018 Marco Chiarandini DM559/DM55 Linear and integer programming Sheet, Spring 2018 [pdf format] Contains Solutions!

More information

Chapter 21. Dynamic Programming CONTENTS 21.1 A SHORTEST-ROUTE PROBLEM 21.2 DYNAMIC PROGRAMMING NOTATION

Chapter 21. Dynamic Programming CONTENTS 21.1 A SHORTEST-ROUTE PROBLEM 21.2 DYNAMIC PROGRAMMING NOTATION Chapter 21 Dynamic Programming CONTENTS 21.1 A SHORTEST-ROUTE PROBLEM 21.2 DYNAMIC PROGRAMMING NOTATION 21.3 THE KNAPSACK PROBLEM 21.4 A PRODUCTION AND INVENTORY CONTROL PROBLEM 23_ch21_ptg01_Web.indd

More information

Lecture 10: The knapsack problem

Lecture 10: The knapsack problem Optimization Methods in Finance (EPFL, Fall 2010) Lecture 10: The knapsack problem 24.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Anu Harjula The knapsack problem The Knapsack problem is a problem

More information

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3 6.896 Topics in Algorithmic Game Theory February 0, 200 Lecture 3 Lecturer: Constantinos Daskalakis Scribe: Pablo Azar, Anthony Kim In the previous lecture we saw that there always exists a Nash equilibrium

More information

Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa

Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa 56:171 Operations Research Homework #1 - Due Wednesday, August 30, 2000 In each case below, you must formulate a linear programming

More information

Activity Predecessors Durations (days) a - 3 b a 4 c a 5 d a 4 e b 2 f d 9 g c, e 6 h f, g 2

Activity Predecessors Durations (days) a - 3 b a 4 c a 5 d a 4 e b 2 f d 9 g c, e 6 h f, g 2 CHAPTER 11 INDUSTRIAL ENGINEERING YEAR 2012 ONE MARK MCQ 11.1 Which one of the following is NOT a decision taken during the aggregate production planning stage? (A) Scheduling of machines (B) Amount of

More information

PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES

PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES PARELLIZATION OF DIJKSTRA S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES WIKTOR JAKUBIUK, KESHAV PURANMALKA 1. Introduction Dijkstra s algorithm solves the single-sourced shorest path problem on a

More information

A convenient analytical and visual technique of PERT and CPM prove extremely valuable in assisting the managers in managing the projects.

A convenient analytical and visual technique of PERT and CPM prove extremely valuable in assisting the managers in managing the projects. Introduction Any project involves planning, scheduling and controlling a number of interrelated activities with use of limited resources, namely, men, machines, materials, money and time. The projects

More information

Elastic demand solution methods

Elastic demand solution methods solution methods CE 392C October 6, 2016 REVIEW We ve added another consistency relationship: Route choices No vehicle left behind Link performance functions Shortest path OD matrix Travel times Demand

More information

b) [3 marks] Give one more optimal solution (different from the one computed in a). 2. [10 marks] Consider the following linear program:

b) [3 marks] Give one more optimal solution (different from the one computed in a). 2. [10 marks] Consider the following linear program: Be sure this eam has 5 pages. THE UNIVERSITY OF BRITISH COLUMBIA Sessional Eamination - April 21 200 MATH 340: Linear Programming Instructors: Dr. R. Anstee, Section 201 Dr. Guangyue Han, Section 202 Special

More information

Dynamic Programming cont. We repeat: The Dynamic Programming Template has three parts.

Dynamic Programming cont. We repeat: The Dynamic Programming Template has three parts. Page 1 Dynamic Programming cont. We repeat: The Dynamic Programming Template has three parts. Subproblems Sometimes this is enough if the algorithm and its complexity is obvious. Recursion Algorithm Must

More information

PROFIT MAXIMIZATION AND STRATEGIC MANAGEMENT FOR CONSTRUCTION PROJECTS

PROFIT MAXIMIZATION AND STRATEGIC MANAGEMENT FOR CONSTRUCTION PROJECTS Slide 1 PROFIT MAXIMIZATION AND STRATEGIC MANAGEMENT FOR CONSTRUCTION PROJECTS Hakob Avetisyan Ph.D. Miroslaw Skibniewski Ph.D. 2017 Project Management Symposium Slide 2 Overview Resource Allocation Business

More information

Homework #3 Supply Chain Models: Manufacturing & Warehousing (ISyE 3104) - Fall 2001 Due September 20, 2001

Homework #3 Supply Chain Models: Manufacturing & Warehousing (ISyE 3104) - Fall 2001 Due September 20, 2001 Homework #3 Supply Chain Models: Manufacturing & Warehousing (ISyE 3104) - Fall 2001 Due September 20, 2001 Show all your steps to get full credit. (Total 45 points) Reading assignment: Read Supplement

More information

NODIA AND COMPANY. GATE SOLVED PAPER Mechanical Engineering Industrial Engineering. Copyright By NODIA & COMPANY

NODIA AND COMPANY. GATE SOLVED PAPER Mechanical Engineering Industrial Engineering. Copyright By NODIA & COMPANY No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author. GATE SOLVED PAPER Mechanical

More information

COS 445 Final. Due online Monday, May 21st at 11:59 pm. Please upload each problem as a separate file via MTA.

COS 445 Final. Due online Monday, May 21st at 11:59 pm. Please upload each problem as a separate file via MTA. COS 445 Final Due online Monday, May 21st at 11:59 pm All problems on this final are no collaboration problems. You may not discuss any aspect of any problems with anyone except for the course staff. You

More information

Homework #2 Graphical LP s.

Homework #2 Graphical LP s. UNIVERSITY OF MASSACHUSETTS Isenberg School of Management Department of Finance and Operations Management FOMGT 353-Introduction to Management Science Homework #2 Graphical LP s. Show your work completely

More information

1) S = {s}; 2) for each u V {s} do 3) dist[u] = cost(s, u); 4) Insert u into a 2-3 tree Q with dist[u] as the key; 5) for i = 1 to n 1 do 6) Identify

1) S = {s}; 2) for each u V {s} do 3) dist[u] = cost(s, u); 4) Insert u into a 2-3 tree Q with dist[u] as the key; 5) for i = 1 to n 1 do 6) Identify CSE 3500 Algorithms and Complexity Fall 2016 Lecture 17: October 25, 2016 Dijkstra s Algorithm Dijkstra s algorithm for the SSSP problem generates the shortest paths in nondecreasing order of the shortest

More information

Essays on Some Combinatorial Optimization Problems with Interval Data

Essays on Some Combinatorial Optimization Problems with Interval Data Essays on Some Combinatorial Optimization Problems with Interval Data a thesis submitted to the department of industrial engineering and the institute of engineering and sciences of bilkent university

More information

The homework is due on Wednesday, September 7. Each questions is worth 0.8 points. No partial credits.

The homework is due on Wednesday, September 7. Each questions is worth 0.8 points. No partial credits. Homework : Econ500 Fall, 0 The homework is due on Wednesday, September 7. Each questions is worth 0. points. No partial credits. For the graphic arguments, use the graphing paper that is attached. Clearly

More information

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 18 PERT

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 18 PERT Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 18 PERT (Refer Slide Time: 00:56) In the last class we completed the C P M critical path analysis

More information

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming Dynamic Programming: An overview These notes summarize some key properties of the Dynamic Programming principle to optimize a function or cost that depends on an interval or stages. This plays a key role

More information

Linear Programming: Sensitivity Analysis and Interpretation of Solution

Linear Programming: Sensitivity Analysis and Interpretation of Solution 8 Linear Programming: Sensitivity Analysis and Interpretation of Solution MULTIPLE CHOICE. To solve a linear programming problem with thousands of variables and constraints a personal computer can be use

More information

CSE 417 Dynamic Programming (pt 2) Look at the Last Element

CSE 417 Dynamic Programming (pt 2) Look at the Last Element CSE 417 Dynamic Programming (pt 2) Look at the Last Element Reminders > HW4 is due on Friday start early! if you run into problems loading data (date parsing), try running java with Duser.country=US Duser.language=en

More information

A Linear Programming Approach for Optimum Project Scheduling Taking Into Account Overhead Expenses and Tardiness Penalty Function

A Linear Programming Approach for Optimum Project Scheduling Taking Into Account Overhead Expenses and Tardiness Penalty Function A Linear Programming Approach for Optimum Project Scheduling Taking Into Account Overhead Expenses and Tardiness Penalty Function Mohammed Woyeso Geda, Industrial Engineering Department Ethiopian Institute

More information

Midterm 2 Example Questions

Midterm 2 Example Questions Midterm Eample Questions Solve LPs using Simple. Consider the following LP:, 6 ma (a) Convert the LP to standard form.,,, 6 ma (b) Starting with and as nonbasic variables, solve the problem using the Simple

More information

Network Analysis Basic Components. The Other View. Some Applications. Continued. Goal of Network Analysis. RK Jana

Network Analysis Basic Components. The Other View. Some Applications. Continued. Goal of Network Analysis. RK Jana Network nalysis RK Jana asic omponents ollections of interconnected linear forms: Lines Intersections Regions (created by the partitioning of space by the lines) Planar (streets, all on same level, vertices

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS

CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS CMPSCI 311: Introduction to Algorithms Second Midterm Practice Exam SOLUTIONS November 17, 2016. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question.

More information

COSC 311: ALGORITHMS HW4: NETWORK FLOW

COSC 311: ALGORITHMS HW4: NETWORK FLOW COSC 311: ALGORITHMS HW4: NETWORK FLOW Solutions 1 Warmup 1) Finding max flows and min cuts. Here is a graph (the numbers in boxes represent the amount of flow along an edge, and the unadorned numbers

More information

CHAPTER 6 CRASHING STOCHASTIC PERT NETWORKS WITH RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM

CHAPTER 6 CRASHING STOCHASTIC PERT NETWORKS WITH RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM CHAPTER 6 CRASHING STOCHASTIC PERT NETWORKS WITH RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM 6.1 Introduction Project Management is the process of planning, controlling and monitoring the activities

More information

Econ 172A, W2002: Final Examination, Solutions

Econ 172A, W2002: Final Examination, Solutions Econ 172A, W2002: Final Examination, Solutions Comments. Naturally, the answers to the first question were perfect. I was impressed. On the second question, people did well on the first part, but had trouble

More information

THE UNIVERSITY OF BRITISH COLUMBIA

THE UNIVERSITY OF BRITISH COLUMBIA Be sure this eam has pages. THE UNIVERSITY OF BRITISH COLUMBIA Sessional Eamination - June 12 2003 MATH 340: Linear Programming Instructor: Dr. R. Anstee, section 921 Special Instructions: No calculators.

More information

Project Management Techniques (PMT)

Project Management Techniques (PMT) Project Management Techniques (PMT) Critical Path Method (CPM) and Project Evaluation and Review Technique (PERT) are 2 main basic techniques used in project management. Example: Construction of a house.

More information

DISCLAIMER. The Institute of Chartered Accountants of India

DISCLAIMER. The Institute of Chartered Accountants of India DISCLAIMER The Suggested Answers hosted in the website do not constitute the basis for evaluation of the students answers in the examination. The answers are prepared by the Faculty of the Board of Studies

More information

The Deployment-to-Saturation Ratio in Security Games (Online Appendix)

The Deployment-to-Saturation Ratio in Security Games (Online Appendix) The Deployment-to-Saturation Ratio in Security Games (Online Appendix) Manish Jain manish.jain@usc.edu University of Southern California, Los Angeles, California 989. Kevin Leyton-Brown kevinlb@cs.ubc.edu

More information

TUFTS UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ES 152 ENGINEERING SYSTEMS Spring Lesson 16 Introduction to Game Theory

TUFTS UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ES 152 ENGINEERING SYSTEMS Spring Lesson 16 Introduction to Game Theory TUFTS UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ES 52 ENGINEERING SYSTEMS Spring 20 Introduction: Lesson 6 Introduction to Game Theory We will look at the basic ideas of game theory.

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem.

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Robert M. Gower. October 3, 07 Introduction This is an exercise in proving the convergence

More information

Lecture 8 : The dual lattice and reducing SVP to MVP

Lecture 8 : The dual lattice and reducing SVP to MVP CSE 206A: Lattice Algorithms and Applications Spring 2007 Lecture 8 : The dual lattice and reducing SVP to MVP Lecturer: Daniele Micciancio Scribe: Scott Yilek 1 Overview In the last lecture we explored

More information

EXERCISE Draw the network diagram. a. Activity Name A B C D E F G H

EXERCISE Draw the network diagram. a. Activity Name A B C D E F G H XRIS. What do you mean by network analysis? xplain with counter examples.. What are the basic differences between PM and PRT analysis of project work?. State the rule of constructing the network diagram..

More information

Project Planning. Identifying the Work to Be Done. Gantt Chart. A Gantt Chart. Given: Activity Sequencing Network Diagrams

Project Planning. Identifying the Work to Be Done. Gantt Chart. A Gantt Chart. Given: Activity Sequencing Network Diagrams Project Planning Identifying the Work to Be Done Activity Sequencing Network Diagrams Given: Statement of work written description of goals work & time frame of project Work Breakdown Structure Be able

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit 3 Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 3: Sensitivity and Duality 3 3.1 Sensitivity

More information

DUALITY AND SENSITIVITY ANALYSIS

DUALITY AND SENSITIVITY ANALYSIS DUALITY AND SENSITIVITY ANALYSIS Understanding Duality No learning of Linear Programming is complete unless we learn the concept of Duality in linear programming. It is impossible to separate the linear

More information

Optimal Integer Delay Budget Assignment on Directed Acyclic Graphs

Optimal Integer Delay Budget Assignment on Directed Acyclic Graphs Optimal Integer Delay Budget Assignment on Directed Acyclic Graphs E. Bozorgzadeh S. Ghiasi A. Takahashi M. Sarrafzadeh Computer Science Department University of California, Los Angeles (UCLA) Los Angeles,

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 8 The portfolio selection problem The portfolio

More information

Multiple regression - a brief introduction

Multiple regression - a brief introduction Multiple regression - a brief introduction Multiple regression is an extension to regular (simple) regression. Instead of one X, we now have several. Suppose, for example, that you are trying to predict

More information

OptIntro 1 / 14. Tutorial AMPL. Eduardo Camponogara. Department of Automation and Systems Engineering Federal University of Santa Catarina

OptIntro 1 / 14. Tutorial AMPL. Eduardo Camponogara. Department of Automation and Systems Engineering Federal University of Santa Catarina OptIntro 1 / 14 Tutorial AMPL Eduardo Camponogara Department of Automation and Systems Engineering Federal University of Santa Catarina October 2016 OptIntro 2 / 14 Summary Duality OptIntro 3 / 14 AMPL

More information

CSE 21 Winter 2016 Homework 6 Due: Wednesday, May 11, 2016 at 11:59pm. Instructions

CSE 21 Winter 2016 Homework 6 Due: Wednesday, May 11, 2016 at 11:59pm. Instructions CSE 1 Winter 016 Homework 6 Due: Wednesday, May 11, 016 at 11:59pm Instructions Homework should be done in groups of one to three people. You are free to change group members at any time throughout the

More information

Microeconomics of Banking: Lecture 5

Microeconomics of Banking: Lecture 5 Microeconomics of Banking: Lecture 5 Prof. Ronaldo CARPIO Oct. 23, 2015 Administrative Stuff Homework 2 is due next week. Due to the change in material covered, I have decided to change the grading system

More information

Problem Set 2: Answers

Problem Set 2: Answers Economics 623 J.R.Walker Page 1 Problem Set 2: Answers The problem set came from Michael A. Trick, Senior Associate Dean, Education and Professor Tepper School of Business, Carnegie Mellon University.

More information

A STUDY OF THE BASIC CONCEPT OF CRASHING CPM NETWORK USING DERIVATIVE MARGINAL COST IN LINEAR PROGRAMMING

A STUDY OF THE BASIC CONCEPT OF CRASHING CPM NETWORK USING DERIVATIVE MARGINAL COST IN LINEAR PROGRAMMING ISSN : 98-X STUDY OF THE BSI ONEPT OF RSHING PM NETWORK USING DERIVTIVE MRGINL OST IN LINER PROGRMMING Ismail H. srul tma Jaya atholic University, Jakarta, Indonesia ismael.aaron@gmail.com BSTRT For crashing

More information

Optimization Methods. Lecture 16: Dynamic Programming

Optimization Methods. Lecture 16: Dynamic Programming 15.093 Optimization Methods Lecture 16: Dynamic Programming 1 Outline 1. The knapsack problem Slide 1. The traveling salesman problem 3. The general DP framework 4. Bellman equation 5. Optimal inventory

More information

Cost Estimation as a Linear Programming Problem ISPA/SCEA Annual Conference St. Louis, Missouri

Cost Estimation as a Linear Programming Problem ISPA/SCEA Annual Conference St. Louis, Missouri Cost Estimation as a Linear Programming Problem 2009 ISPA/SCEA Annual Conference St. Louis, Missouri Kevin Cincotta Andrew Busick Acknowledgments The author wishes to recognize and thank the following

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May, 204 Review of Game heory: Let M be a matrix with all elements in [0, ]. Mindy (called the row player) chooses

More information

AN ALGORITHM FOR FINDING SHORTEST ROUTES FROM ALL SOURCE NODES TO A GIVEN DESTINATION IN GENERAL NETWORKS*

AN ALGORITHM FOR FINDING SHORTEST ROUTES FROM ALL SOURCE NODES TO A GIVEN DESTINATION IN GENERAL NETWORKS* 526 AN ALGORITHM FOR FINDING SHORTEST ROUTES FROM ALL SOURCE NODES TO A GIVEN DESTINATION IN GENERAL NETWORKS* By JIN Y. YEN (University of California, Berkeley) Summary. This paper presents an algorithm

More information

FINANCIAL OPTIMIZATION

FINANCIAL OPTIMIZATION FINANCIAL OPTIMIZATION Lecture 2: Linear Programming Philip H. Dybvig Washington University Saint Louis, Missouri Copyright c Philip H. Dybvig 2008 Choose x to minimize c x subject to ( i E)a i x = b i,

More information

Issues. Senate (Total = 100) Senate Group 1 Y Y N N Y 32 Senate Group 2 Y Y D N D 16 Senate Group 3 N N Y Y Y 30 Senate Group 4 D Y N D Y 22

Issues. Senate (Total = 100) Senate Group 1 Y Y N N Y 32 Senate Group 2 Y Y D N D 16 Senate Group 3 N N Y Y Y 30 Senate Group 4 D Y N D Y 22 1. Every year, the United States Congress must approve a budget for the country. In order to be approved, the budget must get a majority of the votes in the Senate, a majority of votes in the House, and

More information

UNIT 10 DECISION MAKING PROCESS

UNIT 10 DECISION MAKING PROCESS UIT 0 DECISIO MKIG PROCESS Structure 0. Introduction Objectives 0. Decision Making Under Risk Expected Monetary Value (EMV) Criterion Expected Opportunity Loss (EOL) Criterion Expected Profit with Perfect

More information

Algorithmic Game Theory (a primer) Depth Qualifying Exam for Ashish Rastogi (Ph.D. candidate)

Algorithmic Game Theory (a primer) Depth Qualifying Exam for Ashish Rastogi (Ph.D. candidate) Algorithmic Game Theory (a primer) Depth Qualifying Exam for Ashish Rastogi (Ph.D. candidate) 1 Game Theory Theory of strategic behavior among rational players. Typical game has several players. Each player

More information

Risk-neutral Binomial Option Valuation

Risk-neutral Binomial Option Valuation Risk-neutral Binomial Option Valuation Main idea is that the option price now equals the expected value of the option price in the future, discounted back to the present at the risk free rate. Assumes

More information

Textbook: pp Chapter 11: Project Management

Textbook: pp Chapter 11: Project Management 1 Textbook: pp. 405-444 Chapter 11: Project Management 2 Learning Objectives After completing this chapter, students will be able to: Understand how to plan, monitor, and control projects with the use

More information

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 15 Dr. Ted Ralphs ISE 347/447 Lecture 15 1 Reading for This Lecture C&T Chapter 12 ISE 347/447 Lecture 15 2 Stock Market Indices A stock market index is a statistic

More information

Decision Analysis CHAPTER LEARNING OBJECTIVES CHAPTER OUTLINE. After completing this chapter, students will be able to:

Decision Analysis CHAPTER LEARNING OBJECTIVES CHAPTER OUTLINE. After completing this chapter, students will be able to: CHAPTER 3 Decision Analysis LEARNING OBJECTIVES After completing this chapter, students will be able to: 1. List the steps of the decision-making process. 2. Describe the types of decision-making environments.

More information

Maximum Contiguous Subsequences

Maximum Contiguous Subsequences Chapter 8 Maximum Contiguous Subsequences In this chapter, we consider a well-know problem and apply the algorithm-design techniques that we have learned thus far to this problem. While applying these

More information

Vertical Asymptotes. We generally see vertical asymptotes in the graph of a function when we divide by zero. For example, in the function

Vertical Asymptotes. We generally see vertical asymptotes in the graph of a function when we divide by zero. For example, in the function MA 223 Lecture 26 - Behavior Around Vertical Asymptotes Monday, April 9, 208 Objectives: Explore middle behavior around vertical asymptotes. Vertical Asymptotes We generally see vertical asymptotes in

More information