Machine Learning for Physicists Lecture 10. Summer 2017 University of Erlangen-Nuremberg Florian Marquardt

Size: px
Start display at page:

Download "Machine Learning for Physicists Lecture 10. Summer 2017 University of Erlangen-Nuremberg Florian Marquardt"

Transcription

1 Machine Learning for Physicists Lecture 10 Summer 2017 University of Erlangen-Nuremberg Florian Marquardt

2 Function/Image representation Image classification [Handwriting recognition] Convolutional nets Autoencoders Visualization by dimensional reduction Recurrent networks Word vectors Reinforcement learning

3 For more in-depth treatment, see David Silver s course on reinforcement learning (University College London):

4 time The simplest RL example ever A random walk, where the probability to go up is determined by the policy, and where the reward is given by the final position (ideal strategy: always go up!) (Note: this policy does not even depend on the current state) position reward

5 The simplest RL example ever A random walk, where the probability to go up is determined by the policy, and where the reward is given by the final position (ideal strategy: always go up!) (Note: this policy does not even depend on the current state) policy RL update (up) = 1 1+e = X t reward ln (a t R = x(t ln (a t a t = up or down + for up, - for down = ±e 1 (a t )=±(1 (a t )) (up) = for up (up) for down X t number of ln (a t ) = N up N N=number of time steps

6 The simplest RL example ever reward RL update R = x(t ) = N up N down =2N up N X = ln (a t t * R X ln (a t + a t = up or down N =2 (N up 2 )(N N up up ) (general analytical expression for average update, rare) Initially, when (up) = 1 2 : =2 N (N up 2 )2 =2 Var(N up )= N 2 > 0 (binomial distribution!)

7 In general: * X R t =2 The simplest RL example ever ln (a t ) N =2 (N N (N up Nup )+( N up 2 ) 2 )(N up N up ) (N up Nup ) expression for average = 2VarN up + 2( N N up 2 ) N up Nup = 2VarN up =2N (up)(1 (up)) (general analytical update, fully simplified, extremely rare) (up)(1 (up)) (up)

8 The simplest RL example ever (up) probability 3 learning attempts strong fluctuations! trajectory (=training episode) (This plot for N=100 time steps in a trajectory; eta=0.001)

9 Spread of the update step Y = N up Nup c = N up N/2 X =(Y + c)y X=update (Note: to get Var X, we need central moments (except of binomial distribution up to 4th moment) prefactor of 2) p Var(X) N 3 2 hxi N 1 (up) (This plot for N=100)

10 Optimal baseline suppresses spread! Y = N up Nup c = N up N/2 X =(Y + c)y with optimal baseline: X 0 Y 2 (Y + c) =(Y + c b)y b = hy 2 i N 3 2 p Var(X) p Var(X0 ) N 1 hxi (up) (This plot for N=100)

11 Note: Many update steps reduce relative spread M = number of update steps X = MX j=1 X j h p Var Xi = M hxi X = p M p VarX relative spread p Var X h Xi 1 p M

12 Homework Implement the RL update including the optimal baseline and run some stochastic learning attempts. Can you observe the improvement over the no-baseline results shown here? Note: You do not need to simulate the individual random walk trajectories, just exploit the binomial distribution.

13 The second-simplest RL example position actions: move or stay walker target site reward=number of time steps on target time See code on website: SimpleRL_WalkerTarget

14 RL in keras: categorical cross-entropy trick output = action probabilities (softmax) (a s) a=0 a=1 a=2 categorical cross-entropy X a distr. from net C = P (a)ln (a s) desired distribution Set P (a) =R for a=action that was taken P (a) =0 for all other actions a input = implements policy gradient

15 alpha-go Among the major board games, Go was not yet played on a superhuman level by any program (very large state space on a 19x19 board!) alpha-go beat the world s best player in 2017

16 alpha-go First: try to learn from human expert players Silver et al., Mastering the game of Go with deep neural networks and tree search (Google Deepmind team), Nature, January 2016

17 alpha-go Second: use policy gradient RL on games played against previous versions of the program Silver et al., Mastering the game of Go with deep neural networks and tree search (Google Deepmind team), Nature, January 2016

18 alpha-go Silver et al., Mastering the game of Go with deep neural networks and tree search (Google Deepmind team), Nature, January 2016

19 alpha-go Silver et al., Mastering the game of Go with deep neural networks and tree search (Google Deepmind team), Nature, January 2016

20 Q-learning An alternative to the policy gradient approach Introduce a quality function Q that predicts the future reward for a given state s and a given action a. Deterministic policy: just select the action with the largest Q!

21 Q maximal player & possible actions

22 Q-learning Introduce a quality function Q that predicts the future reward for a given state s and a given action a. Deterministic policy: just select the action with the largest Q! Discounted future reward: Q(s t,a t )=E[R t s t,a t ] R t = Reward at time step t: Discount factor: TX t 0 =t r t 0 < apple 1 r t 0 How do we obtain Q? t 0 t (assuming future steps to follow the policy!) depends on state and action at time t learning somewhat easier for smaller factor (short memory times)

23 Q-learning: Update rule Bellmann equation: (from optimal control theory) Q(s t,a t )=E[r t + max a Q(s t+1,a) s t,a t ] In practice, we do not know the Q function yet, so we cannot directly use the Bellmann equation. However, the following update rule has the correct Q function as a fixed point: Q new (s t,a t )=Q old (s t,a t )+ (r t + max a Q old (s t+1,a) Q old (s t,a t )) small (<1) update factor will be zero, once we have converged to the correct Q If we use a neural network to calculate Q, it will be trained to yield the new value in each step.

24 Q-learning: Exploration Initially, Q is arbitrary. It will be bad to follow this Q all the time. Therefore, introduce probability random action ( exploration )! of Follow Q: exploitation Do something random (new): exploration -greedy Reduce this randomness later!

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2 COMP417 Introduction to Robotics and Intelligent Systems Reinforcement Learning - 2 Speaker: Sandeep Manjanna Acklowledgement: These slides use material from Pieter Abbeel s, Dan Klein s and John Schulman

More information

2D5362 Machine Learning

2D5362 Machine Learning 2D5362 Machine Learning Reinforcement Learning MIT GALib Available at http://lancet.mit.edu/ga/ download galib245.tar.gz gunzip galib245.tar.gz tar xvf galib245.tar cd galib245 make or access my files

More information

Introduction to Reinforcement Learning. MAL Seminar

Introduction to Reinforcement Learning. MAL Seminar Introduction to Reinforcement Learning MAL Seminar 2014-2015 RL Background Learning by interacting with the environment Reward good behavior, punish bad behavior Trial & Error Combines ideas from psychology

More information

Gradient Descent and the Structure of Neural Network Cost Functions. presentation by Ian Goodfellow

Gradient Descent and the Structure of Neural Network Cost Functions. presentation by Ian Goodfellow Gradient Descent and the Structure of Neural Network Cost Functions presentation by Ian Goodfellow adapted for www.deeplearningbook.org from a presentation to the CIFAR Deep Learning summer school on August

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

10703 Deep Reinforcement Learning and Control

10703 Deep Reinforcement Learning and Control 10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Temporal Difference Learning Used Materials Disclaimer: Much of the material and slides

More information

CS 461: Machine Learning Lecture 8

CS 461: Machine Learning Lecture 8 CS 461: Machine Learning Lecture 8 Dr. Kiri Wagstaff kiri.wagstaff@calstatela.edu 2/23/08 CS 461, Winter 2008 1 Plan for Today Review Clustering Reinforcement Learning How different from supervised, unsupervised?

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the reward function Must (learn to) act so as to maximize expected rewards Grid World The agent

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Dynamic programming Christos Dimitrakakis Intelligent Autonomous Systems, IvI, University of Amsterdam, The Netherlands March 18, 2008 Introduction Some examples Dynamic programming

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Deep Learning and Reinforcement Learning

Deep Learning and Reinforcement Learning Deep Learning and Reinforcement Learning Razvan Pascanu (Google DeepMind) Razvan Pascanu (Google DeepMind) Deep Learning and Reinforcement Learning 17 August 2015 1/ 40 Disclaimers: Slides based on David

More information

Monte-Carlo Planning Look Ahead Trees. Alan Fern

Monte-Carlo Planning Look Ahead Trees. Alan Fern Monte-Carlo Planning Look Ahead Trees Alan Fern 1 Monte-Carlo Planning Outline Single State Case (multi-armed bandits) A basic tool for other algorithms Monte-Carlo Policy Improvement Policy rollout Policy

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non-Deterministic Search 1 Example: Grid World A maze-like problem The agent lives

More information

Intro to Reinforcement Learning. Part 3: Core Theory

Intro to Reinforcement Learning. Part 3: Core Theory Intro to Reinforcement Learning Part 3: Core Theory Interactive Example: You are the algorithm! Finite Markov decision processes (finite MDPs) dynamics p p p Experience: S 0 A 0 R 1 S 1 A 1 R 2 S 2 A 2

More information

CS221 / Spring 2018 / Sadigh. Lecture 8: MDPs II

CS221 / Spring 2018 / Sadigh. Lecture 8: MDPs II CS221 / Spring 218 / Sadigh Lecture 8: MDPs II cs221.stanford.edu/q Question If you wanted to go from Orbisonia to Rockhill, how would you get there? ride bus 1 ride bus 17 ride the magic tram CS221 /

More information

Algorithmic Trading using Sentiment Analysis and Reinforcement Learning Simerjot Kaur (SUNetID: sk3391 and TeamID: 035)

Algorithmic Trading using Sentiment Analysis and Reinforcement Learning Simerjot Kaur (SUNetID: sk3391 and TeamID: 035) Algorithmic Trading using Sentiment Analysis and Reinforcement Learning Simerjot Kaur (SUNetID: sk3391 and TeamID: 035) Abstract This work presents a novel algorithmic trading system based on reinforcement

More information

Monte-Carlo Planning Look Ahead Trees. Alan Fern

Monte-Carlo Planning Look Ahead Trees. Alan Fern Monte-Carlo Planning Look Ahead Trees Alan Fern 1 Monte-Carlo Planning Outline Single State Case (multi-armed bandits) A basic tool for other algorithms Monte-Carlo Policy Improvement Policy rollout Policy

More information

$tock Forecasting using Machine Learning

$tock Forecasting using Machine Learning $tock Forecasting using Machine Learning Greg Colvin, Garrett Hemann, and Simon Kalouche Abstract We present an implementation of 3 different machine learning algorithms gradient descent, support vector

More information

Reinforcement Learning and Simulation-Based Search

Reinforcement Learning and Simulation-Based Search Reinforcement Learning and Simulation-Based Search David Silver Outline 1 Reinforcement Learning 2 3 Planning Under Uncertainty Reinforcement Learning Markov Decision Process Definition A Markov Decision

More information

Session 5. Predictive Modeling in Life Insurance

Session 5. Predictive Modeling in Life Insurance SOA Predictive Analytics Seminar Hong Kong 29 Aug. 2018 Hong Kong Session 5 Predictive Modeling in Life Insurance Jingyi Zhang, Ph.D Predictive Modeling in Life Insurance JINGYI ZHANG PhD Scientist Global

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

Are New Modeling Techniques Worth It?

Are New Modeling Techniques Worth It? Are New Modeling Techniques Worth It? Tom Zougas PhD PEng, Manager Data Science, TransUnion TORONTO SAS USER GROUP MAY 2, 2018 Are New Modeling Techniques Worth It? Presenter Tom Zougas PhD PEng, Manager

More information

CS221 / Autumn 2018 / Liang. Lecture 8: MDPs II

CS221 / Autumn 2018 / Liang. Lecture 8: MDPs II CS221 / Autumn 218 / Liang Lecture 8: MDPs II cs221.stanford.edu/q Question If you wanted to go from Orbisonia to Rockhill, how would you get there? ride bus 1 ride bus 17 ride the magic tram CS221 / Autumn

More information

Decision making in the presence of uncertainty

Decision making in the presence of uncertainty CS 2750 Foundations of AI Lecture 20 Decision making in the presence of uncertainty Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Decision-making in the presence of uncertainty Computing the probability

More information

To earn the extra credit, one of the following has to hold true. Please circle and sign.

To earn the extra credit, one of the following has to hold true. Please circle and sign. CS 188 Fall 2018 Introduction to Artificial Intelligence Practice Midterm 1 To earn the extra credit, one of the following has to hold true. Please circle and sign. A I spent 2 or more hours on the practice

More information

CS885 Reinforcement Learning Lecture 3b: May 9, 2018

CS885 Reinforcement Learning Lecture 3b: May 9, 2018 CS885 Reinforcement Learning Lecture 3b: May 9, 2018 Intro to Reinforcement Learning [SutBar] Sec. 5.1-5.3, 6.1-6.3, 6.5, [Sze] Sec. 3.1, 4.3, [SigBuf] Sec. 2.1-2.5, [RusNor] Sec. 21.1-21.3, CS885 Spring

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Stochastic domains Image: Berkeley CS188 course notes (downloaded Summer

More information

INVERSE REWARD DESIGN

INVERSE REWARD DESIGN INVERSE REWARD DESIGN Dylan Hadfield-Menell, Smith Milli, Pieter Abbeel, Stuart Russell, Anca Dragan University of California, Berkeley Slides by Anthony Chen Inverse Reinforcement Learning (Review) Inverse

More information

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Simerjot Kaur (sk3391) Stanford University Abstract This work presents a novel algorithmic trading system based on reinforcement

More information

Deep RL and Controls Homework 1 Spring 2017

Deep RL and Controls Homework 1 Spring 2017 10-703 Deep RL and Controls Homework 1 Spring 2017 February 1, 2017 Due February 17, 2017 Instructions You have 15 days from the release of the assignment until it is due. Refer to gradescope for the exact

More information

Complex Decisions. Sequential Decision Making

Complex Decisions. Sequential Decision Making Sequential Decision Making Outline Sequential decision problems Value iteration Policy iteration POMDPs (basic concepts) Slides partially based on the Book "Reinforcement Learning: an introduction" by

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Markov Decision Processes II Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Monte Carlo Methods Heiko Zimmermann 15.05.2017 1 Monte Carlo Monte Carlo policy evaluation First visit policy evaluation Estimating q values On policy methods Off policy methods

More information

Gradient Boosting Trees: theory and applications

Gradient Boosting Trees: theory and applications Gradient Boosting Trees: theory and applications Dmitry Efimov November 05, 2016 Outline Decision trees Boosting Boosting trees Metaparameters and tuning strategies How-to-use remarks Regression tree True

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2017 These notes have been used and commented on before. If you can still spot any errors or have any suggestions for improvement, please

More information

Markov Decision Process

Markov Decision Process Markov Decision Process Human-aware Robotics 2018/02/13 Chapter 17.3 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/mdp-ii.pdf

More information

The exam is closed book, closed calculator, and closed notes except your three crib sheets.

The exam is closed book, closed calculator, and closed notes except your three crib sheets. CS 188 Spring 2016 Introduction to Artificial Intelligence Final V2 You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your three crib sheets.

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non Deterministic Search Example: Grid World A maze like problem The agent lives in

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Markov Decision Models Manfred Huber 2015 1 Markov Decision Process Models Markov models represent the behavior of a random process, including its internal state and the externally

More information

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern Monte-Carlo Planning: Introduction and Bandit Basics Alan Fern 1 Large Worlds We have considered basic model-based planning algorithms Model-based planning: assumes MDP model is available Methods we learned

More information

Reinforcement learning and Markov Decision Processes (MDPs) (B) Avrim Blum

Reinforcement learning and Markov Decision Processes (MDPs) (B) Avrim Blum Reinforcement learning and Markov Decision Processes (MDPs) 15-859(B) Avrim Blum RL and MDPs General scenario: We are an agent in some state. Have observations, perform actions, get rewards. (See lights,

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

Reinforcement Learning Lectures 4 and 5

Reinforcement Learning Lectures 4 and 5 Reinforcement Learning Lectures 4 and 5 Gillian Hayes 18th January 2007 Reinforcement Learning 1 Framework Rewards, Returns Environment Dynamics Components of a Problem Values and Action Values, V and

More information

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern Monte-Carlo Planning: Introduction and Bandit Basics Alan Fern 1 Large Worlds We have considered basic model-based planning algorithms Model-based planning: assumes MDP model is available Methods we learned

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018 Lecture 2: Making Good Sequences of Decisions Given a Model of World CS234: RL Emma Brunskill Winter 218 Human in the loop exoskeleton work from Steve Collins lab Class Structure Last Time: Introduction

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

Dynamic Programming and Reinforcement Learning

Dynamic Programming and Reinforcement Learning Dynamic Programming and Reinforcement Learning Daniel Russo Columbia Business School Decision Risk and Operations Division Fall, 2017 Daniel Russo (Columbia) Fall 2017 1 / 34 Supervised Machine Learning

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDPs 2/16/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Announcements

More information

Importance Sampling for Fair Policy Selection

Importance Sampling for Fair Policy Selection Importance Sampling for Fair Policy Selection Shayan Doroudi Carnegie Mellon University Pittsburgh, PA 15213 shayand@cs.cmu.edu Philip S. Thomas Carnegie Mellon University Pittsburgh, PA 15213 philipt@cs.cmu.edu

More information

Multi-step Bootstrapping

Multi-step Bootstrapping Multi-step Bootstrapping Jennifer She Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto February 7, 2017 J February 7, 2017 1 / 29 Multi-step Bootstrapping Generalization

More information

Reinforcement Learning 04 - Monte Carlo. Elena, Xi

Reinforcement Learning 04 - Monte Carlo. Elena, Xi Reinforcement Learning 04 - Monte Carlo Elena, Xi Previous lecture 2 Markov Decision Processes Markov decision processes formally describe an environment for reinforcement learning where the environment

More information

Motivation: disadvantages of MC methods MC does not work for scenarios without termination It updates only at the end of the episode (sometimes - it i

Motivation: disadvantages of MC methods MC does not work for scenarios without termination It updates only at the end of the episode (sometimes - it i Temporal-Di erence Learning Taras Kucherenko, Joonatan Manttari KTH tarask@kth.se manttari@kth.se March 7, 2017 Taras Kucherenko, Joonatan Manttari (KTH) TD-Learning March 7, 2017 1 / 68 Motivation: disadvantages

More information

Dynamic Programming (DP) Massimo Paolucci University of Genova

Dynamic Programming (DP) Massimo Paolucci University of Genova Dynamic Programming (DP) Massimo Paolucci University of Genova DP cannot be applied to each kind of problem In particular, it is a solution method for problems defined over stages For each stage a subproblem

More information

1.1 Interest rates Time value of money

1.1 Interest rates Time value of money Lecture 1 Pre- Derivatives Basics Stocks and bonds are referred to as underlying basic assets in financial markets. Nowadays, more and more derivatives are constructed and traded whose payoffs depend on

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

Monte Carlo Methods (Estimators, On-policy/Off-policy Learning)

Monte Carlo Methods (Estimators, On-policy/Off-policy Learning) 1 / 24 Monte Carlo Methods (Estimators, On-policy/Off-policy Learning) Julie Nutini MLRG - Winter Term 2 January 24 th, 2017 2 / 24 Monte Carlo Methods Monte Carlo (MC) methods are learning methods, used

More information

Behavioral Competitive Equilibrium and Extreme Prices. Faruk Gul Wolfgang Pesendorfer Tomasz Strzalecki

Behavioral Competitive Equilibrium and Extreme Prices. Faruk Gul Wolfgang Pesendorfer Tomasz Strzalecki Behavioral Competitive Equilibrium and Extreme Prices Faruk Gul Wolfgang Pesendorfer Tomasz Strzalecki behavioral optimization behavioral optimization restricts agents ability by imposing additional constraints

More information

c 2004 IEEE. Reprinted from the Proceedings of the International Joint Conference on Neural Networks (IJCNN-2004), Budapest, Hungary, pp

c 2004 IEEE. Reprinted from the Proceedings of the International Joint Conference on Neural Networks (IJCNN-2004), Budapest, Hungary, pp c 24 IEEE. Reprinted from the Proceedings of the International Joint Conference on Neural Networks (IJCNN-24), Budapest, Hungary, pp. 197 112. This material is posted here with permission of the IEEE.

More information

Portfolio theory and risk management Homework set 2

Portfolio theory and risk management Homework set 2 Portfolio theory and risk management Homework set Filip Lindskog General information The homework set gives at most 3 points which are added to your result on the exam. You may work individually or in

More information

distribution of the best bid and ask prices upon the change in either of them. Architecture Each neural network has 4 layers. The standard neural netw

distribution of the best bid and ask prices upon the change in either of them. Architecture Each neural network has 4 layers. The standard neural netw A Survey of Deep Learning Techniques Applied to Trading Published on July 31, 2016 by Greg Harris http://gregharris.info/a-survey-of-deep-learning-techniques-applied-t o-trading/ Deep learning has been

More information

Lecture 5. 1 Online Learning. 1.1 Learning Setup (Perspective of Universe) CSCI699: Topics in Learning & Game Theory

Lecture 5. 1 Online Learning. 1.1 Learning Setup (Perspective of Universe) CSCI699: Topics in Learning & Game Theory CSCI699: Topics in Learning & Game Theory Lecturer: Shaddin Dughmi Lecture 5 Scribes: Umang Gupta & Anastasia Voloshinov In this lecture, we will give a brief introduction to online learning and then go

More information

Credit Card Default Predictive Modeling

Credit Card Default Predictive Modeling Credit Card Default Predictive Modeling Background: Predicting credit card payment default is critical for the successful business model of a credit card company. An accurate predictive model can help

More information

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week CS 473: Artificial Intelligence Markov Decision Processes Dan Weld University of Washington [Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

The Problem of Temporal Abstraction

The Problem of Temporal Abstraction The Problem of Temporal Abstraction How do we connect the high level to the low-level? " the human level to the physical level? " the decide level to the action level? MDPs are great, search is great,

More information

TDT4171 Artificial Intelligence Methods

TDT4171 Artificial Intelligence Methods TDT47 Artificial Intelligence Methods Lecture 7 Making Complex Decisions Norwegian University of Science and Technology Helge Langseth IT-VEST 0 helgel@idi.ntnu.no TDT47 Artificial Intelligence Methods

More information

CS 360: Advanced Artificial Intelligence Class #16: Reinforcement Learning

CS 360: Advanced Artificial Intelligence Class #16: Reinforcement Learning CS 360: Advanced Artificial Intelligence Class #16: Reinforcement Learning Daniel M. Gaines Note: content for slides adapted from Sutton and Barto [1998] Introduction Animals learn through interaction

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE Rollout algorithms Cost improvement property Discrete deterministic problems Approximations of rollout algorithms Discretization of continuous time

More information

Strategy Acquisition for the Game Othello Based on Reinforcement Learning

Strategy Acquisition for the Game Othello Based on Reinforcement Learning Strategy Acquisition for the Game Othello Based on Reinforcement Learning Taku Yoshioka, Shin Ishii and Minoru Ito IEICE Transactions on Information and System 1999 Speaker : Sameer Agarwal Course : Learning

More information

Zero Coupon Bond Valuation and Risk

Zero Coupon Bond Valuation and Risk Valuation and Risk David Lee FinPricing http://www.finpricing.com Summary Zero Coupon Bond Introduction The Use of Zero Coupon Bonds Valuation Zero Coupon Bond Price vs Discount Factor Practical Guide

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 15: Tree-based Algorithms Cho-Jui Hsieh UC Davis March 7, 2018 Outline Decision Tree Random Forest Gradient Boosted Decision Tree (GBDT) Decision Tree Each node checks

More information

Academic Research Review. Algorithmic Trading using Neural Networks

Academic Research Review. Algorithmic Trading using Neural Networks Academic Research Review Algorithmic Trading using Neural Networks EXECUTIVE SUMMARY In this paper, we attempt to use a neural network to predict opening prices of a set of equities which is then fed into

More information

Rollout Allocation Strategies for Classification-based Policy Iteration

Rollout Allocation Strategies for Classification-based Policy Iteration Rollout Allocation Strategies for Classification-based Policy Iteration V. Gabillon, A. Lazaric & M. Ghavamzadeh firstname.lastname@inria.fr Workshop on Reinforcement Learning and Search in Very Large

More information

OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS. BKM Ch 7

OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS. BKM Ch 7 OPTIMAL RISKY PORTFOLIOS- ASSET ALLOCATIONS BKM Ch 7 ASSET ALLOCATION Idea from bank account to diversified portfolio Discussion principles are the same for any number of stocks A. bonds and stocks B.

More information

Econ 8602, Fall 2017 Homework 2

Econ 8602, Fall 2017 Homework 2 Econ 8602, Fall 2017 Homework 2 Due Tues Oct 3. Question 1 Consider the following model of entry. There are two firms. There are two entry scenarios in each period. With probability only one firm is able

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Markov Decision Processes (MDP)! Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore 1 Outline

More information

CS221 / Spring 2018 / Sadigh. Lecture 9: Games I

CS221 / Spring 2018 / Sadigh. Lecture 9: Games I CS221 / Spring 2018 / Sadigh Lecture 9: Games I Course plan Search problems Markov decision processes Adversarial games Constraint satisfaction problems Bayesian networks Reflex States Variables Logic

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

An Introduction to the Mathematics of Finance. Basu, Goodman, Stampfli

An Introduction to the Mathematics of Finance. Basu, Goodman, Stampfli An Introduction to the Mathematics of Finance Basu, Goodman, Stampfli 1998 Click here to see Chapter One. Chapter 2 Binomial Trees, Replicating Portfolios, and Arbitrage 2.1 Pricing an Option A Special

More information

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods. Introduction In ECON 50, we discussed the structure of two-period dynamic general equilibrium models, some solution methods, and their

More information

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig]

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig] Basic Framework [This lecture adapted from Sutton & Barto and Russell & Norvig] About this class Markov Decision Processes The Bellman Equation Dynamic Programming for finding value functions and optimal

More information

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory Strategies and Nash Equilibrium A Whirlwind Tour of Game Theory (Mostly from Fudenberg & Tirole) Players choose actions, receive rewards based on their own actions and those of the other players. Example,

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3 6.896 Topics in Algorithmic Game Theory February 0, 200 Lecture 3 Lecturer: Constantinos Daskalakis Scribe: Pablo Azar, Anthony Kim In the previous lecture we saw that there always exists a Nash equilibrium

More information

HE+ Economics Nash Equilibrium

HE+ Economics Nash Equilibrium HE+ Economics Nash Equilibrium Nash equilibrium Nash equilibrium is a fundamental concept in game theory, the study of interdependent decision making (i.e. making decisions where your decision affects

More information

Lecture 9: Games I. Course plan. A simple game. Roadmap. Machine learning. Example: game 1

Lecture 9: Games I. Course plan. A simple game. Roadmap. Machine learning. Example: game 1 Lecture 9: Games I Course plan Search problems Markov decision processes Adversarial games Constraint satisfaction problems Bayesian networks Reflex States Variables Logic Low-level intelligence Machine

More information

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints David Laibson 9/11/2014 Outline: 1. Precautionary savings motives 2. Liquidity constraints 3. Application: Numerical solution

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

Task 1 Key Features Exercise

Task 1 Key Features Exercise Below you will find 5 data sources that are typical of those found on the Task 1 Academic test. The most important part of your Task 1 answer is the overview. In order to write a good overview, you must

More information

MODELS FOR QUANTIFYING RISK

MODELS FOR QUANTIFYING RISK MODELS FOR QUANTIFYING RISK THIRD EDITION ROBIN J. CUNNINGHAM, FSA, PH.D. THOMAS N. HERZOG, ASA, PH.D. RICHARD L. LONDON, FSA B 360811 ACTEX PUBLICATIONS, INC. WINSTED, CONNECTICUT PREFACE iii THIRD EDITION

More information

m 11 m 12 Non-Zero Sum Games Matrix Form of Zero-Sum Games R&N Section 17.6

m 11 m 12 Non-Zero Sum Games Matrix Form of Zero-Sum Games R&N Section 17.6 Non-Zero Sum Games R&N Section 17.6 Matrix Form of Zero-Sum Games m 11 m 12 m 21 m 22 m ij = Player A s payoff if Player A follows pure strategy i and Player B follows pure strategy j 1 Results so far

More information

Fast Convergence of Regress-later Series Estimators

Fast Convergence of Regress-later Series Estimators Fast Convergence of Regress-later Series Estimators New Thinking in Finance, London Eric Beutner, Antoon Pelsser, Janina Schweizer Maastricht University & Kleynen Consultants 12 February 2014 Beutner Pelsser

More information

Applications of Neural Networks

Applications of Neural Networks Applications of Neural Networks MPhil ACS Advanced Topics in NLP Laura Rimell 25 February 2016 1 NLP Neural Network Applications Language Models Word Embeddings Tagging Parsing Sentiment Machine Translation

More information