Optimization Methods. Lecture 7: Sensitivity Analysis

Size: px
Start display at page:

Download "Optimization Methods. Lecture 7: Sensitivity Analysis"

Transcription

1 5.093 Optimization Methods Lecture 7: Sensitivity Analysis

2 Motivation. Questions z = min s.t. c x Ax = b Slide How does z depend globally on c? on b? How does z change locally if either b, c, A change? How does z change if we add new constraints, introduce new variables? Importance: Insight about LO and practical relevance 2 Outline. Global sensitivity analysis Slide 2 2. Local sensitivity analysis (a) Changes in b (b) Changes in c (c) A new variable is added (d) A new constraint is added (e) Changes in A 3. Detailed example 3 Global sensitivity analysis 3. Dependence on c G(c) = min s.t. c x Ax = b i G(c) = min i=,...,n c x is a concave function of c 3.2 Dependence on b Primal F(b) = min c x s.t. Ax = b Dual F(b) = max i=,...,n (p i ) b is a convex function of b F(b) = max p b s.t. p A c Slide 3 Slide 4

3 ( c + q d) ' ( x 3 ) ( c + q d) '( x 2) ( c + q d) ' ( x )... 4 ( c + q d) ' ( x ) x optimal x 2 optimal x 3 optimal x 4 optimal q f ( q ) ( p ) '( b * + q d) ( p 2 ) '( b * + q d) ( p 3 ) '( b * + q d) q q 2 q 2

4 4 Local sensitivity analysis z = min s.t. c x Ax = b What does it mean that a basis B is optimal? Slide 5. Feasibility conditions: B b 0 2. Optimality conditions: c c B B A 0 Suppose that there is a change in either b or c for example Slide 6 How do we find whether B is still optimal? Need to check whether the feasibility and optimality conditions are satis fied 5 Local sensitivity analysis 5. Changes in b b i becomes b i + Δ, i.e. (P) min c x (P ) min c x s.t. Ax = b s.t. Ax = b + Δe i Slide 7 B optimal basis for (P) Is B optimal for (P )? Need to check: Slide 8. Feasibility: B (b + Δe i ) 0 2. Optimality: c c B B A 0 Observations:. Changes in b affect feasibility 2. Optimality conditions are not affected B (b + Δe i ) 0 β ij = [B ] ij b j = [B b] j Thus, (B b) j + Δ(B e i ) j 0 b j + Δβ ji 0 Slide 9 3

5 ( ) ( ) b j b j max Δ min β ji >0 β ji β ji <0 β ji Slide 0 Δ Δ Δ Within this range Current basis B is optimal z = c B B (b + Δe i ) = c B B b + Δp i What if Δ = Δ? What if Δ > Δ? Current solution is infeasible, but satisfies optimality conditions use dual simplex method 5.2 Changes in c c j c j + Δ Is current basis B optimal? Need to check: Slide. Feasibility: B b 0, unaffected 2. Optimality: c c B B A 0, affected There are two cases: x j basic x j nonbasic 5.2. x j nonbasic c B unaffected (c j + Δ) c B B A j 0 c j + Δ 0 Solution optimal if Δ c j What if Δ = c j? What if Δ < c j? Slide 2 4

6 5.2.2 x j basic Slide 3 c B ĉ B = c B + Δe j Then, [c ĉ B B A] i 0 c i [c B + Δe j ] B A i 0 [B A] ji = a ji ci ci c i Δa ji 0 max Δ min a ji <0 a ji What if Δ is outside this range? use primal simplex 5.3 A new variable is added a ji >0 a ji min c x min c x + c n+ x n+ s.t. Ax = b s.t. Ax + A n+ x n+ = b Slide 4 In the new problem is x n+ = 0 or x n+ > 0? (i.e., is the new activity profitable?) Slide 5 Current basis B. Is solution x = B b, x n+ = 0 optimal? Feasibility conditions are satisfied Optimality conditions: c n+ c B B A n+ 0 c n+ p A n+ 0? If yes, solution x = B b, x n+ = 0 optimal Otherwise, use primal simplex 5.4 A new constraint is added min c x min c x s.t. Ax = b s.t. Ax = b a m+ x = b m+ If current solution feasible, it is optimal; otherwise, apply dual simplex Slide 6 5

7 5.5 Changes in A Suppose a ij a ij + Δ Slide 7 Assume A j does not belong in the basis Feasibility conditions: B b 0, unaffected Optimality conditions: c l c B B A l 0, l = j, unaffected Optimality condition: c j p (A j + Δe i ) 0 c j Δp i 0 What if A j is basic? BT, Exer Example 6. A Furniture company A furniture company makes desks, tables, chairs Slide 8 The production requires wood, finishing labor, carpentry labor Profit 60 Wood (ft) 8 Finish hrs. 4 Carpentry hrs. 2 Desk Table (ft) Chair Avail Formulation Decision variables: x = # desks, x 2 = # tables, x 3 = # chairs Slide 9 max 60x + 30x x 3 s.t. 8x + 6x 2 + x 3 4x + 2x 2 +.5x 3 2x +.5x x 3 x, x 2, x Simplex tableaus Initial tableau: s = s 2 = s 2 = s s 2 s x x x Slide 20 6

8 Final tableau: s = x 3 = x = s s 2 s 3 x x 2 x Information in tableaus What is B? 8 B = What is B? 2 8 B = What is the optimal solution? What is the optimal solution value? Is it a bit surprising? What is the optimal dual solution? What is the shadow price of the wood constraint? What is the shadow price of the finishing hours constraint? What is the reduced cost for x 2? 6.5 Shadow prices Why the dual price of the finishing hours constraint is 0? Slide 2 Slide 22 Slide 23 Suppose that finishing hours become 2 (from 20). Currently only desks (x ) and chairs (x 3 ) are produced Finishing and carpentry hours constraints are tight Does this change leaves current basis optimal? New Previous 8x + x 3 + s = 48 s = New solution: 4x +.5x 3 = 2 x =.5 2 2x + 0.5x 3 = 8 x 3 = 0 8 Solution change: z z = ( ) ( ) = 0 Slide 24 Slide 25 7

9 Suppose you can hire h of finishing overtime at $7. Would you do it? Another check 2 8 c B B = (0, 20, 60) = (0, 0, 0) 6.6 Reduced costs What does it mean that the reduced cost for x 2 is 5? Slide 26 Suppose you are forced to produce x 2 = ( table) How much will the profit decrease? 8x + x 3 + s + 6 = 48 s = 26 4x +.5x = 20 x = x + 0.5x = 8 x 3 = 0 z z = ( ) ( ) = = 5 Slide 27 Another way to calculate the same thing: If x 2 = Direct profit from table +30 Decrease wood by = 0 Decrease finishing hours by = 20 Decrease carpentry hours by = 5 Total Effect 5 Suppose profit from tables increases from $30 to $34. Should it be produced? At $35? At $36? 6.7 Cost ranges Suppose profit from desks becomes 60 + Δ. For what values of Δ does current basis remain optimal? Optimality conditions: c j c B B A j 0 [ 2 ] 8 p = c B B = [0, 20, (60 + Δ)] s, x 3, x are basic Reduced costs of non-basic variables = [0, 0 0.5Δ, 0 +.5Δ] Slide 28 Slide 29 8

10 6 c 2 = c 2 p A 2 = 30 + [0, 0 0.5Δ, 0 +.5Δ] 2 = Δ.5 c s2 = 0 0.5Δ c s3 = 0 +.5Δ Current basis optimal: Δ Δ 0 4 Δ Δ 0 56 c 80 solution remains optimal. If c < 56, or c > 80 current basis is not optimal. Suppose c = 00(Δ = 40) What would you do? 6.8 Rhs ranges Slide 30 Suppose finishing hours change by Δ becoming (20 + Δ) What happens? B 20 + Δ = Δ Δ = 8 + 2Δ Δ 4 Δ 4 current basis optimal Slide 3 Note that even if current basis is optimal, optimal solution variables change: s = Δ x 3 = 8 + 2Δ x = 2 0.5Δ z = 60(2 0.5Δ) + 20(8 + 2Δ) = Δ Suppose Δ = 0 then s 44 x 3 = 25 inf. (Use dual simplex) x New activity Suppose the company has the opportunity to produce stools Profit $5; requires ft of wood, finishing hour, carpentry hour Should the company produce stools? Slide 32 Slide 33 max 60x +30x 2 +20x 3 +5x 4 8x +6x 2 +x 3 +x 4 +s = 48 4x +2x 2 +.5x 3 +x 4 +s 2 = 20 2x +.5x x 3 +x 4 +s 3 = 8 x i 0 9

11 ( ) c 4 c B B A 4 = 5 (0, 0, 0) = 5 0 Current basis still optimal. Do not produce stools 0

12 MIT OpenCourseWare J / 6.255J Optimization Methods Fall 2009 For information about citing these materials or our Terms of Use, visit:

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit 3 Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 3: Sensitivity and Duality 3 3.1 Sensitivity

More information

AM 121: Intro to Optimization Models and Methods Fall 2017

AM 121: Intro to Optimization Models and Methods Fall 2017 AM 121: Intro to Optimization Models and Methods Fall 2017 Lecture 8: Sensitivity Analysis Yiling Chen SEAS Lesson Plan: Sensitivity Explore effect of changes in obj coefficients, and constraints on the

More information

56:171 Operations Research Midterm Exam Solutions October 22, 1993

56:171 Operations Research Midterm Exam Solutions October 22, 1993 56:171 O.R. Midterm Exam Solutions page 1 56:171 Operations Research Midterm Exam Solutions October 22, 1993 (A.) /: Indicate by "+" ="true" or "o" ="false" : 1. A "dummy" activity in CPM has duration

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.053, Spring 013 Problem Set (Second Group of Students) Students with first letter of surnames I Z Due: February 1, 013 Problem Set Rules: 1. Each student

More information

Solution to P2 Sensitivity at the Major Electric Company

Solution to P2 Sensitivity at the Major Electric Company Solution to P2 Sensitivity at the Major Electric Company 1.(a) Are there alternate optimal solutions? Yes or no. (b) If yes, which nonbasic variables could enter the basis without changing the value of

More information

56:171 Operations Research Midterm Exam Solutions Fall 1994

56:171 Operations Research Midterm Exam Solutions Fall 1994 56:171 Operations Research Midterm Exam Solutions Fall 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3. Simplex

More information

56:171 Operations Research Midterm Exam Solutions October 19, 1994

56:171 Operations Research Midterm Exam Solutions October 19, 1994 56:171 Operations Research Midterm Exam Solutions October 19, 1994 Possible Score A. True/False & Multiple Choice 30 B. Sensitivity analysis (LINDO) 20 C.1. Transportation 15 C.2. Decision Tree 15 C.3.

More information

y 3 z x 1 x 2 e 1 a 1 a 2 RHS 1 0 (6 M)/3 M 0 (3 5M)/3 10M/ / /3 10/ / /3 4/3

y 3 z x 1 x 2 e 1 a 1 a 2 RHS 1 0 (6 M)/3 M 0 (3 5M)/3 10M/ / /3 10/ / /3 4/3 AMS 341 (Fall, 2016) Exam 2 - Solution notes Estie Arkin Mean 68.9, median 71, top quartile 82, bottom quartile 58, high (3 of them!), low 14. 1. (10 points) Find the dual of the following LP: Min z =

More information

Graphical Sensitivity Analysis

Graphical Sensitivity Analysis What if there is uncertainly about one or more values in the LP model? Sensitivity analysis allows us to determine how sensitive the optimal solution is to changes in data values. This includes analyzing

More information

February 24, 2005

February 24, 2005 15.053 February 24, 2005 Sensitivity Analysis and shadow prices Suggestion: Please try to complete at least 2/3 of the homework set by next Thursday 1 Goals of today s lecture on Sensitivity Analysis Changes

More information

Econ 172A - Slides from Lecture 7

Econ 172A - Slides from Lecture 7 Econ 172A Sobel Econ 172A - Slides from Lecture 7 Joel Sobel October 18, 2012 Announcements Be prepared for midterm room/seating assignments. Quiz 2 on October 25, 2012. (Duality, up to, but not including

More information

PERT 12 Quantitative Tools (1)

PERT 12 Quantitative Tools (1) PERT 12 Quantitative Tools (1) Proses keputusan dalam operasi Fundamental Decisin Making, Tabel keputusan. Konsep Linear Programming Problem Formulasi Linear Programming Problem Penyelesaian Metode Grafis

More information

56:171 Operations Research Midterm Examination Solutions PART ONE

56:171 Operations Research Midterm Examination Solutions PART ONE 56:171 Operations Research Midterm Examination Solutions Fall 1997 Answer both questions of Part One, and 4 (out of 5) problems from Part Two. Possible Part One: 1. True/False 15 2. Sensitivity analysis

More information

DAKOTA FURNITURE COMPANY

DAKOTA FURNITURE COMPANY DAKOTA FURNITURE COMPANY AYMAN H. RAGAB 1. Introduction The Dakota Furniture Company (DFC) manufactures three products, namely desks, tables and chairs. To produce each of the items, three types of resources

More information

Quantitative Analysis for Management Linear Programming Models:

Quantitative Analysis for Management Linear Programming Models: Quantitative Analysis for Management Linear Programming Models: 7-000 by Prentice Hall, Inc., Upper Saddle River, Linear Programming Problem. Tujuan adalah maximize or minimize variabel dependen dari beberapa

More information

Advanced Operations Research Prof. G. Srinivasan Dept of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Dept of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Dept of Management Studies Indian Institute of Technology, Madras Lecture 23 Minimum Cost Flow Problem In this lecture, we will discuss the minimum cost

More information

56:171 Operations Research Midterm Examination Solutions PART ONE

56:171 Operations Research Midterm Examination Solutions PART ONE 56:171 Operations Research Midterm Examination Solutions Fall 1997 Write your name on the first page, and initial the other pages. Answer both questions of Part One, and 4 (out of 5) problems from Part

More information

INTERNATIONAL UNIVERSITY OF JAPAN Public Management and Policy Analysis Program Graduate School of International Relations

INTERNATIONAL UNIVERSITY OF JAPAN Public Management and Policy Analysis Program Graduate School of International Relations Hun Myoung Park (4/18/2018) LP Interpretation: 1 INTERNATIONAL UNIVERSITY OF JAPAN Public Management and Policy Analysis Program Graduate School of International Relations DCC5350 (2 Credits) Public Policy

More information

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense May 22, 2018 Marco Chiarandini DM559/DM55 Linear and integer programming Sheet, Spring 2018 [pdf format] Contains Solutions!

More information

56:171 Operations Research Midterm Examination October 25, 1991 PART ONE

56:171 Operations Research Midterm Examination October 25, 1991 PART ONE 56:171 O.R. Midterm Exam - 1 - Name or Initials 56:171 Operations Research Midterm Examination October 25, 1991 Write your name on the first page, and initial the other pages. Answer both questions of

More information

Duality & The Dual Simplex Method & Sensitivity Analysis for Linear Programming. Metodos Cuantitativos M. En C. Eduardo Bustos Farias 1

Duality & The Dual Simplex Method & Sensitivity Analysis for Linear Programming. Metodos Cuantitativos M. En C. Eduardo Bustos Farias 1 Dualit & The Dual Simple Method & Sensitivit Analsis for Linear Programming Metodos Cuantitativos M. En C. Eduardo Bustos Farias Dualit EverLP problem has a twin problem associated with it. One problem

More information

Week 6: Sensitive Analysis

Week 6: Sensitive Analysis Week 6: Sensitive Analysis 1 1. Sensitive Analysis Sensitivity Analysis is a systematic study of how, well, sensitive, the solutions of the LP are to small changes in the data. The basic idea is to be

More information

Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa

Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa 56:171 Operations Research Homework #1 - Due Wednesday, August 30, 2000 In each case below, you must formulate a linear programming

More information

WAYNE STATE UNIVERSITY Department of Industrial and Manufacturing Engineering

WAYNE STATE UNIVERSITY Department of Industrial and Manufacturing Engineering WAYNE STATE UNIVERSITY Department of Industrial and Manufacturing Engineering PhD Preliminary Examination- February 2006 Candidate Name: Answer ALL Questions Question 1-20 Marks Question 2-15 Marks Question

More information

Optimization Methods. Lecture 16: Dynamic Programming

Optimization Methods. Lecture 16: Dynamic Programming 15.093 Optimization Methods Lecture 16: Dynamic Programming 1 Outline 1. The knapsack problem Slide 1. The traveling salesman problem 3. The general DP framework 4. Bellman equation 5. Optimal inventory

More information

Chapter 2 Linear programming... 2 Chapter 3 Simplex... 4 Chapter 4 Sensitivity Analysis and duality... 5 Chapter 5 Network... 8 Chapter 6 Integer

Chapter 2 Linear programming... 2 Chapter 3 Simplex... 4 Chapter 4 Sensitivity Analysis and duality... 5 Chapter 5 Network... 8 Chapter 6 Integer 目录 Chapter 2 Linear programming... 2 Chapter 3 Simplex... 4 Chapter 4 Sensitivity Analysis and duality... 5 Chapter 5 Network... 8 Chapter 6 Integer Programming... 10 Chapter 7 Nonlinear Programming...

More information

Civil Engineering Systems Analysis Lecture VI. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics

Civil Engineering Systems Analysis Lecture VI. Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Civil Engineering Systems Analysis Lecture VI Instructor: Prof. Naveen Eluru Department of Civil Engineering and Applied Mechanics Today s Learning Objectives Simplex Method 2 Simplex : Example 2 Max Z

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

36106 Managerial Decision Modeling Sensitivity Analysis

36106 Managerial Decision Modeling Sensitivity Analysis 1 36106 Managerial Decision Modeling Sensitivity Analysis Kipp Martin University of Chicago Booth School of Business September 26, 2017 Reading and Excel Files 2 Reading (Powell and Baker): Section 9.5

More information

IE 495 Lecture 11. The LShaped Method. Prof. Jeff Linderoth. February 19, February 19, 2003 Stochastic Programming Lecture 11 Slide 1

IE 495 Lecture 11. The LShaped Method. Prof. Jeff Linderoth. February 19, February 19, 2003 Stochastic Programming Lecture 11 Slide 1 IE 495 Lecture 11 The LShaped Method Prof. Jeff Linderoth February 19, 2003 February 19, 2003 Stochastic Programming Lecture 11 Slide 1 Before We Begin HW#2 $300 $0 http://www.unizh.ch/ior/pages/deutsch/mitglieder/kall/bib/ka-wal-94.pdf

More information

56:171 Operations Research Midterm Examination October 28, 1997 PART ONE

56:171 Operations Research Midterm Examination October 28, 1997 PART ONE 56:171 Operations Research Midterm Examination October 28, 1997 Write your name on the first page, and initial the other pages. Answer both questions of Part One, and 4 (out of 5) problems from Part Two.

More information

The Assignment Problem

The Assignment Problem The Assignment Problem E.A Dinic, M.A Kronrod Moscow State University Soviet Math.Dokl. 1969 January 30, 2012 1 Introduction Motivation Problem Definition 2 Motivation Problem Definition Outline 1 Introduction

More information

DUALITY AND SENSITIVITY ANALYSIS

DUALITY AND SENSITIVITY ANALYSIS DUALITY AND SENSITIVITY ANALYSIS Understanding Duality No learning of Linear Programming is complete unless we learn the concept of Duality in linear programming. It is impossible to separate the linear

More information

Lecture 7: Linear programming, Dedicated Bond Portfolios

Lecture 7: Linear programming, Dedicated Bond Portfolios Optimization Methods in Finance (EPFL, Fall 2010) Lecture 7: Linear programming, Dedicated Bond Portfolios 03.11.2010 Lecturer: Prof. Friedrich Eisenbrand Scribe: Rached Hachouch Linear programming is

More information

Issues. Senate (Total = 100) Senate Group 1 Y Y N N Y 32 Senate Group 2 Y Y D N D 16 Senate Group 3 N N Y Y Y 30 Senate Group 4 D Y N D Y 22

Issues. Senate (Total = 100) Senate Group 1 Y Y N N Y 32 Senate Group 2 Y Y D N D 16 Senate Group 3 N N Y Y Y 30 Senate Group 4 D Y N D Y 22 1. Every year, the United States Congress must approve a budget for the country. In order to be approved, the budget must get a majority of the votes in the Senate, a majority of votes in the House, and

More information

LINEAR PROGRAMMING. Homework 7

LINEAR PROGRAMMING. Homework 7 LINEAR PROGRAMMING Homework 7 Fall 2014 Csci 628 Megan Rose Bryant 1. Your friend is taking a Linear Programming course at another university and for homework she is asked to solve the following LP: Primal:

More information

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs Stochastic Programming and Financial Analysis IE447 Midterm Review Dr. Ted Ralphs IE447 Midterm Review 1 Forming a Mathematical Programming Model The general form of a mathematical programming model is:

More information

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later Sensitivity Analysis with Data Tables Time Value of Money: A Special kind of Trade-Off: $100 @ 10% annual interest now =$110 one year later $110 @ 10% annual interest now =$121 one year later $100 @ 10%

More information

Integer Programming Models

Integer Programming Models Integer Programming Models Fabio Furini December 10, 2014 Integer Programming Models 1 Outline 1 Combinatorial Auctions 2 The Lockbox Problem 3 Constructing an Index Fund Integer Programming Models 2 Integer

More information

Allocation of Risk Capital via Intra-Firm Trading

Allocation of Risk Capital via Intra-Firm Trading Allocation of Risk Capital via Intra-Firm Trading Sean Hilden Department of Mathematical Sciences Carnegie Mellon University December 5, 2005 References 1. Artzner, Delbaen, Eber, Heath: Coherent Measures

More information

LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE

LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE The Wilson Problem: Graph is at the end. LP OPTIMUM FOUND AT STEP 2 1) 5520.000 X1 360.000000 0.000000 X2 300.000000 0.000000 2) 0.000000 1.000000 3) 0.000000 2.000000 4) 140.000000 0.000000 5) 200.000000

More information

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization March 9 16, 2018 1 / 19 The portfolio optimization problem How to best allocate our money to n risky assets S 1,..., S n with

More information

Introduction to Operations Research

Introduction to Operations Research Introduction to Operations Research Unit 1: Linear Programming Terminology and formulations LP through an example Terminology Additional Example 1 Additional example 2 A shop can make two types of sweets

More information

Chapter Two: Linear Programming: Model Formulation and Graphical Solution

Chapter Two: Linear Programming: Model Formulation and Graphical Solution Chapter Two: Linear Programming: Model Formulation and Graphical Solution PROBLEM SUMMARY 1. Maximization (1 28 continuation), graphical solution 2. Minimization, graphical solution 3. Sensitivity analysis

More information

A Game Theoretic Approach to Promotion Design in Two-Sided Platforms

A Game Theoretic Approach to Promotion Design in Two-Sided Platforms A Game Theoretic Approach to Promotion Design in Two-Sided Platforms Amir Ajorlou Ali Jadbabaie Institute for Data, Systems, and Society Massachusetts Institute of Technology (MIT) Allerton Conference,

More information

CONSUMER OPTIMISATION

CONSUMER OPTIMISATION Prerequisites Almost essential Firm: Optimisation Consumption: Basics CONSUMER OPTIMISATION MICROECONOMICS Principles and Analysis Frank Cowell Note: the detail in slides marked * can only be seen if you

More information

Sensitivity Analysis LINDO INPUT & RESULTS. Maximize 7X1 + 10X2. Subject to X1 < 500 X2 < 500 X1 + 2X2 < 960 5X1 + 6X2 < 3600 END

Sensitivity Analysis LINDO INPUT & RESULTS. Maximize 7X1 + 10X2. Subject to X1 < 500 X2 < 500 X1 + 2X2 < 960 5X1 + 6X2 < 3600 END Sensitivity Analysis Sensitivity Analysis is used to see how the optimal solution is affected by the objective function coefficients and to see how the optimal value is affected by the right- hand side

More information

COMP331/557. Chapter 6: Optimisation in Finance: Cash-Flow. (Cornuejols & Tütüncü, Chapter 3)

COMP331/557. Chapter 6: Optimisation in Finance: Cash-Flow. (Cornuejols & Tütüncü, Chapter 3) COMP331/557 Chapter 6: Optimisation in Finance: Cash-Flow (Cornuejols & Tütüncü, Chapter 3) 159 Cash-Flow Management Problem A company has the following net cash flow requirements (in 1000 s of ): Month

More information

Operations Research I: Deterministic Models

Operations Research I: Deterministic Models AMS 341 (Spring, 2010) Estie Arkin Operations Research I: Deterministic Models Exam 1: Thursday, March 11, 2010 READ THESE INSTRUCTIONS CAREFULLY. Do not start the exam until told to do so. Make certain

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 1.3 Recitation 1 TAs: Giacomo Nannicini, Ebrahim Nasrabadi Problem 1 You create your own start-up company that caters high-quality organic food directly to

More information

LP Sensitivity Analysis

LP Sensitivity Analysis LP Sensitivity Analysis Max: 50X + 40Y Profit 2X + Y >= 2 (3) Customer v demand X + 2Y >= 2 (4) Customer w demand X, Y >= 0 (5) Non negativity What is the new feasible region? a, e, B, h, d, A and a form

More information

A Robust Option Pricing Problem

A Robust Option Pricing Problem IMA 2003 Workshop, March 12-19, 2003 A Robust Option Pricing Problem Laurent El Ghaoui Department of EECS, UC Berkeley 3 Robust optimization standard form: min x sup u U f 0 (x, u) : u U, f i (x, u) 0,

More information

Homework #3 Supply Chain Models: Manufacturing & Warehousing (ISyE 3104) - Fall 2001 Due September 20, 2001

Homework #3 Supply Chain Models: Manufacturing & Warehousing (ISyE 3104) - Fall 2001 Due September 20, 2001 Homework #3 Supply Chain Models: Manufacturing & Warehousing (ISyE 3104) - Fall 2001 Due September 20, 2001 Show all your steps to get full credit. (Total 45 points) Reading assignment: Read Supplement

More information

$B$8 B&D

$B$8 B&D 1. An Excel Solver sensitivity report for a linear programming model is given below. INTERPRET ALL of the information given for decision variable C (Adjustable Cells Table) and constraint C&D ( Table).

More information

Robust Optimization Applied to a Currency Portfolio

Robust Optimization Applied to a Currency Portfolio Robust Optimization Applied to a Currency Portfolio R. Fonseca, S. Zymler, W. Wiesemann, B. Rustem Workshop on Numerical Methods and Optimization in Finance June, 2009 OUTLINE Introduction Motivation &

More information

Chapter Two: Linear Programming: Model Formulation and Graphical Solution

Chapter Two: Linear Programming: Model Formulation and Graphical Solution TYLM0_0393.QX //09 :3 M Page hapter Two: Linear Programming: Model Formulation and Graphical Solution PROLEM SUMMRY. Maimization ( continuation), graphical solution. Maimization, graphical solution 3.

More information

EE/AA 578 Univ. of Washington, Fall Homework 8

EE/AA 578 Univ. of Washington, Fall Homework 8 EE/AA 578 Univ. of Washington, Fall 2016 Homework 8 1. Multi-label SVM. The basic Support Vector Machine (SVM) described in the lecture (and textbook) is used for classification of data with two labels.

More information

Optimization in Finance

Optimization in Finance Research Reports on Mathematical and Computing Sciences Series B : Operations Research Department of Mathematical and Computing Sciences Tokyo Institute of Technology 2-12-1 Oh-Okayama, Meguro-ku, Tokyo

More information

14.05 Lecture Notes. Labor Supply

14.05 Lecture Notes. Labor Supply 14.05 Lecture Notes Labor Supply George-Marios Angeletos MIT Department of Economics March 4, 2013 1 George-Marios Angeletos One-period Labor Supply Problem So far we have focused on optimal consumption

More information

Chapter Two: Linear Programming: Model Formulation and Graphical Solution

Chapter Two: Linear Programming: Model Formulation and Graphical Solution hapter Two: Linear Programming: Model Formulation and Graphical Solution PROLEM SUMMRY. Maimization ( continuation), graphical solution. Maimization, graphical solution 3. Minimization, graphical solution.

More information

Econ 172A, W2002: Final Examination, Solutions

Econ 172A, W2002: Final Examination, Solutions Econ 172A, W2002: Final Examination, Solutions Comments. Naturally, the answers to the first question were perfect. I was impressed. On the second question, people did well on the first part, but had trouble

More information

Final Exam (Solutions) ECON 4310, Fall 2014

Final Exam (Solutions) ECON 4310, Fall 2014 Final Exam (Solutions) ECON 4310, Fall 2014 1. Do not write with pencil, please use a ball-pen instead. 2. Please answer in English. Solutions without traceable outlines, as well as those with unreadable

More information

14.54 International Trade Lecture 3: Preferences and Demand

14.54 International Trade Lecture 3: Preferences and Demand 14.54 International Trade Lecture 3: Preferences and Demand 14.54 Week 2 Fall 2016 14.54 (Week 2) Preferences and Demand Fall 2016 1 / 29 Today s Plan 1 2 Utility maximization 1 2 3 4 Budget set Preferences

More information

Game Theory Tutorial 3 Answers

Game Theory Tutorial 3 Answers Game Theory Tutorial 3 Answers Exercise 1 (Duality Theory) Find the dual problem of the following L.P. problem: max x 0 = 3x 1 + 2x 2 s.t. 5x 1 + 2x 2 10 4x 1 + 6x 2 24 x 1 + x 2 1 (1) x 1 + 3x 2 = 9 x

More information

Practice Problems 1: Moral Hazard

Practice Problems 1: Moral Hazard Practice Problems 1: Moral Hazard December 5, 2012 Question 1 (Comparative Performance Evaluation) Consider the same normal linear model as in Question 1 of Homework 1. This time the principal employs

More information

1.2: USING ALGEBRA(meaning no calculators), find the Intersection of the two Lines.

1.2: USING ALGEBRA(meaning no calculators), find the Intersection of the two Lines. Math 125 Final Exam Practice HAPTE 1: 1.1: List the Intercepts of each Equation and then sketch the graph 18x+ 10y = 90 b) 16x+ 24y = 432 c) 25x+ 10y = 500 1.2: USING ALGEBA(meaning no calculators), find

More information

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA We begin by describing the problem at hand which motivates our results. Suppose that we have n financial instruments at hand,

More information

Interior-Point Algorithm for CLP II. yyye

Interior-Point Algorithm for CLP II.   yyye Conic Linear Optimization and Appl. Lecture Note #10 1 Interior-Point Algorithm for CLP II Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Firm s demand for the input. Supply of the input = price of the input.

Firm s demand for the input. Supply of the input = price of the input. Chapter 8 Costs Functions The economic cost of an input is the minimum payment required to keep the input in its present employment. It is the payment the input would receive in its best alternative employment.

More information

What can we do with numerical optimization?

What can we do with numerical optimization? Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016

More information

Lecture 3. Understanding the optimizer sensitivity report 4 Shadow (or dual) prices 4 Right hand side ranges 4 Objective coefficient ranges

Lecture 3. Understanding the optimizer sensitivity report 4 Shadow (or dual) prices 4 Right hand side ranges 4 Objective coefficient ranges Decision Models Lecture 3 1 Lecture 3 Understanding the optimizer sensitivity report 4 Shadow (or dual) prices 4 Right hand side ranges 4 Objective coefficient ranges Bidding Problems Summary and Preparation

More information

Lecture 2. (1) Permanent Income Hypothesis. (2) Precautionary Savings. Erick Sager. September 21, 2015

Lecture 2. (1) Permanent Income Hypothesis. (2) Precautionary Savings. Erick Sager. September 21, 2015 Lecture 2 (1) Permanent Income Hypothesis (2) Precautionary Savings Erick Sager September 21, 2015 Econ 605: Adv. Topics in Macroeconomics Johns Hopkins University, Fall 2015 Erick Sager Lecture 2 (9/21/15)

More information

14.54 International Trade Lecture 12: Specific Factors Model (II)

14.54 International Trade Lecture 12: Specific Factors Model (II) 14.54 International Trade Lecture 12: Specific Factors Model (II) 14.54 Week 7 Fall 2016 Fall 2016 1 / 24 Today s Plan 1 2 3 Refresher on Specific Factor Model Effects of Changes in Factor Endowments Factor

More information

Optimization for Chemical Engineers, 4G3. Written midterm, 23 February 2015

Optimization for Chemical Engineers, 4G3. Written midterm, 23 February 2015 Optimization for Chemical Engineers, 4G3 Written midterm, 23 February 2015 Kevin Dunn, kevin.dunn@mcmaster.ca McMaster University Note: No papers, other than this test and the answer booklet are allowed

More information

Lecture Notes 1

Lecture Notes 1 4.45 Lecture Notes Guido Lorenzoni Fall 2009 A portfolio problem To set the stage, consider a simple nite horizon problem. A risk averse agent can invest in two assets: riskless asset (bond) pays gross

More information

Operations Research I: Deterministic Models

Operations Research I: Deterministic Models AMS 341 (Spring, 2009) Estie Arkin Operations Research I: Deterministic Models Exam 1: Thursday, March 12, 2009 READ THESE INSTRUCTIONS CAREFULLY. Do not start the exam until told to do so. Make certain

More information

Marginal Analysis Outline

Marginal Analysis Outline Marginal Analysis Outline 1. Definition and Assumptions 2. Optimality criteria Analysis Interpretation Application 3. Key concepts Expansion path Cost function Economies of scale 4. Summary Massachusetts

More information

Math 140 Exam II Review

Math 140 Exam II Review Setting Up Linear Programming Problems 1. Set up but do not solve the following linear programming problem. Math 140 Exam II Review Very Good Woodworking makes tables and desks. To produce each table requires

More information

Scenario reduction and scenario tree construction for power management problems

Scenario reduction and scenario tree construction for power management problems Scenario reduction and scenario tree construction for power management problems N. Gröwe-Kuska, H. Heitsch and W. Römisch Humboldt-University Berlin Institute of Mathematics Page 1 of 20 IEEE Bologna POWER

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 15 Dr. Ted Ralphs ISE 347/447 Lecture 15 1 Reading for This Lecture C&T Chapter 12 ISE 347/447 Lecture 15 2 Stock Market Indices A stock market index is a statistic

More information

The Ramsey Model. Lectures 11 to 14. Topics in Macroeconomics. November 10, 11, 24 & 25, 2008

The Ramsey Model. Lectures 11 to 14. Topics in Macroeconomics. November 10, 11, 24 & 25, 2008 The Ramsey Model Lectures 11 to 14 Topics in Macroeconomics November 10, 11, 24 & 25, 2008 Lecture 11, 12, 13 & 14 1/50 Topics in Macroeconomics The Ramsey Model: Introduction 2 Main Ingredients Neoclassical

More information

Approximate Dynamic Programming for a Spare Parts Problem: The Challenge of Rare Events

Approximate Dynamic Programming for a Spare Parts Problem: The Challenge of Rare Events Approximate Dynamic Programming for a Spare Parts Problem: The Challenge of Rare Events INFORMS Seattle November 2007 Hugo P. Simão Warren B. Powell CASTLE Laboratory Princeton University http://www.castlelab.princeton.edu

More information

Linear Programming: Simplex Method

Linear Programming: Simplex Method Mathematical Modeling (STAT 420/620) Spring 2015 Lecture 10 February 19, 2015 Linear Programming: Simplex Method Lecture Plan 1. Linear Programming and Simplex Method a. Family Farm Problem b. Simplex

More information

Linear Programming: Sensitivity Analysis and Interpretation of Solution

Linear Programming: Sensitivity Analysis and Interpretation of Solution 8 Linear Programming: Sensitivity Analysis and Interpretation of Solution MULTIPLE CHOICE. To solve a linear programming problem with thousands of variables and constraints a personal computer can be use

More information

Midterm 2 Example Questions

Midterm 2 Example Questions Midterm Eample Questions Solve LPs using Simple. Consider the following LP:, 6 ma (a) Convert the LP to standard form.,,, 6 ma (b) Starting with and as nonbasic variables, solve the problem using the Simple

More information

17. Forestry Applications of Linear Programming

17. Forestry Applications of Linear Programming 191 17. Forestry Applications of Linear Programming Steve Harrison Linear programming (LP) is a highly versatile mathematical optimization technique which has found wide use in management and economics.

More information

Worst-case-expectation approach to optimization under uncertainty

Worst-case-expectation approach to optimization under uncertainty Worst-case-expectation approach to optimization under uncertainty Wajdi Tekaya Joint research with Alexander Shapiro, Murilo Pereira Soares and Joari Paulo da Costa : Cambridge Systems Associates; : Georgia

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 21 Successive Shortest Path Problem In this lecture, we continue our discussion

More information

The Correlation Smile Recovery

The Correlation Smile Recovery Fortis Bank Equity & Credit Derivatives Quantitative Research The Correlation Smile Recovery E. Vandenbrande, A. Vandendorpe, Y. Nesterov, P. Van Dooren draft version : March 2, 2009 1 Introduction Pricing

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May, 204 Review of Game heory: Let M be a matrix with all elements in [0, ]. Mindy (called the row player) chooses

More information

3.3 - One More Example...

3.3 - One More Example... c Kathryn Bollinger, September 28, 2005 1 3.3 - One More Example... Ex: (from Tan) Solve the following LP problem using the Method of Corners. Kane Manufacturing has a division that produces two models

More information

Outline for today. Stat155 Game Theory Lecture 19: Price of anarchy. Cooperative games. Price of anarchy. Price of anarchy

Outline for today. Stat155 Game Theory Lecture 19: Price of anarchy. Cooperative games. Price of anarchy. Price of anarchy Outline for today Stat155 Game Theory Lecture 19:.. Peter Bartlett Recall: Linear and affine latencies Classes of latencies Pigou networks Transferable versus nontransferable utility November 1, 2016 1

More information

Online Appendix: Extensions

Online Appendix: Extensions B Online Appendix: Extensions In this online appendix we demonstrate that many important variations of the exact cost-basis LUL framework remain tractable. In particular, dual problem instances corresponding

More information

Performance Measurement and Best Practice Benchmarking of Mutual Funds:

Performance Measurement and Best Practice Benchmarking of Mutual Funds: Performance Measurement and Best Practice Benchmarking of Mutual Funds: Combining Stochastic Dominance criteria with Data Envelopment Analysis Timo Kuosmanen Wageningen University, The Netherlands CEMMAP

More information

Discussion of Financial Networks and Contagion Elliott, Golub, and Jackson (2013)

Discussion of Financial Networks and Contagion Elliott, Golub, and Jackson (2013) Discussion of Financial Networks and Contagion Elliott, Golub, and Jackson (2013) Alireza Tahbaz-Salehi Columbia Business School Macro Financial Modeling and Macroeconomic Fragility Conference October

More information

14.02 Principles of Macroeconomics Solutions to Problem Set # 2

14.02 Principles of Macroeconomics Solutions to Problem Set # 2 4.02 Principles of Macroeconomics Solutions to Problem Set # 2 September 25, 2009 True/False/Uncertain [20 points] Please state whether each of the following claims are True, False or Uncertain, and provide

More information

Optimization Methods in Finance

Optimization Methods in Finance Optimization Methods in Finance Gerard Cornuejols Reha Tütüncü Carnegie Mellon University, Pittsburgh, PA 15213 USA January 2006 2 Foreword Optimization models play an increasingly important role in financial

More information

Chapter 2: Economists View of Behavior

Chapter 2: Economists View of Behavior Managerial Economics and Organizational Architecture, 5e Chapter 2: Economists View of Behavior Copyright 2009 by The McGraw-Hill Companies, Inc. All rights reserved. Economic Behavior People have unlimited

More information