Lecture 2. Main Topics: (Part II) Chapter 2 (2-7), Chapter 3. Bayes Theorem: Let A, B be two events, then. The probabilities P ( B), probability of B.

Size: px
Start display at page:

Download "Lecture 2. Main Topics: (Part II) Chapter 2 (2-7), Chapter 3. Bayes Theorem: Let A, B be two events, then. The probabilities P ( B), probability of B."

Transcription

1 STT315, Section 701, Summer 006 Lecture (Part II) Main Toics: Chater (-7), Chater 3. Bayes Theorem: Let A, B be two events, then B A) = A B) B) A B) B) + A B) B) The robabilities P ( B), B) are called rior robabilities; B A) is called the osterior robability of B. Examle: Consider a test for an illness. The test has a known reliability: (1). When administered to an ill erson, the test will indicate so with robability 0.9. (). When administered to a erson who is not ill, the test will erroneously give a ositive result with robability Suose the illness is rare and is known to affect only 0.1% of the entire oulation. If a erson is randomly selected from the entire oulation and is given the test and the result is ositive, what is the osterior robability that the erson is ill? Chater 3 Random Variables 1. Random Variable Examles: (1). Tossing a fair coin three times, let be the number of heads showed u. (). Let Y be the number of car accidents at East Lansing on May. (3). The bus will arrive at a bus sto at anytime between 10:00am and 1:00am. A student is waiting for the bus from 10:00am at the bus sto, Let T be the waiting time.

2 STT315, Section 701, Summer 006 Definition: A random variable is a function of the samle sace. Examle: Tossing a fair coin three times, let be the number of heads showed u. Samle Sace Random Variable H H H H H T H T H T H H T T H T H T H T T T T T = 3 = = 1 = 0 In the following, we will use the uercase letter, Y etc. to denote the random variable, and the lowercase letter x, y etc. to denote the articular value that the random variable can take. Discrete Random Variable: A discrete random variable can assume at most a countable number of values. Examles: Continuous Random Variable: A continuous random variable may take on any value in an interval of numbers. Examles: Probability Distribution of a Random Variable: Probability Distribution of a Discrete Random Variable: The robability distribution of a discrete variable can be reresented by a formula, a table, or a grah, which rovides (x)==x) for all x.

3 STT315, Section 701, Summer 006 Examle: Probability distribution of the Sum of Two Dice x (x) 1/36 3 /36 4 3/36 5 4/36 6 5/36 7 6/36 8 5/36 9 4/ /36 11 /36 1 1/36 The robability distribution of a discrete random variable must satisfy the following two conditions. (1). (x) 0 for all value x; (). ( x) = 1. all x Cumulative Distribution Function: The cumulative distribution function F(x) of a discrete random variable is F ( x) = x) = ( y) all y x

4 STT315, Section 701, Summer 006. Exected Values of Discrete Random Variable (1). The exected value of a discrete random variable is equal to the sum of all values of the random variable, each value multilied by its robability. μ = E( ) = x( x) Examle: The robability distribution of the random variable is the following. Find the exected value of. all x x (x) (). The exected value of h(), a function of the discrete random variable is E[ h( )] = h( x) ( x). all x In articular, if h() = a + b, then E[h()] = a E() + b. Examle: 3. Variance and Standard Deviation of a Random Variable. (1) The variance of a discrete random variable is given by σ = V ( ) = E[( μ) ] = ( x μ) ( x). Also, V ( ) = E( all x ) [ E( )]. Examle:

5 STT315, Section 701, Summer 006 () Standard Deviation: The standard deviation of a random variable is given by σ = SD ( ) = V ( ) Examle: (3) Variance of a Linear Function of a Random Variable: V = ( a + b) = a V ( ) a σ 4. Sum and Linear Comosites of Random Variables A linear comosite of random variables 1,, L k will be of the form a a + L+ a k k The exected value of a linear comosite is given by E a + a + L + a ) = a E( ) + a E( ) + L+ a ( 1 1 k k 1 1 k E( k ) If 1,, L k are mutually indeendent, then V ( a + a + L + a ) = a E( ) + a V ( ) + L+ a V ( 1 1 k k 1 1 k k ) 5. Some Discrete Probability Distributions. (1). Bernoulli Random Variable: If the outcome of a trial can only be either a success or a failure, then the trial is a Bernoulli trial. Let be the number of successes in one Bernoulli trial, which can be 1 or 0, is a Bernoulli random variable. Notation ~ BER(). The robability distribution of a Bernoulli random variable is Clearly, E() =, V() = (1-). x (x)

6 STT315, Section 701, Summer 006 (). Binomial Probability Distribution. Binomial Exeriment: A binominal exeriment ossesses the following roerties i. The exeriment consists of a fixed number, n, of identical Bernoulli trials. ii. The robability of success is and the robability of a failure is equal to q = 1-. iii. The trials are indeendent. iv. The random variable of interest is, the number of successes observed during the n trials. Examle: An early-warning detection system for aircraft consists of four identical radar units oerating indeendently of one another. Suose that each has a robability 0.95 of detecting an intruding aircraft. When an intruding aircraft enters the scene, the random variable of interest is, the number of radar units that do not detect the lane. Is this a binomial exeriment? Examle: Suose that 40% of a large oulation of registered voters favor candidate Jones. A random samle of n =10 voters will be selected, and, the number of favoring Jones, is to be observed. Does this exeriment meet the requirements of a binomial exeriment. Probability Distribution of a Binomial Random Variable. Let be the number of successes in a Binomial exeriment, then is called a Binomial random variable, the robability distribution is: Notation: ~ B(n, ). n x x x x q n ( ) =, x= 0, 1,,, n and 0 1. Examle: Exerience has shown that 30% of all ersons afflicted by a certain illness recover. A drug comany has develoed a new medication. Ten eole with the illness were selected at random and received the medication; nine recovered shortly thereafter. Suose that the medication was absolutely worthless. What is the robability that at least nine of ten receiving the medication will recover? Exectation and Variance of the Binomial Random Variable. Let ~ B(n, ). Then E () = n, V() = nq.

7 STT315, Section 701, Summer 006 (3). Negative Binomial Probability Distribution Consider the case of oerator who wants to roduce two good ins using a lathe that has 0.6 robability of making one good in in each trial. Suose two good ins are needed, the oerator would roduce the ins one by one and sto when he gets two good ones. Notice that in this scenario, the number of successes is held constant at, and the number of trials is random, which is called a negative binomial random variable. Generally, let s denote the exact number of successes desired and the robability of success in each trial. Let denote the number of trials made until the desired number of success is achieved. Then will follow a negative binomial distribution and we shall write ~ NB(s,). If ~ NB(s,), then x 1 = x) = s 1 s (1 ) x s. Exectation and Variance of the Negative Binomial Random Variable Let ~ NB(s,) s s(1 ) E ( ) =, V ( ) =. (4). Geometric Probability Distribution An exeriment involves identical and indeendent trials, each of which can result in one of two outcomes, success and failure. The robability of success is equal to and is constant from trial to trial. Let be the number of the trial on which the first success occurs. Then is called a geometric random variable. If is a geometric random variable, is the robability of success, then x = x) = q 1, x = 0, 1,,, n and 0 1 Examle: Suose that the robability of engine malfunction during any 1-hour eriod is =0.0. Find the robability that a given engine will survive hours.

8 STT315, Section 701, Summer 006 Exectation and Variance of the Geometric Random Variable Let be a geometric random variable. 1 1 E ( ) =, V ( ) = (5). Hyergeometric Probability Distribution Suose that a oulation contains a finite number N of elements that ossess one of two characteristics. Thus S of the elements might be red and b=n-s, black. A samle of n elements is randomly selected from the oulation and the random variable of interest is, the number of red elements in the samle. Then is a hyergeometric random variable. If is a hyergeometric random variable, S N S x n x P ( = x) = N n Where x is an integer 0, 1,,, n, subject to the restriction x S and n-x N-S Examle: An imortant roblem encountered by ersonnel directors and others faced with the selection of the best in a finite set of elements is exemlified by the following scenario. From a grou of 0 Ph.D. engineers, 10 are randomly selected for emloyment. What is the robability that the 10 selected include all the 5 best engineers in the grou of 0.

9 STT315, Section 701, Summer 006 Exectation and Variance of the Hyergeometric Random Variable Let be a hyergeometric random variable. ns S N S N n E ( ) =, V ( ) = n N N N N 1 (6). Poisson Probability Distribution Derivation of Poisson Probability Distribution from Binomial Probability Distribution. Suose that we want to find the robability distribution of the number of automobile accidents at a articular intersection during a time eriod of one week. Think of the time eriod, one week in this examle, as being slit u into n subintervals, each of which is so small that at most one accident could occur in it with robability different from 0. Denoting the robability of an accident in any subinterval by, we have one accident occurs in a subinterval) =, no accidents occur in a subinterval) = 1-. Assume decreases when n increases, and n = l. Then x n x n x λ λ lim (1 ) = e. n x x! If the distribution of a random variable has the following robability distribution, x λ λ = x) = e, x = 0, 1,, x! Then is called a Poisson Random Variable, denoted by ~ l).

10 STT315, Section 701, Summer 006 Examle: Suose that a random system of olice atrol is devised so that a atrol officer may visit a given beat location = 0, 1,, times er half-hour eriod, with each location being visited an average of once er time eriod. Assume ossesses, aroximately, a Poisson robability distribution. Calculate the robability that the atrol officer will miss a given location during a half-hour eriod. What is the robability that it will be visited once? Twice? At least once? Exectation and Variance of the Possion Random Variable Let be a Possion random variable with ~ l). E ( ) = λ, V ( ) = λ. 6. Some Continuous Random Variable Probability Density Function: A function, denoted by f(x), is called a robability density function, if it has the following roerties a) f(x) 0 for all x. b) The robability that will be between two numbers a and b is equal to the area under f(x) between a and b. c) The total area under the entire curve of f(x) is equal to 1. Cumulative Distribution Function: The cumulative distribution function of a continuous random variable F(x) = x ) = area under f(x) between the smallest ossible value of (often - ) and oint x.

11 STT315, Section 701, Summer 006 (1) Uniform Distribution: Density Function of Uniform Distribution: ~ U(a, b) if the density function of is 1/( b a) f ( x) = 0 Uniform Distribution Formulas: If ~ U(a, b), then P ( x1 1 a a x b all other x ) = ( x x ) /( b ), a x x. E ( ) = ( a + b / ), V ( ) = ( b a) / 1. x 1 b Examle: Suose ~ U(10,1), what are 10 11), >10.5)? () Exonential Distribution: Density Function of Exonential Distribution: ~ E(l) if the density function of is λe f ( x) = 0 λx x 0 x < 0 Exonential Distribution Formulas: If ~ E(l), then P ( x1 λx1 λx x ) = e e, x <. 0 1 x λx x) = 1 e. E ( ) = 1/ λ, V ( ) = 1/ λ. Examle: Suose ~ E(1.), what are 1 ), >0.5)? Examle: A articular brand of handheld comuters fails following an exonential distribution with a m of 54.8 months. The comany gives a warranty for 6 months. a. What ercentage of the comuters will fail within the warranty eriod? b. If the manufacturer wants only 8% of the comuters to fail during the warranty eriod, what should be the average life?

Chapter 1: Stochastic Processes

Chapter 1: Stochastic Processes Chater 1: Stochastic Processes 4 What are Stochastic Processes, and how do they fit in? STATS 210 Foundations of Statistics and Probability Tools for understanding randomness (random variables, distributions)

More information

A random variable X is a function that assigns (real) numbers to the elements of the sample space S of a random experiment.

A random variable X is a function that assigns (real) numbers to the elements of the sample space S of a random experiment. RANDOM VARIABLES and PROBABILITY DISTRIBUTIONS A random variable X is a function that assigns (real) numbers to the elements of the samle sace S of a random exeriment. The value sace V of a random variable

More information

***SECTION 7.1*** Discrete and Continuous Random Variables

***SECTION 7.1*** Discrete and Continuous Random Variables ***SECTION 7.*** Discrete and Continuous Random Variables Samle saces need not consist of numbers; tossing coins yields H s and T s. However, in statistics we are most often interested in numerical outcomes

More information

Policyholder Outcome Death Disability Neither Payout, x 10,000 5, ,000

Policyholder Outcome Death Disability Neither Payout, x 10,000 5, ,000 Two tyes of Random Variables: ) Discrete random variable has a finite number of distinct outcomes Examle: Number of books this term. ) Continuous random variable can take on any numerical value within

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

and their probabilities p

and their probabilities p AP Statistics Ch. 6 Notes Random Variables A variable is any characteristic of an individual (remember that individuals are the objects described by a data set and may be eole, animals, or things). Variables

More information

2/20/2013. of Manchester. The University COMP Building a yes / no classifier

2/20/2013. of Manchester. The University COMP Building a yes / no classifier COMP4 Lecture 6 Building a yes / no classifier Buildinga feature-basedclassifier Whatis a classifier? What is an information feature? Building a classifier from one feature Probability densities and the

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 3: Special Discrete Random Variable Distributions Section 3.5 Discrete Uniform Section 3.6 Bernoulli and Binomial Others sections

More information

Objectives. 3.3 Toward statistical inference

Objectives. 3.3 Toward statistical inference Objectives 3.3 Toward statistical inference Poulation versus samle (CIS, Chater 6) Toward statistical inference Samling variability Further reading: htt://onlinestatbook.com/2/estimation/characteristics.html

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE

LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE LECTURE CHAPTER 3 DESCRETE RANDOM VARIABLE MSc Đào Việt Hùng Email: hungdv@tlu.edu.vn Random Variable A random variable is a function that assigns a real number to each outcome in the sample space of a

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

Objectives. 5.2, 8.1 Inference for a single proportion. Categorical data from a simple random sample. Binomial distribution

Objectives. 5.2, 8.1 Inference for a single proportion. Categorical data from a simple random sample. Binomial distribution Objectives 5.2, 8.1 Inference for a single roortion Categorical data from a simle random samle Binomial distribution Samling distribution of the samle roortion Significance test for a single roortion Large-samle

More information

1 < = α σ +σ < 0. Using the parameters and h = 1/365 this is N ( ) = If we use h = 1/252, the value would be N ( ) =

1 < = α σ +σ < 0. Using the parameters and h = 1/365 this is N ( ) = If we use h = 1/252, the value would be N ( ) = Chater 6 Value at Risk Question 6.1 Since the rice of stock A in h years (S h ) is lognormal, 1 < = α σ +σ < 0 ( ) P Sh S0 P h hz σ α σ α = P Z < h = N h. σ σ (1) () Using the arameters and h = 1/365 this

More information

Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 ) available tomorrow at the latest

Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 ) available tomorrow at the latest Plan Martingales 1. Basic Definitions 2. Examles 3. Overview of Results Reading: G&S Section 12.1-12.4 Next Time: More Martingales Midterm Exam: Tuesday 28 March in class Samle exam roblems ( Homework

More information

Asian Economic and Financial Review A MODEL FOR ESTIMATING THE DISTRIBUTION OF FUTURE POPULATION. Ben David Nissim.

Asian Economic and Financial Review A MODEL FOR ESTIMATING THE DISTRIBUTION OF FUTURE POPULATION. Ben David Nissim. Asian Economic and Financial Review journal homeage: htt://www.aessweb.com/journals/5 A MODEL FOR ESTIMATING THE DISTRIBUTION OF FUTURE POPULATION Ben David Nissim Deartment of Economics and Management,

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

C (1,1) (1,2) (2,1) (2,2)

C (1,1) (1,2) (2,1) (2,2) TWO COIN MORRA This game is layed by two layers, R and C. Each layer hides either one or two silver dollars in his/her hand. Simultaneously, each layer guesses how many coins the other layer is holding.

More information

PROBABILITY DISTRIBUTIONS

PROBABILITY DISTRIBUTIONS CHAPTER 3 PROBABILITY DISTRIBUTIONS Page Contents 3.1 Introduction to Probability Distributions 51 3.2 The Normal Distribution 56 3.3 The Binomial Distribution 60 3.4 The Poisson Distribution 64 Exercise

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Sampling Distribution

Sampling Distribution MAT 2379 (Spring 2012) Sampling Distribution Definition : Let X 1,..., X n be a collection of random variables. We say that they are identically distributed if they have a common distribution. Definition

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Ordering a deck of cards... Lecture 3: Binomial Distribution. Example. Permutations & Combinations

Ordering a deck of cards... Lecture 3: Binomial Distribution. Example. Permutations & Combinations Ordering a dec of cards... Lecture 3: Binomial Distribution Sta 111 Colin Rundel May 16, 2014 If you have ever shuffled a dec of cards you have done something no one else has ever done before or will ever

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 4: Special Discrete Random Variable Distributions Sections 3.7 & 3.8 Geometric, Negative Binomial, Hypergeometric NOTE: The discrete

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Simple Random Sample

Simple Random Sample Simple Random Sample A simple random sample (SRS) of size n consists of n elements from the population chosen in such a way that every set of n elements has an equal chance to be the sample actually selected.

More information

MAS187/AEF258. University of Newcastle upon Tyne

MAS187/AEF258. University of Newcastle upon Tyne MAS187/AEF258 University of Newcastle upon Tyne 2005-6 Contents 1 Collecting and Presenting Data 5 1.1 Introduction...................................... 5 1.1.1 Examples...................................

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

LESSON 9: BINOMIAL DISTRIBUTION

LESSON 9: BINOMIAL DISTRIBUTION LESSON 9: Outline The context The properties Notation Formula Use of table Use of Excel Mean and variance 1 THE CONTEXT An important property of the binomial distribution: An outcome of an experiment is

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

2. The sum of all the probabilities in the sample space must add up to 1

2. The sum of all the probabilities in the sample space must add up to 1 Continuous Random Variables and Continuous Probability Distributions Continuous Random Variable: A variable X that can take values on an interval; key feature remember is that the values of the variable

More information

Discrete Random Variables and Probability Distributions

Discrete Random Variables and Probability Distributions Chapter 4 Discrete Random Variables and Probability Distributions 4.1 Random Variables A quantity resulting from an experiment that, by chance, can assume different values. A random variable is a variable

More information

Some Discrete Distribution Families

Some Discrete Distribution Families Some Discrete Distribution Families ST 370 Many families of discrete distributions have been studied; we shall discuss the ones that are most commonly found in applications. In each family, we need a formula

More information

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution)

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) I. Concept Questions 1. Give an example of a random variable in the context of Drawing a card from a deck of cards.

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Chapter 4 Probability Distributions

Chapter 4 Probability Distributions Slide 1 Chapter 4 Probability Distributions Slide 2 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved.

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved. 4-1 Chapter 4 Commonly Used Distributions 2014 by The Companies, Inc. All rights reserved. Section 4.1: The Bernoulli Distribution 4-2 We use the Bernoulli distribution when we have an experiment which

More information

CIVL Discrete Distributions

CIVL Discrete Distributions CIVL 3103 Discrete Distributions Learning Objectives Define discrete distributions, and identify common distributions applicable to engineering problems. Identify the appropriate distribution (i.e. binomial,

More information

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS 8.1 Distribution of Random Variables Random Variable Probability Distribution of Random Variables 8.2 Expected Value Mean Mean is the average value of

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Information and uncertainty in a queueing system

Information and uncertainty in a queueing system Information and uncertainty in a queueing system Refael Hassin December 7, 7 Abstract This aer deals with the effect of information and uncertainty on rofits in an unobservable single server queueing system.

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

S = 1,2,3, 4,5,6 occurs

S = 1,2,3, 4,5,6 occurs Chapter 5 Discrete Probability Distributions The observations generated by different statistical experiments have the same general type of behavior. Discrete random variables associated with these experiments

More information

INDEX NUMBERS. Introduction

INDEX NUMBERS. Introduction INDEX NUMBERS Introduction Index numbers are the indicators which reflect changes over a secified eriod of time in rices of different commodities industrial roduction (iii) sales (iv) imorts and exorts

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

508-B (Statistics Camp, Wash U, Summer 2016) Asymptotics. Author: Andrés Hincapié and Linyi Cao. This Version: August 9, 2016

508-B (Statistics Camp, Wash U, Summer 2016) Asymptotics. Author: Andrés Hincapié and Linyi Cao. This Version: August 9, 2016 Asymtotics Author: Anrés Hincaié an Linyi Cao This Version: August 9, 2016 Asymtotics 3 In arametric moels, we usually assume that the oulation follows some istribution F (x θ) with unknown θ. Knowing

More information

Supplemental Material: Buyer-Optimal Learning and Monopoly Pricing

Supplemental Material: Buyer-Optimal Learning and Monopoly Pricing Sulemental Material: Buyer-Otimal Learning and Monooly Pricing Anne-Katrin Roesler and Balázs Szentes February 3, 207 The goal of this note is to characterize buyer-otimal outcomes with minimal learning

More information

Random variables. Contents

Random variables. Contents Random variables Contents 1 Random Variable 2 1.1 Discrete Random Variable............................ 3 1.2 Continuous Random Variable........................... 5 1.3 Measures of Location...............................

More information

CIVL Learning Objectives. Definitions. Discrete Distributions

CIVL Learning Objectives. Definitions. Discrete Distributions CIVL 3103 Discrete Distributions Learning Objectives Define discrete distributions, and identify common distributions applicable to engineering problems. Identify the appropriate distribution (i.e. binomial,

More information

Maximize the Sharpe Ratio and Minimize a VaR 1

Maximize the Sharpe Ratio and Minimize a VaR 1 Maximize the Share Ratio and Minimize a VaR 1 Robert B. Durand 2 Hedieh Jafarour 3,4 Claudia Klüelberg 5 Ross Maller 6 Aril 28, 2008 Abstract In addition to its role as the otimal ex ante combination of

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions Chapter 4 Probability Distributions 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5 The Poisson Distribution

More information

CHAPTER 5 SOME DISCRETE PROBABILITY DISTRIBUTIONS. 5.2 Binomial Distributions. 5.1 Uniform Discrete Distribution

CHAPTER 5 SOME DISCRETE PROBABILITY DISTRIBUTIONS. 5.2 Binomial Distributions. 5.1 Uniform Discrete Distribution CHAPTER 5 SOME DISCRETE PROBABILITY DISTRIBUTIONS As we had discussed, there are two main types of random variables, namely, discrete random variables and continuous random variables. In this chapter,

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Math 14 Lecture Notes Ch. 4.3

Math 14 Lecture Notes Ch. 4.3 4.3 The Binomial Distribution Example 1: The former Sacramento King's DeMarcus Cousins makes 77% of his free throws. If he shoots 3 times, what is the probability that he will make exactly 0, 1, 2, or

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

Sampling Procedure for Performance-Based Road Maintenance Evaluations

Sampling Procedure for Performance-Based Road Maintenance Evaluations Samling Procedure for Performance-Based Road Maintenance Evaluations Jesus M. de la Garza, Juan C. Piñero, and Mehmet E. Ozbek Maintaining the road infrastructure at a high level of condition with generally

More information

Statistics and Probability Letters. Variance stabilizing transformations of Poisson, binomial and negative binomial distributions

Statistics and Probability Letters. Variance stabilizing transformations of Poisson, binomial and negative binomial distributions Statistics and Probability Letters 79 (9) 6 69 Contents lists available at ScienceDirect Statistics and Probability Letters journal homeage: www.elsevier.com/locate/staro Variance stabilizing transformations

More information

6.5: THE NORMAL APPROXIMATION TO THE BINOMIAL AND

6.5: THE NORMAL APPROXIMATION TO THE BINOMIAL AND CD6-12 6.5: THE NORMAL APPROIMATION TO THE BINOMIAL AND POISSON DISTRIBUTIONS In the earlier sections of this chapter the normal probability distribution was discussed. In this section another useful aspect

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 5 Discrete Probability Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap 5-1 Learning

More information

Introduction to Probability and Inference HSSP Summer 2017, Instructor: Alexandra Ding July 19, 2017

Introduction to Probability and Inference HSSP Summer 2017, Instructor: Alexandra Ding July 19, 2017 Introduction to Probability and Inference HSSP Summer 2017, Instructor: Alexandra Ding July 19, 2017 Please fill out the attendance sheet! Suggestions Box: Feedback and suggestions are important to the

More information

Probability mass function; cumulative distribution function

Probability mass function; cumulative distribution function PHP 2510 Random variables; some discrete distributions Random variables - what are they? Probability mass function; cumulative distribution function Some discrete random variable models: Bernoulli Binomial

More information

Chapter 7: Random Variables

Chapter 7: Random Variables Chapter 7: Random Variables 7.1 Discrete and Continuous Random Variables 7.2 Means and Variances of Random Variables 1 Introduction A random variable is a function that associates a unique numerical value

More information

Applications of the Central Limit Theorem

Applications of the Central Limit Theorem Applications of the Central Limit Theorem Application 1: Assume that the systolic blood pressure of 30-year-old males is normally distributed with mean μ = 122 mmhg and standard deviation σ = 10 mmhg.

More information

SINGLE SAMPLING PLAN FOR VARIABLES UNDER MEASUREMENT ERROR FOR NON-NORMAL DISTRIBUTION

SINGLE SAMPLING PLAN FOR VARIABLES UNDER MEASUREMENT ERROR FOR NON-NORMAL DISTRIBUTION ISSN -58 (Paer) ISSN 5-5 (Online) Vol., No.9, SINGLE SAMPLING PLAN FOR VARIABLES UNDER MEASUREMENT ERROR FOR NON-NORMAL DISTRIBUTION Dr. ketki kulkarni Jayee University of Engineering and Technology Guna

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

Binomial and multinomial distribution

Binomial and multinomial distribution 1-Binomial distribution Binomial and multinomial distribution The binomial probability refers to the probability that a binomial experiment results in exactly "x" successes. The probability of an event

More information

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations MLLunsford 1 Activity: Central Limit Theorem Theory and Computations Concepts: The Central Limit Theorem; computations using the Central Limit Theorem. Prerequisites: The student should be familiar with

More information

Chapter 7: Random Variables and Discrete Probability Distributions

Chapter 7: Random Variables and Discrete Probability Distributions Chapter 7: Random Variables and Discrete Probability Distributions 7. Random Variables and Probability Distributions This section introduced the concept of a random variable, which assigns a numerical

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Individual Comparative Advantage and Human Capital Investment under Uncertainty

Individual Comparative Advantage and Human Capital Investment under Uncertainty Individual Comarative Advantage and Human Caital Investment under Uncertainty Toshihiro Ichida Waseda University July 3, 0 Abstract Secialization and the division of labor are the sources of high roductivity

More information

Risk and Return. Calculating Return - Single period. Calculating Return - Multi periods. Uncertainty of Investment.

Risk and Return. Calculating Return - Single period. Calculating Return - Multi periods. Uncertainty of Investment. Chater 10, 11 Risk and Return Chater 13 Cost of Caital Konan Chan, 018 Risk and Return Return measures Exected return and risk? Portfolio risk and diversification CPM (Caital sset Pricing Model) eta Calculating

More information

Uniform Probability Distribution. Continuous Random Variables &

Uniform Probability Distribution. Continuous Random Variables & Continuous Random Variables & What is a Random Variable? It is a quantity whose values are real numbers and are determined by the number of desired outcomes of an experiment. Is there any special Random

More information

2017 Fall QMS102 Tip Sheet 2

2017 Fall QMS102 Tip Sheet 2 Chapter 5: Basic Probability 2017 Fall QMS102 Tip Sheet 2 (Covering Chapters 5 to 8) EVENTS -- Each possible outcome of a variable is an event, including 3 types. 1. Simple event = Described by a single

More information

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable 1. A number between 0 and 1 that is use to measure uncertainty is called: (a) Random variable (b) Trial (c) Simple event (d) Probability 2. Probability can be expressed as: (a) Rational (b) Fraction (c)

More information

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables

STA 220H1F LEC0201. Week 7: More Probability: Discrete Random Variables STA 220H1F LEC0201 Week 7: More Probability: Discrete Random Variables Recall: A sample space for a random experiment is the set of all possible outcomes of the experiment. Random Variables A random variable

More information

FUNDAMENTAL ECONOMICS - Economics Of Uncertainty And Information - Giacomo Bonanno ECONOMICS OF UNCERTAINTY AND INFORMATION

FUNDAMENTAL ECONOMICS - Economics Of Uncertainty And Information - Giacomo Bonanno ECONOMICS OF UNCERTAINTY AND INFORMATION ECONOMICS OF UNCERTAINTY AND INFORMATION Giacomo Bonanno Deartment of Economics, University of California, Davis, CA 9566-8578, USA Keywords: adverse selection, asymmetric information, attitudes to risk,

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables

Chapter 5 Probability Distributions. Section 5-2 Random Variables. Random Variable Probability Distribution. Discrete and Continuous Random Variables Chapter 5 Probability Distributions Section 5-2 Random Variables 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation for the Binomial Distribution Random

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information