Descriptive Statistics for Financial Time Series

Size: px
Start display at page:

Download "Descriptive Statistics for Financial Time Series"

Transcription

1 Descriptive Statistics for Financial Time Series Econ 424/Amath 462 Summer 2014 Eric Zivot Updated: July 10, 2014

2 # Load libraries > library(tseries) > library(performanceanalytics) Data for Examples # Get adjusted closing price data from Yahoo! > MSFT.prices = get.hist.quote(instrument="msft", start=" ", + end=" ", quote="adjclose", + provider="yahoo", origin=" ", + compression="m", retclass="zoo") > SP500.prices = get.hist.quote(instrument="^gspc", start=" ", + end=" ", quote="adjclose", + provider="yahoo", origin=" ", + compression="m", retclass="zoo")

3 Price Data > plot(msftsp500.prices, p main="adjusted Closing Prices", lwd=2, col="blue")

4 Monthly Continuously Compounded Returns Q: What common features do you see?

5 MSFT and S&P 500 tend to move together S&P 500 has much lower volatility than MSFT

6 Compare Cumulative Returns > chart.cumreturns(msftsp500.rets, main=", legend.loc="topright") 3.0 MSFT SP500 Value Feb 98 Feb 00 Feb 02 Feb 04 Feb 06 Feb 08 Feb 10 Jan 12

7 Are Monthly Returns Gaussian White Noise? > set.seed(123) > gwn = rnorm(length(msft),mean=mean(msft),sd=std(msft))

8 Estimating the pdf: Histogram > hist(msft,main= main="histogram of MSFT monthly cc returns, + col= slateblue1 )

9 Note: Simulated data has the same mean and variance as the returns on Microsoft > hist(gwn,main= main="histogram of simulated Gaussian data, + col= slateblue1 )

10 > hist(sp500,main="histogram of SP500 monthly cc returns, + col= slateblue1 )

11 Note: MSFT has larger SD (volatility) than S&P 500

12 > MSFT.density = density(msft) > plot(msft.density,type="l",xlab="monthly return", + ylab="density estimate",main="smoothed t i "S th histogram for MSFT + monthly cc returns, col= orange, lwd=2)

13 > hist(msft,main="histogram and smoothed density of MSFT + monthly returns", probability=t, col= slateblue1, + ylim=c(0,5)) > points(msft.density, type="l, col= orange, lwd=2)

14 Computing quantiles > quantile(msft.ret.mat) 0% 25% 50% 75% 100% # 1% and 5% empirical quantiles > quantile(msft.ret.mat,probs=c(0.01,0.05)) 1% 5% 1% and 5% quantiles are used for Value-at- at # compare to 1% and 5% normal quantiles Risk calculations > qnorm(p=c(0.01,0.05), mean=mean(msft.ret.mat), + sd=sd(msft.ret.mat)) [1] # SP500 empirical and normal quantiles > quantile(sp500.ret.mat,probs=c(0.01,0.05)) 1% 5% > qnorm(p=c(0.01,0.05), mean=mean(sp500.ret.mat), + sd=sd(sp500.ret.mat)) sd(sp500.ret.mat)) [1]

15 Monthly VaR Using Empirical Quantiles > q.01 = quantile(msft.ret.mat, probs=0.01) > q.05 = quantile(msft.ret.mat, probs=0.05) > q.01 1% > q.05 5% # Monthly VaR on $100,000 investment > VaR.01 = *(exp(q.01) - 1) > VaR.05 = *(exp(q.05) - 1) > VaR.01 1% > VaR.05 5%

16 Summary Statistics > mean(msft.ret.mat) MSFT > var(msft.ret.mat) MSFT MSFT > sd(msft.ret.mat) MSFT > skewness(msft.ret.mat) [1] > kurtosis(msft.ret.mat) ret [1] Skewness() function is in package PerformanceAnalytics kurtosis() function is in package PerformanceAnalytics and computes excess kurtosis

17 Summary Statistics by Column > apply(msftsp500.ret.mat, 2, mean) MSFT SP Note: MSFT has a higher mean and higher SD than > apply(msftsp500.ret.mat, 2, sd) SP500 MSFT SP > apply(msftsp500.ret.mat, 2, skewness) MSFT SP > apply(msftsp500.ret.mat, 2, kurtosis) MSFT SP

18 Empirical CDF of Gaussian data #x(i) <= x sort(gwn) > n1 = length(gwn) > plot(sort(gwn),(1:n1)/n1,type= (1:n1)/n1 type="s",ylim=c(0,1), col= slateblue1 + main="empirical CDF of Gaussian data", ylab="#x(i) <= x")

19 Empirical CDF vs. Normal CDF for Gaussian data Normal CDF Empirical CDF CDF standardized gwn

20 Empirical CDF is pretty close to Normal CDF but hard to tell

21 Empirical CDF is pretty close to Normal CDF but hard to tell

22 QQ-plots against Normal Distribution Nice and straight! Empirical quantiles > par(mfrow=c(2,2)) don t match > qqnorm(gwn) normal > qqline(gwn) quantiles in> > qqnorm(msft.ret) ret) the tails! > qqline(msft.ret) > qqnorm(sp500.ret) > qqline(sp500.ret) > par(mfrow=c(1,1))

23

24

25 Effect of Outliers on Descriptive Statistics Outlier

26 Summary statistics of polluted data > tmp = cbind(gwn, gwn.new) > apply(tmp, 2, mean) gwn gwn.new > apply(tmp, 2, sd) gwn gwn.new > apply(tmp, 2, skewness) gwn gwn.new > apply(tmp, 2, kurtosis) gwn gwn.new Notice how sample statistics are influenced by the single outlier # outlier robust measures > apply(tmp, 2, median) gwn gwn.new > apply(tmp, 2, IQR) gwn gwn.newnew

27 Boxplot of monthly cc returns on Microsoft 0..2 outliers Largest data point at most1.5*iqr from top of box monthly cc re eturn 0.0 IQR median Smallest data point at most1.5*iqr from bottom of box > boxplot(msft,outchar=t,main= outchar=t main="boxplot of monthly cc + returns on Microsoft",ylab="monthly cc return")

28 > boxplot(gwn,msft,sp500,names=c("gwn","msft","sp500"),outchar=t, + main="comparison of return distributions", ylab="monthly cc + return")

29 Four Graph Summary par(mfrow=c(2,2)) # plot 1 hist(msft.mat,main= main="msft monthly cc returns", probability=t, ylab="cc return", col="slateblue1") # plot 2 boxplot(msft.mat,outchar=t, ylab="cc return", col="slateblue1") # plot 3 plot(msft.density,type="l",xlab="cc l,xlab return", col="slateblue1", lwd=2, ylab="density estimate", main="smoothed density") # plot 4 qqnorm(msft.mat) qqline(msft.mat) par(mfrow=c(1,1)) (

30

31 Scatterplot Cov(MSFT,SP500)= Corr(MSFT,SP500)=0.60 > plot(msft.mat,sp500.mat,main="monthly cc returns on MSFT + and SP500, pch=16, cex=1.5, col= blue ) > abline(h=mean(sp500)) # horizontal line at SP500 mean > abline(v=mean(msft)) # vertical line at MSFT mean

32 Pairwise Scatterplots > pairs(cbind(gwn,msft,sp500), col= blue, pch=16, + cex=1.5, cex.axis=1.5)

33 Sample Covariances and Correlations > var(cbind(gwn,msft.mat,sp500.mat)) gwn MSFT SP500 gwn MSFT SP > cor(cbind(gwn,msft.mat,sp500.mat)) gwn MSFT SP500 gwn MSFT SP

34 Sample ACF for S&P 500 Monthly returns are essentially uncorrelated; i.e., unpredictable!

35 Sample ACF for MSFT Small negative 1 st order autocorrelation possibly MA(1) model

36 Stylized Facts for Monthly CC Returns Returns appear to be approximately normally distributed Some noticeable negative skewness and excess kurtosis Individual asset returns have higher SD than diversified portfolios Many assets are contemporaneously correlated Assets are approximately uncorrelated over time (no serial correlation)

Chapter 1. Descriptive Statistics for Financial Data. 1.1 UnivariateDescriptiveStatistics

Chapter 1. Descriptive Statistics for Financial Data. 1.1 UnivariateDescriptiveStatistics Chapter 1 Descriptive Statistics for Financial Data Updated: July 7, 2014 In this chapter we use graphical and numerical descriptive statistics to study the distribution and dependence properties of daily

More information

The Constant Expected Return Model

The Constant Expected Return Model Chapter 1 The Constant Expected Return Model Date: February 5, 2015 The first model of asset returns we consider is the very simple constant expected return (CER) model. This model is motivated by the

More information

Introduction to Computational Finance and Financial Econometrics Descriptive Statistics

Introduction to Computational Finance and Financial Econometrics Descriptive Statistics You can t see this text! Introduction to Computational Finance and Financial Econometrics Descriptive Statistics Eric Zivot Summer 2015 Eric Zivot (Copyright 2015) Descriptive Statistics 1 / 28 Outline

More information

I. Return Calculations (20 pts, 4 points each)

I. Return Calculations (20 pts, 4 points each) University of Washington Winter 015 Department of Economics Eric Zivot Econ 44 Midterm Exam Solutions This is a closed book and closed note exam. However, you are allowed one page of notes (8.5 by 11 or

More information

Lecture 1: Empirical Properties of Returns

Lecture 1: Empirical Properties of Returns Lecture 1: Empirical Properties of Returns Econ 589 Eric Zivot Spring 2011 Updated: March 29, 2011 Daily CC Returns on MSFT -0.3 r(t) -0.2-0.1 0.1 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

More information

Midterm Exam. b. What are the continuously compounded returns for the two stocks?

Midterm Exam. b. What are the continuously compounded returns for the two stocks? University of Washington Fall 004 Department of Economics Eric Zivot Economics 483 Midterm Exam This is a closed book and closed note exam. However, you are allowed one page of notes (double-sided). Answer

More information

Chen-wei Chiu ECON 424 Eric Zivot July 17, Lab 4. Part I Descriptive Statistics. I. Univariate Graphical Analysis 1. Separate & Same Graph

Chen-wei Chiu ECON 424 Eric Zivot July 17, Lab 4. Part I Descriptive Statistics. I. Univariate Graphical Analysis 1. Separate & Same Graph Chen-wei Chiu ECON 424 Eric Zivot July 17, 2014 Part I Descriptive Statistics I. Univariate Graphical Analysis 1. Separate & Same Graph Lab 4 Time Series Plot Bar Graph The plots show that the returns

More information

Economics 483. Midterm Exam. 1. Consider the following monthly data for Microsoft stock over the period December 1995 through December 1996:

Economics 483. Midterm Exam. 1. Consider the following monthly data for Microsoft stock over the period December 1995 through December 1996: University of Washington Summer Department of Economics Eric Zivot Economics 3 Midterm Exam This is a closed book and closed note exam. However, you are allowed one page of handwritten notes. Answer all

More information

Financial Returns: Stylized Features and Statistical Models

Financial Returns: Stylized Features and Statistical Models Financial Returns: Stylized Features and Statistical Models Qiwei Yao Department of Statistics London School of Economics q.yao@lse.ac.uk p.1 Definitions of returns Empirical evidence: daily prices in

More information

The Constant Expected Return Model

The Constant Expected Return Model Chapter 1 The Constant Expected Return Model Date: September 6, 2013 The first model of asset returns we consider is the very simple constant expected return (CER) model. This model assumes that an asset

More information

Washington University Fall Economics 487

Washington University Fall Economics 487 Washington University Fall 2009 Department of Economics James Morley Economics 487 Project Proposal due Tuesday 11/10 Final Project due Wednesday 12/9 (by 5:00pm) (20% penalty per day if the project is

More information

QQ Plots Stat 342, Spring 2014 Prof. Guttorp - TA Aaron Zimmerman

QQ Plots Stat 342, Spring 2014 Prof. Guttorp - TA Aaron Zimmerman QQ Plots Stat 342, Spring 2014 Prof. Guttorp - TA Aaron Zimmerman To get you started, remember that that a q-q-plot plots (Fn 1 (p), F0 1 (p)) for p (0, 1), where Fn 1 (p) = inf{y : F n (y) p}, where F

More information

Introduction to R (2)

Introduction to R (2) Introduction to R (2) Boxplots Boxplots are highly efficient tools for the representation of the data distributions. The five number summary can be located in boxplots. Additionally, we can distinguish

More information

Modern Methods of Data Analysis - SS 2009

Modern Methods of Data Analysis - SS 2009 Modern Methods of Data Analysis Lecture II (7.04.09) Contents: Characterize data samples Characterize distributions Correlations, covariance Reminder: Average of a Sample arithmetic mean of data set: weighted

More information

Data Distributions and Normality

Data Distributions and Normality Data Distributions and Normality Definition (Non)Parametric Parametric statistics assume that data come from a normal distribution, and make inferences about parameters of that distribution. These statistical

More information

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Chapter 3 Numerical Descriptive Measures Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Objectives In this chapter, you learn to: Describe the properties of central tendency, variation, and

More information

Statistics for Engineering, 4C3/6C3, 2012 Assignment 2

Statistics for Engineering, 4C3/6C3, 2012 Assignment 2 Statistics for Engineering, 4C3/6C3, 2012 Assignment 2 Kevin Dunn, dunnkg@mcmaster.ca Due date: 23 January 2012 Assignment objectives: Use a table of normal distributions to calculate probabilities Summarizing

More information

Lab 9 Distributions and the Central Limit Theorem

Lab 9 Distributions and the Central Limit Theorem Lab 9 Distributions and the Central Limit Theorem Distributions: You will need to become familiar with at least 5 types of distributions in your Introductory Statistics study: the Normal distribution,

More information

Financial Econometrics Jeffrey R. Russell Midterm 2014

Financial Econometrics Jeffrey R. Russell Midterm 2014 Name: Financial Econometrics Jeffrey R. Russell Midterm 2014 You have 2 hours to complete the exam. Use can use a calculator and one side of an 8.5x11 cheat sheet. Try to fit all your work in the space

More information

STA 248 H1S Winter 2008 Assignment 1 Solutions

STA 248 H1S Winter 2008 Assignment 1 Solutions 1. (a) Measures of location: STA 248 H1S Winter 2008 Assignment 1 Solutions i. The mean, 100 1=1 x i/100, can be made arbitrarily large if one of the x i are made arbitrarily large since the sample size

More information

Business Statistics. University of Chicago Booth School of Business Fall Jeffrey R. Russell

Business Statistics. University of Chicago Booth School of Business Fall Jeffrey R. Russell Business Statistics University of Chicago Booth School of Business Fall 08 Jeffrey R. Russell There is no text book for the course. You may choose to pick up a copy of Statistics for Business and Economics

More information

The Normal Distribution & Descriptive Statistics. Kin 304W Week 2: Jan 15, 2012

The Normal Distribution & Descriptive Statistics. Kin 304W Week 2: Jan 15, 2012 The Normal Distribution & Descriptive Statistics Kin 304W Week 2: Jan 15, 2012 1 Questionnaire Results I received 71 completed questionnaires. Thank you! Are you nervous about scientific writing? You re

More information

Financial Risk Models in R. Outline

Financial Risk Models in R. Outline Financial Risk Models in R AMATH 546/ECON 589 22 May 2012 Eric Zivot Outline Factor Models for Asset Returns Estimation of Factor Models in R Factor Model Risk Analysis Factor Model Risk Analysis in R

More information

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay Solutions to Midterm Problem A: (30 pts) Answer briefly the following questions. Each question has

More information

Washington University Fall Economics 487. Project Proposal due Monday 10/22 Final Project due Monday 12/3

Washington University Fall Economics 487. Project Proposal due Monday 10/22 Final Project due Monday 12/3 Washington University Fall 2001 Department of Economics James Morley Economics 487 Project Proposal due Monday 10/22 Final Project due Monday 12/3 For this project, you will analyze the behaviour of 10

More information

Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Lecture 1: Review and Exploratory Data Analysis (EDA) Ani Manichaikul amanicha@jhsph.edu 16 April 2007 1 / 40 Course Information I Office hours For questions and help When? I ll announce this tomorrow

More information

Asset returns and R applications

Asset returns and R applications I. Time value of money: Asset returns and R applications Consider an investor looking for potential investments in equity and fixed income markets. Why would one want to put money in these investments

More information

Financial Econometrics (FinMetrics04) Time-series Statistics Concepts Exploratory Data Analysis Testing for Normality Empirical VaR

Financial Econometrics (FinMetrics04) Time-series Statistics Concepts Exploratory Data Analysis Testing for Normality Empirical VaR Financial Econometrics (FinMetrics04) Time-series Statistics Concepts Exploratory Data Analysis Testing for Normality Empirical VaR Nelson Mark University of Notre Dame Fall 2017 September 11, 2017 Introduction

More information

QQ PLOT Yunsi Wang, Tyler Steele, Eva Zhang Spring 2016

QQ PLOT Yunsi Wang, Tyler Steele, Eva Zhang Spring 2016 QQ PLOT INTERPRETATION: Quantiles: QQ PLOT Yunsi Wang, Tyler Steele, Eva Zhang Spring 2016 The quantiles are values dividing a probability distribution into equal intervals, with every interval having

More information

Example 1 of econometric analysis: the Market Model

Example 1 of econometric analysis: the Market Model Example 1 of econometric analysis: the Market Model IGIDR, Bombay 14 November, 2008 The Market Model Investors want an equation predicting the return from investing in alternative securities. Return is

More information

Occasional Paper. Risk Measurement Illiquidity Distortions. Jiaqi Chen and Michael L. Tindall

Occasional Paper. Risk Measurement Illiquidity Distortions. Jiaqi Chen and Michael L. Tindall DALLASFED Occasional Paper Risk Measurement Illiquidity Distortions Jiaqi Chen and Michael L. Tindall Federal Reserve Bank of Dallas Financial Industry Studies Department Occasional Paper 12-2 December

More information

Assignment 4. 1 The Normal approximation to the Binomial

Assignment 4. 1 The Normal approximation to the Binomial CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2015 Assignment 4 Due Monday, February 2 by 4:00 p.m. at 253 Sloan Instructions: For each exercise

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 10 (MWF) Checking for normality of the data using the QQplot Suhasini Subba Rao Checking for

More information

Rationale Reference Nattawut Jenwittayaroje, Ph.D., CFA Expected Return and Standard Deviation Example: Ending Price =

Rationale Reference Nattawut Jenwittayaroje, Ph.D., CFA Expected Return and Standard Deviation Example: Ending Price = Rationale Lecture 4: Learning about return and risk from the historical record Reference: Investments, Bodie, Kane, and Marcus, and Investment Analysis and Behavior, Nofsinger and Hirschey Nattawut Jenwittayaroje,

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Exploring Data and Graphics

Exploring Data and Graphics Exploring Data and Graphics Rick White Department of Statistics, UBC Graduate Pathways to Success Graduate & Postdoctoral Studies November 13, 2013 Outline Summarizing Data Types of Data Visualizing Data

More information

Parametric Statistics: Exploring Assumptions.

Parametric Statistics: Exploring Assumptions. Parametric Statistics: Exploring Assumptions http://www.pelagicos.net/classes_biometry_fa17.htm Reading - Field: Chapter 5 R Packages Used in This Chapter For this chapter, you will use the following packages:

More information

Amath 546/Econ 589 Univariate GARCH Models

Amath 546/Econ 589 Univariate GARCH Models Amath 546/Econ 589 Univariate GARCH Models Eric Zivot April 24, 2013 Lecture Outline Conditional vs. Unconditional Risk Measures Empirical regularities of asset returns Engle s ARCH model Testing for ARCH

More information

Lecture 2 Describing Data

Lecture 2 Describing Data Lecture 2 Describing Data Thais Paiva STA 111 - Summer 2013 Term II July 2, 2013 Lecture Plan 1 Types of data 2 Describing the data with plots 3 Summary statistics for central tendency and spread 4 Histograms

More information

Model Construction & Forecast Based Portfolio Allocation:

Model Construction & Forecast Based Portfolio Allocation: QBUS6830 Financial Time Series and Forecasting Model Construction & Forecast Based Portfolio Allocation: Is Quantitative Method Worth It? Members: Bowei Li (303083) Wenjian Xu (308077237) Xiaoyun Lu (3295347)

More information

1 Describing Distributions with numbers

1 Describing Distributions with numbers 1 Describing Distributions with numbers Only for quantitative variables!! 1.1 Describing the center of a data set The mean of a set of numerical observation is the familiar arithmetic average. To write

More information

Statistical Analysis of Data from the Stock Markets. UiO-STK4510 Autumn 2015

Statistical Analysis of Data from the Stock Markets. UiO-STK4510 Autumn 2015 Statistical Analysis of Data from the Stock Markets UiO-STK4510 Autumn 2015 Sampling Conventions We observe the price process S of some stock (or stock index) at times ft i g i=0,...,n, we denote it by

More information

SOLUTIONS TO THE LAB 1 ASSIGNMENT

SOLUTIONS TO THE LAB 1 ASSIGNMENT SOLUTIONS TO THE LAB 1 ASSIGNMENT Question 1 Excel produces the following histogram of pull strengths for the 100 resistors: 2 20 Histogram of Pull Strengths (lb) Frequency 1 10 0 9 61 63 6 67 69 71 73

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 10 (MWF) Checking for normality of the data using the QQplot Suhasini Subba Rao Review of previous

More information

Descriptive Statistics

Descriptive Statistics Petra Petrovics Descriptive Statistics 2 nd seminar DESCRIPTIVE STATISTICS Definition: Descriptive statistics is concerned only with collecting and describing data Methods: - statistical tables and graphs

More information

Financial Econometrics Notes. Kevin Sheppard University of Oxford

Financial Econometrics Notes. Kevin Sheppard University of Oxford Financial Econometrics Notes Kevin Sheppard University of Oxford Monday 15 th January, 2018 2 This version: 22:52, Monday 15 th January, 2018 2018 Kevin Sheppard ii Contents 1 Probability, Random Variables

More information

Today s plan: Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation.

Today s plan: Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation. 1 Today s plan: Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation. 2 Once we know the central location of a data set, we want to know how close things are to the center. 2 Once we know

More information

Session Window. Variable Name Row. Worksheet Window. Double click on MINITAB icon. You will see a split screen: Getting Started with MINITAB

Session Window. Variable Name Row. Worksheet Window. Double click on MINITAB icon. You will see a split screen: Getting Started with MINITAB STARTING MINITAB: Double click on MINITAB icon. You will see a split screen: Session Window Worksheet Window Variable Name Row ACTIVE WINDOW = BLUE INACTIVE WINDOW = GRAY f(x) F(x) Getting Started with

More information

Data screening, transformations: MRC05

Data screening, transformations: MRC05 Dale Berger Data screening, transformations: MRC05 This is a demonstration of data screening and transformations for a regression analysis. Our interest is in predicting current salary from education level

More information

Some estimates of the height of the podium

Some estimates of the height of the podium Some estimates of the height of the podium 24 36 40 40 40 41 42 44 46 48 50 53 65 98 1 5 number summary Inter quartile range (IQR) range = max min 2 1.5 IQR outlier rule 3 make a boxplot 24 36 40 40 40

More information

Descriptive Statistics Bios 662

Descriptive Statistics Bios 662 Descriptive Statistics Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-08-19 08:51 BIOS 662 1 Descriptive Statistics Descriptive Statistics Types of variables

More information

Rationale. Learning about return and risk from the historical record and beta estimation. T Bills and Inflation

Rationale. Learning about return and risk from the historical record and beta estimation. T Bills and Inflation Learning about return and risk from the historical record and beta estimation Reference: Investments, Bodie, Kane, and Marcus, and Investment Analysis and Behavior, Nofsinger and Hirschey Nattawut Jenwittayaroje,

More information

The Normal Distribution

The Normal Distribution Stat 6 Introduction to Business Statistics I Spring 009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:300:50 a.m. Chapter, Section.3 The Normal Distribution Density Curves So far we

More information

2018 AAPM: Normal and non normal distributions: Why understanding distributions are important when designing experiments and analyzing data

2018 AAPM: Normal and non normal distributions: Why understanding distributions are important when designing experiments and analyzing data Statistical Failings that Keep Us All in the Dark Normal and non normal distributions: Why understanding distributions are important when designing experiments and Conflict of Interest Disclosure I have

More information

NOTES TO CONSIDER BEFORE ATTEMPTING EX 2C BOX PLOTS

NOTES TO CONSIDER BEFORE ATTEMPTING EX 2C BOX PLOTS NOTES TO CONSIDER BEFORE ATTEMPTING EX 2C BOX PLOTS A box plot is a pictorial representation of the data and can be used to get a good idea and a clear picture about the distribution of the data. It shows

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

Lecture 6: Non Normal Distributions

Lecture 6: Non Normal Distributions Lecture 6: Non Normal Distributions and their Uses in GARCH Modelling Prof. Massimo Guidolin 20192 Financial Econometrics Spring 2015 Overview Non-normalities in (standardized) residuals from asset return

More information

Risk and Risk Aversion

Risk and Risk Aversion Risk and Risk Aversion Do markets price in new information? Refer to spreadsheet Risk.xls ci Price of a financial asset will be the present value of future cash flows. PV i 1 (1 Rs ) (where c i = are the

More information

GGraph. Males Only. Premium. Experience. GGraph. Gender. 1 0: R 2 Linear = : R 2 Linear = Page 1

GGraph. Males Only. Premium. Experience. GGraph. Gender. 1 0: R 2 Linear = : R 2 Linear = Page 1 GGraph 9 Gender : R Linear =.43 : R Linear =.769 8 7 6 5 4 3 5 5 Males Only GGraph Page R Linear =.43 R Loess 9 8 7 6 5 4 5 5 Explore Case Processing Summary Cases Valid Missing Total N Percent N Percent

More information

Monetary Economics Measuring Asset Returns. Gerald P. Dwyer Fall 2015

Monetary Economics Measuring Asset Returns. Gerald P. Dwyer Fall 2015 Monetary Economics Measuring Asset Returns Gerald P. Dwyer Fall 2015 WSJ Readings Readings this lecture, Cuthbertson Ch. 9 Readings next lecture, Cuthbertson, Chs. 10 13 Measuring Asset Returns Outline

More information

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1 Chapter 1 1.1 Definitions Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1. Data Any collection of numbers, characters, images, or other items that provide information about something. 2.

More information

Putting Things Together Part 2

Putting Things Together Part 2 Frequency Putting Things Together Part These exercise blend ideas from various graphs (histograms and boxplots), differing shapes of distributions, and values summarizing the data. Data for, and are in

More information

Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics

Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics Amath 546/Econ 589 Univariate GARCH Models: Advanced Topics Eric Zivot April 29, 2013 Lecture Outline The Leverage Effect Asymmetric GARCH Models Forecasts from Asymmetric GARCH Models GARCH Models with

More information

Frequency Distribution and Summary Statistics

Frequency Distribution and Summary Statistics Frequency Distribution and Summary Statistics Dongmei Li Department of Public Health Sciences Office of Public Health Studies University of Hawai i at Mānoa Outline 1. Stemplot 2. Frequency table 3. Summary

More information

Handout 4 numerical descriptive measures part 2. Example 1. Variance and Standard Deviation for Grouped Data. mf N 535 = = 25

Handout 4 numerical descriptive measures part 2. Example 1. Variance and Standard Deviation for Grouped Data. mf N 535 = = 25 Handout 4 numerical descriptive measures part Calculating Mean for Grouped Data mf Mean for population data: µ mf Mean for sample data: x n where m is the midpoint and f is the frequency of a class. Example

More information

Random Effects ANOVA

Random Effects ANOVA Random Effects ANOVA Grant B. Morgan Baylor University This post contains code for conducting a random effects ANOVA. Make sure the following packages are installed: foreign, lme4, lsr, lattice. library(foreign)

More information

Frequency Distribution Models 1- Probability Density Function (PDF)

Frequency Distribution Models 1- Probability Density Function (PDF) Models 1- Probability Density Function (PDF) What is a PDF model? A mathematical equation that describes the frequency curve or probability distribution of a data set. Why modeling? It represents and summarizes

More information

Quantitative Methods for Economics, Finance and Management (A86050 F86050)

Quantitative Methods for Economics, Finance and Management (A86050 F86050) Quantitative Methods for Economics, Finance and Management (A86050 F86050) Matteo Manera matteo.manera@unimib.it Marzio Galeotti marzio.galeotti@unimi.it 1 This material is taken and adapted from Guy Judge

More information

Models of Patterns. Lecture 3, SMMD 2005 Bob Stine

Models of Patterns. Lecture 3, SMMD 2005 Bob Stine Models of Patterns Lecture 3, SMMD 2005 Bob Stine Review Speculative investing and portfolios Risk and variance Volatility adjusted return Volatility drag Dependence Covariance Review Example Stock and

More information

The Not-So-Geeky World of Statistics

The Not-So-Geeky World of Statistics FEBRUARY 3 5, 2015 / THE HILTON NEW YORK The Not-So-Geeky World of Statistics Chris Emerson Chris Sweet (a/k/a Chris 2 ) 2 Who We Are Chris Sweet JPMorgan Chase VP, Outside Counsel & Engagement Management

More information

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations Percentiles, STATA, Box Plots, Standardizing, and Other Transformations Lecture 3 Reading: Sections 5.7 54 Remember, when you finish a chapter make sure not to miss the last couple of boxes: What Can Go

More information

STAT 113 Variability

STAT 113 Variability STAT 113 Variability Colin Reimer Dawson Oberlin College September 14, 2017 1 / 48 Outline Last Time: Shape and Center Variability Boxplots and the IQR Variance and Standard Deviaton Transformations 2

More information

Monte Carlo Simulation (Random Number Generation)

Monte Carlo Simulation (Random Number Generation) Monte Carlo Simulation (Random Number Generation) Revised: 10/11/2017 Summary... 1 Data Input... 1 Analysis Options... 6 Summary Statistics... 6 Box-and-Whisker Plots... 7 Percentiles... 9 Quantile Plots...

More information

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw MAS1403 Quantitative Methods for Business Management Semester 1, 2018 2019 Module leader: Dr. David Walshaw Additional lecturers: Dr. James Waldren and Dr. Stuart Hall Announcements: Written assignment

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

Fin285a:Computer Simulations and Risk Assessment Section 3.2 Stylized facts of financial data Danielson,

Fin285a:Computer Simulations and Risk Assessment Section 3.2 Stylized facts of financial data Danielson, Fin285a:Computer Simulations and Risk Assessment Section 3.2 Stylized facts of financial data Danielson, 1.3-1.7 Blake LeBaron Fall 2016 1 Overview Autocorrelations and predictability Fat tails Volatility

More information

A useful modeling tricks.

A useful modeling tricks. .7 Joint models for more than two outcomes We saw that we could write joint models for a pair of variables by specifying the joint probabilities over all pairs of outcomes. In principal, we could do this

More information

appstats5.notebook September 07, 2016 Chapter 5

appstats5.notebook September 07, 2016 Chapter 5 Chapter 5 Describing Distributions Numerically Chapter 5 Objective: Students will be able to use statistics appropriate to the shape of the data distribution to compare of two or more different data sets.

More information

Factor Model Risk Analysis in R. Outline

Factor Model Risk Analysis in R. Outline Factor Model Risk Analysis in R Scottish Financial i Risk Academy, March 15, 2011 Eric Zivot Robert Richards Chaired Professor of Economics Adjunct Professor, Departments of Applied Mathematics, Finance

More information

Economics 424/Applied Mathematics 540. Final Exam Solutions

Economics 424/Applied Mathematics 540. Final Exam Solutions University of Washington Summer 01 Department of Economics Eric Zivot Economics 44/Applied Mathematics 540 Final Exam Solutions I. Matrix Algebra and Portfolio Math (30 points, 5 points each) Let R i denote

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Chapter 3 Random Variables and Probability Distributions Chapter Three Random Variables and Probability Distributions 3. Introduction An event is defined as the possible outcome of an experiment. In engineering

More information

Ho Ho Quantitative Portfolio Manager, CalPERS

Ho Ho Quantitative Portfolio Manager, CalPERS Portfolio Construction and Risk Management under Non-Normality Fiduciary Investors Symposium, Beijing - China October 23 rd 26 th, 2011 Ho Ho Quantitative Portfolio Manager, CalPERS The views expressed

More information

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng Financial Econometrics Jeffrey R. Russell Midterm 2014 Suggested Solutions TA: B. B. Deng Unless otherwise stated, e t is iid N(0,s 2 ) 1. (12 points) Consider the three series y1, y2, y3, and y4. Match

More information

University of Colorado at Boulder Leeds School of Business Dr. Roberto Caccia

University of Colorado at Boulder Leeds School of Business Dr. Roberto Caccia Applied Derivatives Risk Management Value at Risk Risk Management, ok but what s risk? risk is the pain of being wrong Market Risk: Risk of loss due to a change in market price Counterparty Risk: Risk

More information

Financial Risk Forecasting Chapter 1 Financial markets, prices and risk

Financial Risk Forecasting Chapter 1 Financial markets, prices and risk Financial Risk Forecasting Chapter 1 Financial markets, prices and risk Jon Danielsson 2017 London School of Economics To accompany Financial Risk Forecasting www.financialriskforecasting.com Published

More information

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

1. Empirical mean and standard deviation for each variable, plus standard error of the mean: Solutions to Selected Computer Lab Problems and Exercises in Chapter 20 of Statistics and Data Analysis for Financial Engineering, 2nd ed. by David Ruppert and David S. Matteson c 2016 David Ruppert and

More information

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution PSY 464 Advanced Experimental Design Describing and Exploring Data The Normal Distribution 1 Overview/Outline Questions-problems? Exploring/Describing data Organizing/summarizing data Graphical presentations

More information

Exploratory Data Analysis in Finance Using PerformanceAnalytics

Exploratory Data Analysis in Finance Using PerformanceAnalytics Exploratory Data Analysis in Finance Using PerformanceAnalytics Brian G. Peterson & Peter Carl 1 Diamond Management & Technology Consultants Chicago, IL brian@braverock.com 2 Guidance Capital Chicago,

More information

8. From FRED, search for Canada unemployment and download the unemployment rate for all persons 15 and over, monthly,

8. From FRED,   search for Canada unemployment and download the unemployment rate for all persons 15 and over, monthly, Economics 250 Introductory Statistics Exercise 1 Due Tuesday 29 January 2019 in class and on paper Instructions: There is no drop box and this exercise can be submitted only in class. No late submissions

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

CHAPTER 6. ' From the table the z value corresponding to this value Z = 1.96 or Z = 1.96 (d) P(Z >?) =

CHAPTER 6. ' From the table the z value corresponding to this value Z = 1.96 or Z = 1.96 (d) P(Z >?) = Solutions to End-of-Section and Chapter Review Problems 225 CHAPTER 6 6.1 (a) P(Z < 1.20) = 0.88493 P(Z > 1.25) = 1 0.89435 = 0.10565 P(1.25 < Z < 1.70) = 0.95543 0.89435 = 0.06108 (d) P(Z < 1.25) or Z

More information

This homework assignment uses the material on pages ( A moving average ).

This homework assignment uses the material on pages ( A moving average ). Module 2: Time series concepts HW Homework assignment: equally weighted moving average This homework assignment uses the material on pages 14-15 ( A moving average ). 2 Let Y t = 1/5 ( t + t-1 + t-2 +

More information

Copyright 2011 Pearson Education, Inc. Publishing as Addison-Wesley.

Copyright 2011 Pearson Education, Inc. Publishing as Addison-Wesley. Appendix: Statistics in Action Part I Financial Time Series 1. These data show the effects of stock splits. If you investigate further, you ll find that most of these splits (such as in May 1970) are 3-for-1

More information

Gloria Gonzalez-Rivera Forecasting For Economics and Business Solutions Manual

Gloria Gonzalez-Rivera Forecasting For Economics and Business Solutions Manual Solution Manual for Forecasting for Economics and Business 1/E Gloria Gonzalez-Rivera Completed download: https://solutionsmanualbank.com/download/solution-manual-forforecasting-for-economics-and-business-1-e-gloria-gonzalez-rivera/

More information

Monte Carlo Simulation (General Simulation Models)

Monte Carlo Simulation (General Simulation Models) Monte Carlo Simulation (General Simulation Models) Revised: 10/11/2017 Summary... 1 Example #1... 1 Example #2... 10 Summary Monte Carlo simulation is used to estimate the distribution of variables when

More information

Unit2: Probabilityanddistributions. 3. Normal distribution

Unit2: Probabilityanddistributions. 3. Normal distribution Announcements Unit: Probabilityanddistributions 3 Normal distribution Sta 101 - Spring 015 Duke University, Department of Statistical Science February, 015 Peer evaluation 1 by Friday 11:59pm Office hours:

More information

The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s).

The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s). We will look the three common and useful measures of spread. The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s). 1 Ameasure of the center

More information

INTRODUCTION TO PORTFOLIO ANALYSIS. Dimensions of Portfolio Performance

INTRODUCTION TO PORTFOLIO ANALYSIS. Dimensions of Portfolio Performance INTRODUCTION TO PORTFOLIO ANALYSIS Dimensions of Portfolio Performance Interpretation of Portfolio Returns Portfolio Return Analysis Conclusions About Past Performance Predictions About Future Performance

More information

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. 12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of Variance

More information

Lecture notes on risk management, public policy, and the financial system. Credit portfolios. Allan M. Malz. Columbia University

Lecture notes on risk management, public policy, and the financial system. Credit portfolios. Allan M. Malz. Columbia University Lecture notes on risk management, public policy, and the financial system Allan M. Malz Columbia University 2018 Allan M. Malz Last updated: June 8, 2018 2 / 23 Outline Overview of credit portfolio risk

More information