Measures of Center. Mean. 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) Measure of Center. Notation. Mean

Size: px
Start display at page:

Download "Measures of Center. Mean. 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) Measure of Center. Notation. Mean"

Transcription

1 Measure of Center Measures of Center The value at the center or middle of a data set 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) 1 2 Mean Notation The measure of center obtained by adding the values and dividing the total by the number of values denotes the sum of a set of values. x is the variable used to represent the individual data values. What most people call an average. n represents the number of data values in a sample. N represents the number of data values in a population. 3 4 Mean This is the sample mean Advantages Is relatively reliable. Takes every data value into account µ is pronounced mu and denotes the mean of all values in a population This is the population mean 5 Disadvantage Is sensitive to every data value, one extreme value can affect it dramatically; is not a resistant measure of center 6

2 Median Finding the Median The middle value when the original data values are arranged in order of increasing (or decreasing) magnitude First sort the values (arrange them in order), then follow one of these rules: 1. If the number of data values is odd, the median is the value located in the exact middle of the list. is not affected by an extreme value, resistant measure of the center 2. If the number of data values is even, the median is found by computing the mean of the two middle numbers. 7 8 Example 1 Example Order from smallest to largest: Order from smallest to largest: Middle value Middle values MEDIAN is 0.73 MEDIAN is Mode Examples The value that occurs with the greatest frequency. Data set can have one, more than one, or no mode a Mode is 1.10 Bimodal Two data values occur with the same greatest frequency b c Bimodal - 27 & 55 No Mode Multimodal More than two data values occur with the same greatest frequency No Mode No data value is repeated 11 12

3 Midrange The value midway between the maximum and minimum values in the original data set Midrange Sensitive to extremes because it uses only the maximum and minimum values. Midrange = maximum value + minimum value 2 Midrange is rarely used in practice Round-off Rule for Measure of Center Carry one more decimal place than is present in the original set of values Common Distributions Skewed and Symmetric Symmetry and skewness Symmetric Distribution of data is symmetric if the left half of its histogram is roughly a mirror image of its right half. Skewed Distribution of data is skewed if it is not symmetric and extends more to one side than the other

4 Measure of Variation Measures of Variation The spread, variability, of data width of a distribution 1. Standard Deviation 2. Variance 3. Range (rarely used) Standard Deviation Sample Standard Deviation Formula The standard deviation of a set of sample values, denoted by s, is a measure of variation of values about the mean Sample Standard Deviation Formula (Shortcut Formula) Population Standard Deviation Formula is pronounced sigma This formula only has a theoretical significance, it cannot be used in practice

5 Example Variance The measure of variation equal to the square of the standard deviation. Sample variance: s 2 - Square of the sample standard deviation s Population variance: 2 - Square of the population standard deviation Notation Example Values: 1, 3, 14 s = sample standard deviation s = 7.0 s 2 = sample variance s 2 = 49.0 = population standard deviation = = population variance 2 = Range (Rarely Used) The difference between the maximum data value and the minimum data value. Using StatCrunch Range = (maximum value) (minimum value) It is very sensitive to extreme values; therefore not as useful as the other measures of variation

6 (1) Enter values into first column (2) Select Stat, Summary Stats, Columns (3) Select var1 (the first column) (4) Click Next (5) The highlighted stats will be displayed Optional: Select Unadf. Variance Unadj. Std. Dev. (the population variance and standard deviation) 35 36

7 (6) Click Calculate and see the results Usual and Unusual Events Usual Values Rule of Thumb Values in a data set are those that are typical and not too extreme. Max. Usual Value = (Mean) 2*(s.d.) Based on the principle that for many data sets, the vast majority (such as 95%) of sample values lie within two standard deviations of the mean. Min. Usual Value = (Mean) + 2*(s.d.) A value is unusual if it differs from the mean by more than two standard deviations Expirical Rule ( Rule) For data sets having a distribution that is approximately bell shaped, the following properties apply: About 68% of all values fall within 1 standard deviation of the mean. About 95% of all values fall within 2 standard deviations of the mean. About 99.7% of all values fall within 3 standard deviations of the mean

8 43 44 Z-Score Measures of Relative Standing Also called standardized value The number of standard deviations that a given value x is above or below the mean Sample Population Interpreting Z-Scores Round z scores to 2 decimal places Whenever a value is less than the mean, its corresponding z score is negative Ordinary values: 2 z score 2 Unusual values: z score < 2 or z score >

9 Percentiles Finding the Percentile of a Value The measures of location. There are 99 percentiles denoted P 1, P 2,... P 99, which divide a set of data into 100 groups with about 1% of the values in each group. number of values less than x Percentile of value x = 100 total number of values Round it off to the nearest whole number Finding the Data Value of the k-th Percentile Converting from the kth Percentile to the Corresponding Data Value L = k n 100 n total number of values in the data set k percentile being used L locator that gives the position of a value P k kth percentile Finding Percentiles Using StatCrunch Finding Percentiles Using StatCrunch (1) From The menu shown before, enter the percentiles you wish to calculate. Example: 10,20,80,90 for the 10 th, 20 th, 80 th, and 90 th percentiles (2) The Percentiles will be listed with the other statistics

10 Quartiles The measures of location (denoted Q 1, Q 2, Q 3 ) dividing a set of data into four groups with about 25% of the values in each group. Q 1 (First Quartile) separates the bottom 25% of sorted values from the top 75%. Q 2 (Second Quartile) (Same as median) Separates the bottom 50% of sorted values from the top 50%. Q 3 (Third Quartile) separates the bottom 75% of sorted values from the top 25%. 55 Q 1, Q 2, Q 3 Divide ranked scores into four equal parts 25% 25% 25% 25% (minimum) Q 1 Q 2 Q (maximum) 3 (median) 56 Other Statistics Interquartile Range (or IQR): Q 3 Q 1 Semi-interquartile Range: Midquartile: Q 3 + Q 1 2 Q 3 Q Percentile Range: P 90 P 10 5-Number Summary For a set of data, the 5-number summary consists of 1.The minimum value 2.First quartile (Q 1 ) 3.Median (Q 2 ) 4.Third quartile (Q 3 ) 5.The maximum value

Section3-2: Measures of Center

Section3-2: Measures of Center Chapter 3 Section3-: Measures of Center Notation Suppose we are making a series of observations, n of them, to be exact. Then we write x 1, x, x 3,K, x n as the values we observe. Thus n is the total number

More information

Chapter 2: Descriptive Statistics. Mean (Arithmetic Mean): Found by adding the data values and dividing the total by the number of data.

Chapter 2: Descriptive Statistics. Mean (Arithmetic Mean): Found by adding the data values and dividing the total by the number of data. -3: Measure of Central Tendency Chapter : Descriptive Statistics The value at the center or middle of a data set. It is a tool for analyzing data. Part 1: Basic concepts of Measures of Center Ex. Data

More information

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence Measures of Variation Section -5 1 Waiting Times of Bank Customers at Different Banks in minutes Jefferson Valley Bank 6.5 6.6 6.7 6.8 7.1 7.3 7.4 Bank of Providence 4. 5.4 5.8 6. 6.7 8.5 9.3 10.0 Mean

More information

Chapter 3 Descriptive Statistics: Numerical Measures Part A

Chapter 3 Descriptive Statistics: Numerical Measures Part A Slides Prepared by JOHN S. LOUCKS St. Edward s University Slide 1 Chapter 3 Descriptive Statistics: Numerical Measures Part A Measures of Location Measures of Variability Slide Measures of Location Mean

More information

Numerical Descriptions of Data

Numerical Descriptions of Data Numerical Descriptions of Data Measures of Center Mean x = x i n Excel: = average ( ) Weighted mean x = (x i w i ) w i x = data values x i = i th data value w i = weight of the i th data value Median =

More information

Chapter 3. Descriptive Measures. Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 3, Slide 1

Chapter 3. Descriptive Measures. Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 3, Slide 1 Chapter 3 Descriptive Measures Copyright 2016, 2012, 2008 Pearson Education, Inc. Chapter 3, Slide 1 Chapter 3 Descriptive Measures Mean, Median and Mode Copyright 2016, 2012, 2008 Pearson Education, Inc.

More information

1 Describing Distributions with numbers

1 Describing Distributions with numbers 1 Describing Distributions with numbers Only for quantitative variables!! 1.1 Describing the center of a data set The mean of a set of numerical observation is the familiar arithmetic average. To write

More information

appstats5.notebook September 07, 2016 Chapter 5

appstats5.notebook September 07, 2016 Chapter 5 Chapter 5 Describing Distributions Numerically Chapter 5 Objective: Students will be able to use statistics appropriate to the shape of the data distribution to compare of two or more different data sets.

More information

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Chapter 3 Numerical Descriptive Measures Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Objectives In this chapter, you learn to: Describe the properties of central tendency, variation, and

More information

Math146 - Chapter 3 Handouts. The Greek Alphabet. Source: Page 1 of 39

Math146 - Chapter 3 Handouts. The Greek Alphabet. Source:   Page 1 of 39 Source: www.mathwords.com The Greek Alphabet Page 1 of 39 Some Miscellaneous Tips on Calculations Examples: Round to the nearest thousandth 0.92431 0.75693 CAUTION! Do not truncate numbers! Example: 1

More information

DATA SUMMARIZATION AND VISUALIZATION

DATA SUMMARIZATION AND VISUALIZATION APPENDIX DATA SUMMARIZATION AND VISUALIZATION PART 1 SUMMARIZATION 1: BUILDING BLOCKS OF DATA ANALYSIS 294 PART 2 PART 3 PART 4 VISUALIZATION: GRAPHS AND TABLES FOR SUMMARIZING AND ORGANIZING DATA 296

More information

3.1 Measures of Central Tendency

3.1 Measures of Central Tendency 3.1 Measures of Central Tendency n Summation Notation x i or x Sum observation on the variable that appears to the right of the summation symbol. Example 1 Suppose the variable x i is used to represent

More information

Copyright 2005 Pearson Education, Inc. Slide 6-1

Copyright 2005 Pearson Education, Inc. Slide 6-1 Copyright 2005 Pearson Education, Inc. Slide 6-1 Chapter 6 Copyright 2005 Pearson Education, Inc. Measures of Center in a Distribution 6-A The mean is what we most commonly call the average value. It is

More information

Putting Things Together Part 2

Putting Things Together Part 2 Frequency Putting Things Together Part These exercise blend ideas from various graphs (histograms and boxplots), differing shapes of distributions, and values summarizing the data. Data for, and are in

More information

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution PSY 464 Advanced Experimental Design Describing and Exploring Data The Normal Distribution 1 Overview/Outline Questions-problems? Exploring/Describing data Organizing/summarizing data Graphical presentations

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

Describing Data: One Quantitative Variable

Describing Data: One Quantitative Variable STAT 250 Dr. Kari Lock Morgan The Big Picture Describing Data: One Quantitative Variable Population Sampling SECTIONS 2.2, 2.3 One quantitative variable (2.2, 2.3) Statistical Inference Sample Descriptive

More information

Handout 4 numerical descriptive measures part 2. Example 1. Variance and Standard Deviation for Grouped Data. mf N 535 = = 25

Handout 4 numerical descriptive measures part 2. Example 1. Variance and Standard Deviation for Grouped Data. mf N 535 = = 25 Handout 4 numerical descriptive measures part Calculating Mean for Grouped Data mf Mean for population data: µ mf Mean for sample data: x n where m is the midpoint and f is the frequency of a class. Example

More information

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.)

Chapter 6. y y. Standardizing with z-scores. Standardizing with z-scores (cont.) Starter Ch. 6: A z-score Analysis Starter Ch. 6 Your Statistics teacher has announced that the lower of your two tests will be dropped. You got a 90 on test 1 and an 85 on test 2. You re all set to drop

More information

Numerical Descriptive Measures. Measures of Center: Mean and Median

Numerical Descriptive Measures. Measures of Center: Mean and Median Steve Sawin Statistics Numerical Descriptive Measures Having seen the shape of a distribution by looking at the histogram, the two most obvious questions to ask about the specific distribution is where

More information

4. DESCRIPTIVE STATISTICS

4. DESCRIPTIVE STATISTICS 4. DESCRIPTIVE STATISTICS Descriptive Statistics is a body of techniques for summarizing and presenting the essential information in a data set. Eg: Here are daily high temperatures for Jan 16, 2009 in

More information

Description of Data I

Description of Data I Description of Data I (Summary and Variability measures) Objectives: Able to understand how to summarize the data Able to understand how to measure the variability of the data Able to use and interpret

More information

Descriptive Analysis

Descriptive Analysis Descriptive Analysis HERTANTO WAHYU SUBAGIO Univariate Analysis Univariate analysis involves the examination across cases of one variable at a time. There are three major characteristics of a single variable

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

Math 140 Introductory Statistics. First midterm September

Math 140 Introductory Statistics. First midterm September Math 140 Introductory Statistics First midterm September 23 2010 Box Plots Graphical display of 5 number summary Q1, Q2 (median), Q3, max, min Outliers If a value is more than 1.5 times the IQR from the

More information

Simple Descriptive Statistics

Simple Descriptive Statistics Simple Descriptive Statistics These are ways to summarize a data set quickly and accurately The most common way of describing a variable distribution is in terms of two of its properties: Central tendency

More information

Center and Spread. Measures of Center and Spread. Example: Mean. Mean: the balance point 2/22/2009. Describing Distributions with Numbers.

Center and Spread. Measures of Center and Spread. Example: Mean. Mean: the balance point 2/22/2009. Describing Distributions with Numbers. Chapter 3 Section3-: Measures of Center Section 3-3: Measurers of Variation Section 3-4: Measures of Relative Standing Section 3-5: Exploratory Data Analysis Describing Distributions with Numbers The overall

More information

STAT 113 Variability

STAT 113 Variability STAT 113 Variability Colin Reimer Dawson Oberlin College September 14, 2017 1 / 48 Outline Last Time: Shape and Center Variability Boxplots and the IQR Variance and Standard Deviaton Transformations 2

More information

NOTES TO CONSIDER BEFORE ATTEMPTING EX 2C BOX PLOTS

NOTES TO CONSIDER BEFORE ATTEMPTING EX 2C BOX PLOTS NOTES TO CONSIDER BEFORE ATTEMPTING EX 2C BOX PLOTS A box plot is a pictorial representation of the data and can be used to get a good idea and a clear picture about the distribution of the data. It shows

More information

Lecture 2 Describing Data

Lecture 2 Describing Data Lecture 2 Describing Data Thais Paiva STA 111 - Summer 2013 Term II July 2, 2013 Lecture Plan 1 Types of data 2 Describing the data with plots 3 Summary statistics for central tendency and spread 4 Histograms

More information

Descriptive Statistics

Descriptive Statistics Petra Petrovics Descriptive Statistics 2 nd seminar DESCRIPTIVE STATISTICS Definition: Descriptive statistics is concerned only with collecting and describing data Methods: - statistical tables and graphs

More information

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. For exams (MD1, MD2, and Final): You may bring one 8.5 by 11 sheet of

More information

Some estimates of the height of the podium

Some estimates of the height of the podium Some estimates of the height of the podium 24 36 40 40 40 41 42 44 46 48 50 53 65 98 1 5 number summary Inter quartile range (IQR) range = max min 2 1.5 IQR outlier rule 3 make a boxplot 24 36 40 40 40

More information

Some Characteristics of Data

Some Characteristics of Data Some Characteristics of Data Not all data is the same, and depending on some characteristics of a particular dataset, there are some limitations as to what can and cannot be done with that data. Some key

More information

Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Lecture 1: Review and Exploratory Data Analysis (EDA) Ani Manichaikul amanicha@jhsph.edu 16 April 2007 1 / 40 Course Information I Office hours For questions and help When? I ll announce this tomorrow

More information

Standardized Data Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis

Standardized Data Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis Descriptive Statistics (Part 2) 4 Chapter Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis McGraw-Hill/Irwin Copyright 2009 by The McGraw-Hill Companies, Inc. Chebyshev s Theorem

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1

Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1 Chapter 1 1.1 Definitions Stat 101 Exam 1 - Embers Important Formulas and Concepts 1 1. Data Any collection of numbers, characters, images, or other items that provide information about something. 2.

More information

Mini-Lecture 3.1 Measures of Central Tendency

Mini-Lecture 3.1 Measures of Central Tendency Mini-Lecture 3.1 Measures of Central Tendency Objectives 1. Determine the arithmetic mean of a variable from raw data 2. Determine the median of a variable from raw data 3. Explain what it means for a

More information

Descriptive Statistics

Descriptive Statistics Chapter 3 Descriptive Statistics Chapter 2 presented graphical techniques for organizing and displaying data. Even though such graphical techniques allow the researcher to make some general observations

More information

2 Exploring Univariate Data

2 Exploring Univariate Data 2 Exploring Univariate Data A good picture is worth more than a thousand words! Having the data collected we examine them to get a feel for they main messages and any surprising features, before attempting

More information

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations Percentiles, STATA, Box Plots, Standardizing, and Other Transformations Lecture 3 Reading: Sections 5.7 54 Remember, when you finish a chapter make sure not to miss the last couple of boxes: What Can Go

More information

Lecture Week 4 Inspecting Data: Distributions

Lecture Week 4 Inspecting Data: Distributions Lecture Week 4 Inspecting Data: Distributions Introduction to Research Methods & Statistics 2013 2014 Hemmo Smit So next week No lecture & workgroups But Practice Test on-line (BB) Enter data for your

More information

MATHEMATICS APPLIED TO BIOLOGICAL SCIENCES MVE PA 07. LP07 DESCRIPTIVE STATISTICS - Calculating of statistical indicators (1)

MATHEMATICS APPLIED TO BIOLOGICAL SCIENCES MVE PA 07. LP07 DESCRIPTIVE STATISTICS - Calculating of statistical indicators (1) LP07 DESCRIPTIVE STATISTICS - Calculating of statistical indicators (1) Descriptive statistics are ways of summarizing large sets of quantitative (numerical) information. The best way to reduce a set of

More information

SOLUTIONS TO THE LAB 1 ASSIGNMENT

SOLUTIONS TO THE LAB 1 ASSIGNMENT SOLUTIONS TO THE LAB 1 ASSIGNMENT Question 1 Excel produces the following histogram of pull strengths for the 100 resistors: 2 20 Histogram of Pull Strengths (lb) Frequency 1 10 0 9 61 63 6 67 69 71 73

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model

STAT Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model STAT 203 - Chapter 6 The Standard Deviation (SD) as a Ruler and The Normal Model In Chapter 5, we introduced a few measures of center and spread, and discussed how the mean and standard deviation are good

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

Numerical Measurements

Numerical Measurements El-Shorouk Academy Acad. Year : 2013 / 2014 Higher Institute for Computer & Information Technology Term : Second Year : Second Department of Computer Science Statistics & Probabilities Section # 3 umerical

More information

Empirical Rule (P148)

Empirical Rule (P148) Interpreting the Standard Deviation Numerical Descriptive Measures for Quantitative data III Dr. Tom Ilvento FREC 408 We can use the standard deviation to express the proportion of cases that might fall

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

Frequency Distribution and Summary Statistics

Frequency Distribution and Summary Statistics Frequency Distribution and Summary Statistics Dongmei Li Department of Public Health Sciences Office of Public Health Studies University of Hawai i at Mānoa Outline 1. Stemplot 2. Frequency table 3. Summary

More information

Statistics I Chapter 2: Analysis of univariate data

Statistics I Chapter 2: Analysis of univariate data Statistics I Chapter 2: Analysis of univariate data Numerical summary Central tendency Location Spread Form mean quartiles range coeff. asymmetry median percentiles interquartile range coeff. kurtosis

More information

Measure of Variation

Measure of Variation Measure of Variation Variation is the spread of a data set. The simplest measure is the range. Range the difference between the maximum and minimum data entries in the set. To find the range, the data

More information

Midterm Test 1 (Sample) Student Name (PRINT):... Student Signature:... Use pencil, so that you can erase and rewrite if necessary.

Midterm Test 1 (Sample) Student Name (PRINT):... Student Signature:... Use pencil, so that you can erase and rewrite if necessary. MA 180/418 Midterm Test 1 (Sample) Student Name (PRINT):............................................. Student Signature:................................................... Use pencil, so that you can erase

More information

Normal Probability Distributions

Normal Probability Distributions C H A P T E R Normal Probability Distributions 5 Section 5.2 Example 3 (pg. 248) Normal Probabilities Assume triglyceride levels of the population of the United States are normally distributed with a mean

More information

2 DESCRIPTIVE STATISTICS

2 DESCRIPTIVE STATISTICS Chapter 2 Descriptive Statistics 47 2 DESCRIPTIVE STATISTICS Figure 2.1 When you have large amounts of data, you will need to organize it in a way that makes sense. These ballots from an election are rolled

More information

A LEVEL MATHEMATICS ANSWERS AND MARKSCHEMES SUMMARY STATISTICS AND DIAGRAMS. 1. a) 45 B1 [1] b) 7 th value 37 M1 A1 [2]

A LEVEL MATHEMATICS ANSWERS AND MARKSCHEMES SUMMARY STATISTICS AND DIAGRAMS. 1. a) 45 B1 [1] b) 7 th value 37 M1 A1 [2] 1. a) 45 [1] b) 7 th value 37 [] n c) LQ : 4 = 3.5 4 th value so LQ = 5 3 n UQ : 4 = 9.75 10 th value so UQ = 45 IQR = 0 f.t. d) Median is closer to upper quartile Hence negative skew [] Page 1 . a) Orders

More information

9/17/2015. Basic Statistics for the Healthcare Professional. Relax.it won t be that bad! Purpose of Statistic. Objectives

9/17/2015. Basic Statistics for the Healthcare Professional. Relax.it won t be that bad! Purpose of Statistic. Objectives Basic Statistics for the Healthcare Professional 1 F R A N K C O H E N, M B B, M P A D I R E C T O R O F A N A L Y T I C S D O C T O R S M A N A G E M E N T, LLC Purpose of Statistic 2 Provide a numerical

More information

Summarising Data. Summarising Data. Examples of Types of Data. Types of Data

Summarising Data. Summarising Data. Examples of Types of Data. Types of Data Summarising Data Summarising Data Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester Today we will consider Different types of data Appropriate ways to summarise these data 17/10/2017

More information

MidTerm 1) Find the following (round off to one decimal place):

MidTerm 1) Find the following (round off to one decimal place): MidTerm 1) 68 49 21 55 57 61 70 42 59 50 66 99 Find the following (round off to one decimal place): Mean = 58:083, round off to 58.1 Median = 58 Range = max min = 99 21 = 78 St. Deviation = s = 8:535,

More information

Unit 2 Statistics of One Variable

Unit 2 Statistics of One Variable Unit 2 Statistics of One Variable Day 6 Summarizing Quantitative Data Summarizing Quantitative Data We have discussed how to display quantitative data in a histogram It is useful to be able to describe

More information

MBEJ 1023 Dr. Mehdi Moeinaddini Dept. of Urban & Regional Planning Faculty of Built Environment

MBEJ 1023 Dr. Mehdi Moeinaddini Dept. of Urban & Regional Planning Faculty of Built Environment MBEJ 1023 Planning Analytical Methods Dr. Mehdi Moeinaddini Dept. of Urban & Regional Planning Faculty of Built Environment Contents What is statistics? Population and Sample Descriptive Statistics Inferential

More information

Notes 12.8: Normal Distribution

Notes 12.8: Normal Distribution Notes 12.8: Normal Distribution For many populations, the distribution of events are relatively close to the average or mean. The further you go out both above and below the mean, there are fewer number

More information

Measures of Central Tendency: Ungrouped Data. Mode. Median. Mode -- Example. Median: Example with an Odd Number of Terms

Measures of Central Tendency: Ungrouped Data. Mode. Median. Mode -- Example. Median: Example with an Odd Number of Terms Measures of Central Tendency: Ungrouped Data Measures of central tendency yield information about particular places or locations in a group of numbers. Common Measures of Location Mode Median Percentiles

More information

Graphical and Tabular Methods in Descriptive Statistics. Descriptive Statistics

Graphical and Tabular Methods in Descriptive Statistics. Descriptive Statistics Graphical and Tabular Methods in Descriptive Statistics MATH 3342 Section 1.2 Descriptive Statistics n Graphs and Tables n Numerical Summaries Sections 1.3 and 1.4 1 Why graph data? n The amount of data

More information

Applications of Data Dispersions

Applications of Data Dispersions 1 Applications of Data Dispersions Key Definitions Standard Deviation: The standard deviation shows how far away each value is from the mean on average. Z-Scores: The distance between the mean and a given

More information

1.2 Describing Distributions with Numbers, Continued

1.2 Describing Distributions with Numbers, Continued 1.2 Describing Distributions with Numbers, Continued Ulrich Hoensch Thursday, September 6, 2012 Interquartile Range and 1.5 IQR Rule for Outliers The interquartile range IQR is the distance between the

More information

Probability distributions

Probability distributions Probability distributions Introduction What is a probability? If I perform n eperiments and a particular event occurs on r occasions, the relative frequency of this event is simply r n. his is an eperimental

More information

The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s).

The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s). We will look the three common and useful measures of spread. The Range, the Inter Quartile Range (or IQR), and the Standard Deviation (which we usually denote by a lower case s). 1 Ameasure of the center

More information

Statistics (This summary is for chapters 18, 29 and section H of chapter 19)

Statistics (This summary is for chapters 18, 29 and section H of chapter 19) Statistics (This summary is for chapters 18, 29 and section H of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x n =

More information

1 Exercise One. 1.1 Calculate the mean ROI. Note that the data is not grouped! Below you find the raw data in tabular form:

1 Exercise One. 1.1 Calculate the mean ROI. Note that the data is not grouped! Below you find the raw data in tabular form: 1 Exercise One Note that the data is not grouped! 1.1 Calculate the mean ROI Below you find the raw data in tabular form: Obs Data 1 18.5 2 18.6 3 17.4 4 12.2 5 19.7 6 5.6 7 7.7 8 9.8 9 19.9 10 9.9 11

More information

David Tenenbaum GEOG 090 UNC-CH Spring 2005

David Tenenbaum GEOG 090 UNC-CH Spring 2005 Simple Descriptive Statistics Review and Examples You will likely make use of all three measures of central tendency (mode, median, and mean), as well as some key measures of dispersion (standard deviation,

More information

3.5 Applying the Normal Distribution (Z-Scores)

3.5 Applying the Normal Distribution (Z-Scores) 3.5 Applying the Normal Distribution (Z-Scores) The Graph: Review of the Normal Distribution Properties: - it is symmetrical; the mean, median and mode are equal and fall at the line of symmetry - it is

More information

NOTES: Chapter 4 Describing Data

NOTES: Chapter 4 Describing Data NOTES: Chapter 4 Describing Data Intro to Statistics COLYER Spring 2017 Student Name: Page 2 Section 4.1 ~ What is Average? Objective: In this section you will understand the difference between the three

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

Normal Model (Part 1)

Normal Model (Part 1) Normal Model (Part 1) Formulas New Vocabulary The Standard Deviation as a Ruler The trick in comparing very different-looking values is to use standard deviations as our rulers. The standard deviation

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 3 Presentation of Data: Numerical Summary Measures Part 2 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh

More information

The Standard Deviation as a Ruler and the Normal Model. Copyright 2009 Pearson Education, Inc.

The Standard Deviation as a Ruler and the Normal Model. Copyright 2009 Pearson Education, Inc. The Standard Deviation as a Ruler and the Normal Mol Copyright 2009 Pearson Education, Inc. The trick in comparing very different-looking values is to use standard viations as our rulers. The standard

More information

Chapter 5: Summarizing Data: Measures of Variation

Chapter 5: Summarizing Data: Measures of Variation Chapter 5: Introduction One aspect of most sets of data is that the values are not all alike; indeed, the extent to which they are unalike, or vary among themselves, is of basic importance in statistics.

More information

Refer to Ex 3-18 on page Record the info for Brand A in a column. Allow 3 adjacent other columns to be added. Do the same for Brand B.

Refer to Ex 3-18 on page Record the info for Brand A in a column. Allow 3 adjacent other columns to be added. Do the same for Brand B. Refer to Ex 3-18 on page 123-124 Record the info for Brand A in a column. Allow 3 adjacent other columns to be added. Do the same for Brand B. Test on Chapter 3 Friday Sept 27 th. You are expected to provide

More information

The Normal Distribution

The Normal Distribution Stat 6 Introduction to Business Statistics I Spring 009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:300:50 a.m. Chapter, Section.3 The Normal Distribution Density Curves So far we

More information

Skewness and the Mean, Median, and Mode *

Skewness and the Mean, Median, and Mode * OpenStax-CNX module: m46931 1 Skewness and the Mean, Median, and Mode * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Consider the following

More information

Section 6-1 : Numerical Summaries

Section 6-1 : Numerical Summaries MAT 2377 (Winter 2012) Section 6-1 : Numerical Summaries With a random experiment comes data. In these notes, we learn techniques to describe the data. Data : We will denote the n observations of the random

More information

Math 2200 Fall 2014, Exam 1 You may use any calculator. You may not use any cheat sheet.

Math 2200 Fall 2014, Exam 1 You may use any calculator. You may not use any cheat sheet. 1 Math 2200 Fall 2014, Exam 1 You may use any calculator. You may not use any cheat sheet. Warning to the Reader! If you are a student for whom this document is a historical artifact, be aware that the

More information

Misleading Graphs. Examples Compare unlike quantities Truncate the y-axis Improper scaling Chart Junk Impossible to interpret

Misleading Graphs. Examples Compare unlike quantities Truncate the y-axis Improper scaling Chart Junk Impossible to interpret Misleading Graphs Examples Compare unlike quantities Truncate the y-axis Improper scaling Chart Junk Impossible to interpret 1 Pretty Bleak Picture Reported AIDS cases 2 But Wait..! 3 Turk Incorporated

More information

Lesson 12: Describing Distributions: Shape, Center, and Spread

Lesson 12: Describing Distributions: Shape, Center, and Spread : Shape, Center, and Spread Opening Exercise Distributions - Data are often summarized by graphs. We often refer to the group of data presented in the graph as a distribution. Below are examples of the

More information

Categorical. A general name for non-numerical data; the data is separated into categories of some kind.

Categorical. A general name for non-numerical data; the data is separated into categories of some kind. Chapter 5 Categorical A general name for non-numerical data; the data is separated into categories of some kind. Nominal data Categorical data with no implied order. Eg. Eye colours, favourite TV show,

More information

Averages and Variability. Aplia (week 3 Measures of Central Tendency) Measures of central tendency (averages)

Averages and Variability. Aplia (week 3 Measures of Central Tendency) Measures of central tendency (averages) Chapter 4 Averages and Variability Aplia (week 3 Measures of Central Tendency) Chapter 5 (omit 5.2, 5.6, 5.8, 5.9) Aplia (week 4 Measures of Variability) Measures of central tendency (averages) Measures

More information

Dot Plot: A graph for displaying a set of data. Each numerical value is represented by a dot placed above a horizontal number line.

Dot Plot: A graph for displaying a set of data. Each numerical value is represented by a dot placed above a horizontal number line. Introduction We continue our study of descriptive statistics with measures of dispersion, such as dot plots, stem and leaf displays, quartiles, percentiles, and box plots. Dot plots, a stem-and-leaf display,

More information

STAB22 section 1.3 and Chapter 1 exercises

STAB22 section 1.3 and Chapter 1 exercises STAB22 section 1.3 and Chapter 1 exercises 1.101 Go up and down two times the standard deviation from the mean. So 95% of scores will be between 572 (2)(51) = 470 and 572 + (2)(51) = 674. 1.102 Same idea

More information

DATA HANDLING Five-Number Summary

DATA HANDLING Five-Number Summary DATA HANDLING Five-Number Summary The five-number summary consists of the minimum and maximum values, the median, and the upper and lower quartiles. The minimum and the maximum are the smallest and greatest

More information

Monte Carlo Simulation (Random Number Generation)

Monte Carlo Simulation (Random Number Generation) Monte Carlo Simulation (Random Number Generation) Revised: 10/11/2017 Summary... 1 Data Input... 1 Analysis Options... 6 Summary Statistics... 6 Box-and-Whisker Plots... 7 Percentiles... 9 Quantile Plots...

More information

Statistics 114 September 29, 2012

Statistics 114 September 29, 2012 Statistics 114 September 29, 2012 Third Long Examination TGCapistrano I. TRUE OR FALSE. Write True if the statement is always true; otherwise, write False. 1. The fifth decile is equal to the 50 th percentile.

More information

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19)

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x

More information

Introduction to Computational Finance and Financial Econometrics Descriptive Statistics

Introduction to Computational Finance and Financial Econometrics Descriptive Statistics You can t see this text! Introduction to Computational Finance and Financial Econometrics Descriptive Statistics Eric Zivot Summer 2015 Eric Zivot (Copyright 2015) Descriptive Statistics 1 / 28 Outline

More information

Descriptive Statistics Bios 662

Descriptive Statistics Bios 662 Descriptive Statistics Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-08-19 08:51 BIOS 662 1 Descriptive Statistics Descriptive Statistics Types of variables

More information

CSC Advanced Scientific Programming, Spring Descriptive Statistics

CSC Advanced Scientific Programming, Spring Descriptive Statistics CSC 223 - Advanced Scientific Programming, Spring 2018 Descriptive Statistics Overview Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.

More information

Measures of Central Tendency Lecture 5 22 February 2006 R. Ryznar

Measures of Central Tendency Lecture 5 22 February 2006 R. Ryznar Measures of Central Tendency 11.220 Lecture 5 22 February 2006 R. Ryznar Today s Content Wrap-up from yesterday Frequency Distributions The Mean, Median and Mode Levels of Measurement and Measures of Central

More information

CHAPTER 2 Describing Data: Numerical

CHAPTER 2 Describing Data: Numerical CHAPTER Multiple-Choice Questions 1. A scatter plot can illustrate all of the following except: A) the median of each of the two variables B) the range of each of the two variables C) an indication of

More information