ECS171: Machine Learning

Size: px
Start display at page:

Download "ECS171: Machine Learning"

Transcription

1 ECS171: Machine Learning Lecture 15: Tree-based Algorithms Cho-Jui Hsieh UC Davis March 7, 2018

2 Outline Decision Tree Random Forest Gradient Boosted Decision Tree (GBDT)

3 Decision Tree Each node checks one feature x i : Go left if x i < threshold Go right if x i threshold

4 A real example

5 Decision Tree Strength: It s a nonlinear classifier Better interpretability Can naturally handle categorical features

6 Decision Tree Strength: It s a nonlinear classifier Better interpretability Can naturally handle categorical features Computation: Training: slow Prediction: fast h operations (h: depth of the tree, usually 15)

7 Splitting the node Classification tree: Split the node to maximize entropy Let S be set of data points in a node, c = 1,, C are labels: Entroy : H(S) = C p(c) log p(c), c=1 where p(c) is the proportion of the data belong to class c. Entropy=0 if all samples are in the same class Entropy is large if p(1) = = p(c)

8 Information Gain The averaged entropy of a split S S 1, S 2 S 1 S H(S 1) + S 2 S H(S 2) Information gain: measure how good is the split ( ) H(S) ( S 1 / S )H(S 1 ) + ( S 2 / S )H(S 2 )

9 Information Gain

10 Information Gain

11 Splitting the node Given the current note, how to find the best split?

12 Splitting the node Given the current note, how to find the best split? For all the features and all the threshold Compute the information gain after the split Choose the best one (maximal information gain)

13 Splitting the node Given the current note, how to find the best split? For all the features and all the threshold Compute the information gain after the split Choose the best one (maximal information gain) For n samples and d features: need O(nd) time

14 Regression Tree Assign a real number for each leaf Usually averaged y values for each leaf (minimize square error)

15 Regression Tree Objective function: min F 1 n n (y i F (x i )) 2 + (Regularization) i=1 The quality of partition S = S 1 S 2 can be computed by the objective function: (y i y (1) ) 2 + (y i y (2) ) 2, i S 1 i S 2 where y (1) = 1 S 1 i S 1 y i, y (2) = 1 S 2 i S 2 y i

16 Regression Tree Objective function: min F 1 n n (y i F (x i )) 2 + (Regularization) i=1 The quality of partition S = S 1 S 2 can be computed by the objective function: (y i y (1) ) 2 + (y i y (2) ) 2, i S 1 i S 2 where y (1) = 1 S 1 i S 1 y i, y (2) = 1 S 2 Find the best split: i S 2 y i Try all the features & thresholds and find the one with minimal objective function

17 Parameters Maximum depth: (usually 10) Minimum number of nodes in each node: (10, 50, 100)

18 Parameters Maximum depth: (usually 10) Minimum number of nodes in each node: (10, 50, 100) Single decision tree is not very powerful Can we build multiple decision trees and ensemble them together?

19 Random Forest

20 Random Forest Random Forest (Bootstrap ensemble for decision trees): Create T trees Learn each tree using a subsampled dataset S i and subsampled feature set D i Prediction: Average the results from all the T trees Benefit: Avoid over-fitting Improve stability and accuracy Good software available: R: randomforest package Python: sklearn

21 Random Forest

22 Gradient Boosted Decision Tree

23 Boosted Decision Tree Minimize loss l(y, F (x)) with F ( ) being ensemble trees F = argmin F n l(y i, F (x i )) with F (x) = i=1 (each f m is a decision tree) T f m (x) m=1

24 Boosted Decision Tree Minimize loss l(y, F (x)) with F ( ) being ensemble trees F = argmin F n l(y i, F (x i )) with F (x) = i=1 T f m (x) m=1 (each f m is a decision tree) Direct loss minimization: at each stage m, find the best function to minimize loss solve f m = argmin fm N i=1 l(y i, F m 1 (x i ) + f m (x i )) update F m F m 1 + f m F m (x) = m j=1 f j(x) is the prediction of x after m iterations.

25 Boosted Decision Tree Minimize loss l(y, F (x)) with F ( ) being ensemble trees F = argmin F n l(y i, F (x i )) with F (x) = i=1 T f m (x) m=1 (each f m is a decision tree) Direct loss minimization: at each stage m, find the best function to minimize loss solve f m = argmin fm N i=1 l(y i, F m 1 (x i ) + f m (x i )) update F m F m 1 + f m F m (x) = m j=1 f j(x) is the prediction of x after m iterations. Two problems: Hard to implement for general loss Tend to overfit training data

26 Gradient Boosted Decision Tree (GBDT) Approximate the current loss function by a quadratic approximation: n l i (ŷ i + f m (x i )) i=1 = n ( li (ŷ i ) + g i f m (x i ) h if m (x i ) 2) i=1 n i=1 h i 2 f m(x i ) g i /h i 2 + constant where g i = ŷi l i (ŷ i ) is gradient, h i = 2 ŷ i l i (ŷ i ) is second order derivative

27 Gradient Boosted Decision Tree Finding f m (x, θ m ) by minimizing the loss function: argmin f m N [f m (x i, θ) g i /h i ] 2 + R(f m ) i=1 Reduce the training of any loss function to regression tree (just need to compute g i for different functions) h i = α (fixed step size) for original GBDT. XGboost shows computing second order derivative yields better performance

28 Gradient Boosted Decision Tree Finding f m (x, θ m ) by minimizing the loss function: argmin f m N [f m (x i, θ) g i /h i ] 2 + R(f m ) i=1 Reduce the training of any loss function to regression tree (just need to compute g i for different functions) h i = α (fixed step size) for original GBDT. XGboost shows computing second order derivative yields better performance Algorithm: Computing the current gradient for each ŷ i. Building a base learner (decision tree) to fit the gradient. Updating current prediction ŷ i = F m (x i ) for all i.

29 Gradient Boosted Decision Trees (GBDT) Key idea: Each base learner is a decision tree Each regression tree approximates the functional gradient l F

30 Gradient Boosted Decision Trees (GBDT) Key idea: Each base learner is a decision tree Each regression tree approximates the functional gradient l F

31 Gradient Boosted Decision Trees (GBDT) Key idea: Each base learner is a decision tree Each regression tree approximates the functional gradient l F

32 Gradient Boosted Decision Trees (GBDT) Key idea: Each base learner is a decision tree Each regression tree approximates the functional gradient l F

33 Gradient Boosted Decision Trees (GBDT) Key idea: Each base learner is a decision tree Each regression tree approximates the functional gradient l f

34 Conclusions Next class: Matrix factorization, word embedding Questions?

Investing through Economic Cycles with Ensemble Machine Learning Algorithms

Investing through Economic Cycles with Ensemble Machine Learning Algorithms Investing through Economic Cycles with Ensemble Machine Learning Algorithms Thomas Raffinot Silex Investment Partners Big Data in Finance Conference Thomas Raffinot (Silex-IP) Economic Cycles-Machine Learning

More information

The Loans_processed.csv file is the dataset we obtained after the pre-processing part where the clean-up python code was used.

The Loans_processed.csv file is the dataset we obtained after the pre-processing part where the clean-up python code was used. Machine Learning Group Homework 3 MSc Business Analytics Team 9 Alexander Romanenko, Artemis Tomadaki, Justin Leiendecker, Zijun Wei, Reza Brianca Widodo The Loans_processed.csv file is the dataset we

More information

Gradient Boosting Trees: theory and applications

Gradient Boosting Trees: theory and applications Gradient Boosting Trees: theory and applications Dmitry Efimov November 05, 2016 Outline Decision trees Boosting Boosting trees Metaparameters and tuning strategies How-to-use remarks Regression tree True

More information

Credit Card Default Predictive Modeling

Credit Card Default Predictive Modeling Credit Card Default Predictive Modeling Background: Predicting credit card payment default is critical for the successful business model of a credit card company. An accurate predictive model can help

More information

Session 5. Predictive Modeling in Life Insurance

Session 5. Predictive Modeling in Life Insurance SOA Predictive Analytics Seminar Hong Kong 29 Aug. 2018 Hong Kong Session 5 Predictive Modeling in Life Insurance Jingyi Zhang, Ph.D Predictive Modeling in Life Insurance JINGYI ZHANG PhD Scientist Global

More information

Lecture 9: Classification and Regression Trees

Lecture 9: Classification and Regression Trees Lecture 9: Classification and Regression Trees Advanced Applied Multivariate Analysis STAT 2221, Spring 2015 Sungkyu Jung Department of Statistics, University of Pittsburgh Xingye Qiao Department of Mathematical

More information

LendingClub Loan Default and Profitability Prediction

LendingClub Loan Default and Profitability Prediction LendingClub Loan Default and Profitability Prediction Peiqian Li peiqian@stanford.edu Gao Han gh352@stanford.edu Abstract Credit risk is something all peer-to-peer (P2P) lending investors (and bond investors

More information

Top-down particle filtering for Bayesian decision trees

Top-down particle filtering for Bayesian decision trees Top-down particle filtering for Bayesian decision trees Balaji Lakshminarayanan 1, Daniel M. Roy 2 and Yee Whye Teh 3 1. Gatsby Unit, UCL, 2. University of Cambridge and 3. University of Oxford Outline

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Beyond GLMs. Xavier Conort & Colin Priest

Beyond GLMs. Xavier Conort & Colin Priest Beyond GLMs Xavier Conort & Colin Priest 1 Agenda 1. GLMs and Actuaries 2. Extensions to GLMs 3. Automating GLM model building 4. Best practice predictive modelling 5. Conclusion 2 1) GLMs Linear models

More information

A new look at tree based approaches

A new look at tree based approaches A new look at tree based approaches Xifeng Wang University of North Carolina Chapel Hill xifeng@live.unc.edu April 18, 2018 Xifeng Wang (UNC-Chapel Hill) Short title April 18, 2018 1 / 27 Outline of this

More information

Support Vector Machines: Training with Stochastic Gradient Descent

Support Vector Machines: Training with Stochastic Gradient Descent Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Support vector machines Training by maximizing margin The SVM

More information

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

Quantile Regression. By Luyang Fu, Ph. D., FCAS, State Auto Insurance Company Cheng-sheng Peter Wu, FCAS, ASA, MAAA, Deloitte Consulting

Quantile Regression. By Luyang Fu, Ph. D., FCAS, State Auto Insurance Company Cheng-sheng Peter Wu, FCAS, ASA, MAAA, Deloitte Consulting Quantile Regression By Luyang Fu, Ph. D., FCAS, State Auto Insurance Company Cheng-sheng Peter Wu, FCAS, ASA, MAAA, Deloitte Consulting Agenda Overview of Predictive Modeling for P&C Applications Quantile

More information

Internet Appendix. Additional Results. Figure A1: Stock of retail credit cards over time

Internet Appendix. Additional Results. Figure A1: Stock of retail credit cards over time Internet Appendix A Additional Results Figure A1: Stock of retail credit cards over time Stock of retail credit cards by month. Time of deletion policy noted with vertical line. Figure A2: Retail credit

More information

Loan Approval and Quality Prediction in the Lending Club Marketplace

Loan Approval and Quality Prediction in the Lending Club Marketplace Loan Approval and Quality Prediction in the Lending Club Marketplace Final Write-up Yondon Fu, Matt Marcus and Shuo Zheng Introduction Lending Club is a peer-to-peer lending marketplace where individual

More information

Decision Trees An Early Classifier

Decision Trees An Early Classifier An Early Classifier Jason Corso SUNY at Buffalo January 19, 2012 J. Corso (SUNY at Buffalo) Trees January 19, 2012 1 / 33 Introduction to Non-Metric Methods Introduction to Non-Metric Methods We cover

More information

Loan Approval and Quality Prediction in the Lending Club Marketplace

Loan Approval and Quality Prediction in the Lending Club Marketplace Loan Approval and Quality Prediction in the Lending Club Marketplace Milestone Write-up Yondon Fu, Shuo Zheng and Matt Marcus Recap Lending Club is a peer-to-peer lending marketplace where individual investors

More information

Deep learning analysis of limit order book

Deep learning analysis of limit order book Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-18-2018 Deep learning analysis of limit order book

More information

International Journal of Advance Engineering and Research Development REVIEW ON PREDICTION SYSTEM FOR BANK LOAN CREDIBILITY

International Journal of Advance Engineering and Research Development REVIEW ON PREDICTION SYSTEM FOR BANK LOAN CREDIBILITY Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 12, December -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 REVIEW

More information

Chapter ML:III. III. Decision Trees. Decision Trees Basics Impurity Functions Decision Tree Algorithms Decision Tree Pruning

Chapter ML:III. III. Decision Trees. Decision Trees Basics Impurity Functions Decision Tree Algorithms Decision Tree Pruning Chapter ML:III III. Decision Trees Decision Trees Basics Impurity Functions Decision Tree Algorithms Decision Tree Pruning ML:III-93 Decision Trees STEIN/LETTMANN 2005-2017 Overfitting Definition 10 (Overfitting)

More information

Machine Learning (CSE 446): Pratical issues: optimization and learning

Machine Learning (CSE 446): Pratical issues: optimization and learning Machine Learning (CSE 446): Pratical issues: optimization and learning John Thickstun guest lecture c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 10 Review 1 / 10 Our running example

More information

Machine Learning Performance over Long Time Frame

Machine Learning Performance over Long Time Frame Machine Learning Performance over Long Time Frame Yazhe Li, Tony Bellotti, Niall Adams Imperial College London yli16@imperialacuk Credit Scoring and Credit Control Conference, Aug 2017 Yazhe Li (Imperial

More information

Session 57PD, Predicting High Claimants. Presenters: Zoe Gibbs Brian M. Hartman, ASA. SOA Antitrust Disclaimer SOA Presentation Disclaimer

Session 57PD, Predicting High Claimants. Presenters: Zoe Gibbs Brian M. Hartman, ASA. SOA Antitrust Disclaimer SOA Presentation Disclaimer Session 57PD, Predicting High Claimants Presenters: Zoe Gibbs Brian M. Hartman, ASA SOA Antitrust Disclaimer SOA Presentation Disclaimer Using Asymmetric Cost Matrices to Optimize Wellness Intervention

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May, 204 Review of Game heory: Let M be a matrix with all elements in [0, ]. Mindy (called the row player) chooses

More information

Predicting Foreign Exchange Arbitrage

Predicting Foreign Exchange Arbitrage Predicting Foreign Exchange Arbitrage Stefan Huber & Amy Wang 1 Introduction and Related Work The Covered Interest Parity condition ( CIP ) should dictate prices on the trillion-dollar foreign exchange

More information

An introduction to Machine learning methods and forecasting of time series in financial markets

An introduction to Machine learning methods and forecasting of time series in financial markets An introduction to Machine learning methods and forecasting of time series in financial markets Mark Wong markwong@kth.se December 10, 2016 Abstract The goal of this paper is to give the reader an introduction

More information

Using Random Forests in conintegrated pairs trading

Using Random Forests in conintegrated pairs trading Using Random Forests in conintegrated pairs trading By: Reimer Meulenbeek Supervisor Radboud University: Prof. dr. E.A. Cator Supervisors FRIJT BV: Dr. O. de Mirleau Drs. M. Meuwissen November 5, 2017

More information

Predicting the Success of a Retirement Plan Based on Early Performance of Investments

Predicting the Success of a Retirement Plan Based on Early Performance of Investments Predicting the Success of a Retirement Plan Based on Early Performance of Investments CS229 Autumn 2010 Final Project Darrell Cain, AJ Minich Abstract Using historical data on the stock market, it is possible

More information

Wage Determinants Analysis by Quantile Regression Tree

Wage Determinants Analysis by Quantile Regression Tree Communications of the Korean Statistical Society 2012, Vol. 19, No. 2, 293 301 DOI: http://dx.doi.org/10.5351/ckss.2012.19.2.293 Wage Determinants Analysis by Quantile Regression Tree Youngjae Chang 1,a

More information

CS360 Homework 14 Solution

CS360 Homework 14 Solution CS360 Homework 14 Solution Markov Decision Processes 1) Invent a simple Markov decision process (MDP) with the following properties: a) it has a goal state, b) its immediate action costs are all positive,

More information

Progressive Hedging for Multi-stage Stochastic Optimization Problems

Progressive Hedging for Multi-stage Stochastic Optimization Problems Progressive Hedging for Multi-stage Stochastic Optimization Problems David L. Woodruff Jean-Paul Watson Graduate School of Management University of California, Davis Davis, CA 95616, USA dlwoodruff@ucdavis.edu

More information

Wide and Deep Learning for Peer-to-Peer Lending

Wide and Deep Learning for Peer-to-Peer Lending Wide and Deep Learning for Peer-to-Peer Lending Kaveh Bastani 1 *, Elham Asgari 2, Hamed Namavari 3 1 Unifund CCR, LLC, Cincinnati, OH 2 Pamplin College of Business, Virginia Polytechnic Institute, Blacksburg,

More information

MS&E 448 Final Presentation High Frequency Algorithmic Trading

MS&E 448 Final Presentation High Frequency Algorithmic Trading MS&E 448 Final Presentation High Frequency Algorithmic Trading Francis Choi George Preudhomme Nopphon Siranart Roger Song Daniel Wright Stanford University June 6, 2017 High-Frequency Trading MS&E448 June

More information

EE365: Risk Averse Control

EE365: Risk Averse Control EE365: Risk Averse Control Risk averse optimization Exponential risk aversion Risk averse control 1 Outline Risk averse optimization Exponential risk aversion Risk averse control Risk averse optimization

More information

$tock Forecasting using Machine Learning

$tock Forecasting using Machine Learning $tock Forecasting using Machine Learning Greg Colvin, Garrett Hemann, and Simon Kalouche Abstract We present an implementation of 3 different machine learning algorithms gradient descent, support vector

More information

Bank Licenses Revocation Modeling

Bank Licenses Revocation Modeling Bank Licenses Revocation Modeling Jaroslav Bologov, Konstantin Kotik, Alexander Andreev, and Alexey Kozionov Deloitte Analytics Institute, ZAO Deloitte & Touche CIS, Moscow, Russia {jbologov,kkotik,aandreev,akozionov}@deloitte.ru

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

Pattern Recognition Chapter 5: Decision Trees

Pattern Recognition Chapter 5: Decision Trees Pattern Recognition Chapter 5: Decision Trees Asst. Prof. Dr. Chumphol Bunkhumpornpat Department of Computer Science Faculty of Science Chiang Mai University Learning Objectives How decision trees are

More information

MWSUG Paper AA 04. Claims Analytics. Mei Najim, Gallagher Bassett Services, Rolling Meadows, IL

MWSUG Paper AA 04. Claims Analytics. Mei Najim, Gallagher Bassett Services, Rolling Meadows, IL MWSUG 2017 - Paper AA 04 Claims Analytics Mei Najim, Gallagher Bassett Services, Rolling Meadows, IL ABSTRACT In the Property & Casualty Insurance industry, advanced analytics has increasingly penetrated

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Evaluation of Models. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Evaluation of Models. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Evaluation of Models Niels andwehr earning and Prediction Classification, Regression: earning problem Input: training data Output:

More information

Large-Scale SVM Optimization: Taking a Machine Learning Perspective

Large-Scale SVM Optimization: Taking a Machine Learning Perspective Large-Scale SVM Optimization: Taking a Machine Learning Perspective Shai Shalev-Shwartz Toyota Technological Institute at Chicago Joint work with Nati Srebro Talk at NEC Labs, Princeton, August, 2008 Shai

More information

Is Greedy Coordinate Descent a Terrible Algorithm?

Is Greedy Coordinate Descent a Terrible Algorithm? Is Greedy Coordinate Descent a Terrible Algorithm? Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke University of British Columbia Optimization and Big Data, 2015 Context: Random

More information

International Journal of Computer Engineering and Applications, Volume XII, Issue II, Feb. 18, ISSN

International Journal of Computer Engineering and Applications, Volume XII, Issue II, Feb. 18,   ISSN Volume XII, Issue II, Feb. 18, www.ijcea.com ISSN 31-3469 AN INVESTIGATION OF FINANCIAL TIME SERIES PREDICTION USING BACK PROPAGATION NEURAL NETWORKS K. Jayanthi, Dr. K. Suresh 1 Department of Computer

More information

The method of Maximum Likelihood.

The method of Maximum Likelihood. Maximum Likelihood The method of Maximum Likelihood. In developing the least squares estimator - no mention of probabilities. Minimize the distance between the predicted linear regression and the observed

More information

CS 475 Machine Learning: Final Project Dual-Form SVM for Predicting Loan Defaults

CS 475 Machine Learning: Final Project Dual-Form SVM for Predicting Loan Defaults CS 475 Machine Learning: Final Project Dual-Form SVM for Predicting Loan Defaults Kevin Rowland Johns Hopkins University 3400 N. Charles St. Baltimore, MD 21218, USA krowlan3@jhu.edu Edward Schembor Johns

More information

Modeling Implied Volatility

Modeling Implied Volatility Modeling Implied Volatility Rongjiao Ji Instituto Superior Técnico, Lisboa, Portugal November 2017 Abstract With respect to the valuation issue of a derivative s contracts in finance, the volatility of

More information

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data

Computer Vision Group Prof. Daniel Cremers. 7. Sequential Data Group Prof. Daniel Cremers 7. Sequential Data Bayes Filter (Rep.) We can describe the overall process using a Dynamic Bayes Network: This incorporates the following Markov assumptions: (measurement) (state)!2

More information

Tree Diagram. Splitting Criterion. Splitting Criterion. Introduction. Building a Decision Tree. MS4424 Data Mining & Modelling Decision Tree

Tree Diagram. Splitting Criterion. Splitting Criterion. Introduction. Building a Decision Tree. MS4424 Data Mining & Modelling Decision Tree Introduction MS4424 Data Mining & Modelling Decision Tree Lecturer : Dr Iris Yeung Room No : P7509 Tel No : 2788 8566 Email : msiris@cityu.edu.hk decision tree is a set of rules represented in a tree structure

More information

ALGORITHMIC TRADING STRATEGIES IN PYTHON

ALGORITHMIC TRADING STRATEGIES IN PYTHON 7-Course Bundle In ALGORITHMIC TRADING STRATEGIES IN PYTHON Learn to use 15+ trading strategies including Statistical Arbitrage, Machine Learning, Quantitative techniques, Forex valuation methods, Options

More information

What can we do with numerical optimization?

What can we do with numerical optimization? Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016

More information

Boosting Actuarial Regression Models in R

Boosting Actuarial Regression Models in R Carryl Oberson Faculty of Business and Economics University of Basel R in Insurance 2015 Build regression models (GLMs) for car insurance data. 3 types of response variables: claim incidence: y i = 0,

More information

Predictive Modeling Cross Selling of Home Loans to Credit Card Customers

Predictive Modeling Cross Selling of Home Loans to Credit Card Customers PAKDD COMPETITION 2007 Predictive Modeling Cross Selling of Home Loans to Credit Card Customers Hualin Wang 1 Amy Yu 1 Kaixia Zhang 1 800 Tech Center Drive Gahanna, Ohio 43230, USA April 11, 2007 1 Outline

More information

Topic-based vector space modeling of Twitter data with application in predictive analytics

Topic-based vector space modeling of Twitter data with application in predictive analytics Topic-based vector space modeling of Twitter data with application in predictive analytics Guangnan Zhu (U6023358) Australian National University COMP4560 Individual Project Presentation Supervisor: Dr.

More information

NBER WORKING PAPER SERIES RISK AND RISK MANAGEMENT IN THE CREDIT CARD INDUSTRY

NBER WORKING PAPER SERIES RISK AND RISK MANAGEMENT IN THE CREDIT CARD INDUSTRY NBER WORKING PAPER SERIES RISK AND RISK MANAGEMENT IN THE CREDIT CARD INDUSTRY Florentin Butaru QingQing Chen Brian Clark Sanmay Das Andrew W. Lo Akhtar Siddique Working Paper 21305 http://www.nber.org/papers/w21305

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions Frequentist Methods: 7.5 Maximum Likelihood Estimators

More information

Trust Region Methods for Unconstrained Optimisation

Trust Region Methods for Unconstrained Optimisation Trust Region Methods for Unconstrained Optimisation Lecture 9, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Trust

More information

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn

A Handbook of Statistical Analyses Using R. Brian S. Everitt and Torsten Hothorn A Handbook of Statistical Analyses Using R Brian S. Everitt and Torsten Hothorn CHAPTER 8 Recursive Partitioning: Large Companies and Glaucoma Diagnosis 8.1 Introduction 8.2 Recursive Partitioning 8.3

More information

Expanding Predictive Analytics Through the Use of Machine Learning

Expanding Predictive Analytics Through the Use of Machine Learning Expanding Predictive Analytics Through the Use of Machine Learning Thursday, February 28, 2013, 11:10 a.m. Chris Cooksey, FCAS, MAAA Chief Actuary EagleEye Analytics Columbia, S.C. Christopher Cooksey,

More information

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0.

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0. Outline Coordinate Minimization Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University November 27, 208 Introduction 2 Algorithms Cyclic order with exact minimization

More information

Predicting Companies Delisting to Improve Mutual Fund Performance

Predicting Companies Delisting to Improve Mutual Fund Performance Predicting Companies Delisting to Improve Mutual Fund Performance TA-WEI HUANG EUGENE YANG PO-WEI HUANG BADM BADM Group 6 Executive Summary Stock is removed from an exchange because the company for which

More information

Options Pricing Using Combinatoric Methods Postnikov Final Paper

Options Pricing Using Combinatoric Methods Postnikov Final Paper Options Pricing Using Combinatoric Methods 18.04 Postnikov Final Paper Annika Kim May 7, 018 Contents 1 Introduction The Lattice Model.1 Overview................................ Limitations of the Lattice

More information

CEC login. Student Details Name SOLUTIONS

CEC login. Student Details Name SOLUTIONS Student Details Name SOLUTIONS CEC login Instructions You have roughly 1 minute per point, so schedule your time accordingly. There is only one correct answer per question. Good luck! Question 1. Searching

More information

Challenging LGD models with Machine Learning

Challenging LGD models with Machine Learning VRIJE UNIVERSITEIT AMSTERDAM RESEARCH PAPER Challenging LGD models with Machine Learning Luc Severeijns supervised by Prof.Dr. Sandjai BHULAI July 30, 2018 Preface This internship report was written as

More information

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 13, 2018

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 13, 2018 Maximum Likelihood Estimation Richard Williams, University of otre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 3, 208 [This handout draws very heavily from Regression Models for Categorical

More information

Prediction of securities behavior using a multi-level artificial neural network with extra inputs between layers

Prediction of securities behavior using a multi-level artificial neural network with extra inputs between layers EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2017 Prediction of securities behavior using a multi-level artificial neural network with extra inputs between layers ERIC TÖRNQVIST XING

More information

A start of Variational Methods for ERGM Ranran Wang, UW

A start of Variational Methods for ERGM Ranran Wang, UW A start of Variational Methods for ERGM Ranran Wang, UW MURI-UCI April 24, 2009 Outline A start of Variational Methods for ERGM [1] Introduction to ERGM Current methods of parameter estimation: MCMCMLE:

More information

CISC 889 Bioinformatics (Spring 2004) Phylogenetic Trees (II)

CISC 889 Bioinformatics (Spring 2004) Phylogenetic Trees (II) CISC 889 ioinformatics (Spring 004) Phylogenetic Trees (II) Character-based methods CISC889, S04, Lec13, Liao 1 Parsimony ased on sequence alignment. ssign a cost to a given tree Search through the topological

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees In unsupervised classification (clustering), there is no response variable ( dependent variable), the regions corresponding to a given node are based on a similarity

More information

International Journal of Computer Engineering and Applications, Volume XII, Issue II, Feb. 18, ISSN

International Journal of Computer Engineering and Applications, Volume XII, Issue II, Feb. 18,   ISSN International Journal of Computer Engineering and Applications, Volume XII, Issue II, Feb. 18, www.ijcea.com ISSN 31-3469 AN INVESTIGATION OF FINANCIAL TIME SERIES PREDICTION USING BACK PROPAGATION NEURAL

More information

Prediction of Stock Price Movements Using Options Data

Prediction of Stock Price Movements Using Options Data Prediction of Stock Price Movements Using Options Data Charmaine Chia cchia@stanford.edu Abstract This study investigates the relationship between time series data of a daily stock returns and features

More information

A Multi-topic Approach to Building Quant Models. Bringing Semantic Intelligence to Financial Markets

A Multi-topic Approach to Building Quant Models. Bringing Semantic Intelligence to Financial Markets A Multi-topic Approach to Building Quant Models Bringing Semantic Intelligence to Financial Markets Data is growing at an incredible speed Source: IDC - 2014, Structured Data vs. Unstructured Data: The

More information

Stock Trading Following Stock Price Index Movement Classification Using Machine Learning Techniques

Stock Trading Following Stock Price Index Movement Classification Using Machine Learning Techniques Stock Trading Following Stock Price Index Movement Classification Using Machine Learning Techniques 6.1 Introduction Trading in stock market is one of the most popular channels of financial investments.

More information

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 10, 2017

Maximum Likelihood Estimation Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 10, 2017 Maximum Likelihood Estimation Richard Williams, University of otre Dame, https://www3.nd.edu/~rwilliam/ Last revised January 0, 207 [This handout draws very heavily from Regression Models for Categorical

More information

CS188 Spring 2012 Section 4: Games

CS188 Spring 2012 Section 4: Games CS188 Spring 2012 Section 4: Games 1 Minimax Search In this problem, we will explore adversarial search. Consider the zero-sum game tree shown below. Trapezoids that point up, such as at the root, represent

More information

Budget Management In GSP (2018)

Budget Management In GSP (2018) Budget Management In GSP (2018) Yahoo! March 18, 2018 Miguel March 18, 2018 1 / 26 Today s Presentation: Budget Management Strategies in Repeated auctions, Balseiro, Kim, and Mahdian, WWW2017 Learning

More information

Foreign Exchange Forecasting via Machine Learning

Foreign Exchange Forecasting via Machine Learning Foreign Exchange Forecasting via Machine Learning Christian González Rojas cgrojas@stanford.edu Molly Herman mrherman@stanford.edu I. INTRODUCTION The finance industry has been revolutionized by the increased

More information

DECISION TREE INDUCTION

DECISION TREE INDUCTION CSc-215 (Gordon) Week 12A notes DECISION TREE INDUCTION A decision tree is a graphic way of representing certain types of Boolean decision processes. Here is a simple example of a decision tree for determining

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Volatility Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) Volatility 01/13 1 / 37 Squared log returns for CRSP daily GPD (TCD) Volatility 01/13 2 / 37 Absolute value

More information

Session 5. A brief introduction to Predictive Modeling

Session 5. A brief introduction to Predictive Modeling SOA Predictive Analytics Seminar Malaysia 27 Aug. 2018 Kuala Lumpur, Malaysia Session 5 A brief introduction to Predictive Modeling Lichen Bao, Ph.D A Brief Introduction to Predictive Modeling LICHEN BAO

More information

Log-Robust Portfolio Management

Log-Robust Portfolio Management Log-Robust Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Elcin Cetinkaya and Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983 Dr.

More information

Accepted Manuscript. Example-Dependent Cost-Sensitive Decision Trees. Alejandro Correa Bahnsen, Djamila Aouada, Björn Ottersten

Accepted Manuscript. Example-Dependent Cost-Sensitive Decision Trees. Alejandro Correa Bahnsen, Djamila Aouada, Björn Ottersten Accepted Manuscript Example-Dependent Cost-Sensitive Decision Trees Alejandro Correa Bahnsen, Djamila Aouada, Björn Ottersten PII: S0957-4174(15)00284-5 DOI: http://dx.doi.org/10.1016/j.eswa.2015.04.042

More information

Numerical investigation on multiclass probabilistic classification of damage location in a plate structure

Numerical investigation on multiclass probabilistic classification of damage location in a plate structure Numerical investigation on multiclass probabilistic classification of damage location in a plate structure Rims Janeliukstis *, Sandris Rucevskis, Andrejs Kovalovs and Andris Chate Institute of Materials

More information

Molecular Phylogenetics

Molecular Phylogenetics Mole_Oce Lecture # 16: Molecular Phylogenetics Maximum Likelihood & Bahesian Statistics Optimality criterion: a rule used to decide which of two trees is best. Four optimality criteria are currently widely

More information

Predicting the direction of stock market prices using random forest

Predicting the direction of stock market prices using random forest To appear in Applied Mathematical Finance Vol. 00, No. 00, Month 20XX, 1 21 Predicting the direction of stock market prices using random forest Luckyson Khaidem, Snehanshu Saha and Sudeepa Roy Dey (Received

More information

Getting Started with CGE Modeling

Getting Started with CGE Modeling Getting Started with CGE Modeling Lecture Notes for Economics 8433 Thomas F. Rutherford University of Colorado January 24, 2000 1 A Quick Introduction to CGE Modeling When a students begins to learn general

More information

Multistage risk-averse asset allocation with transaction costs

Multistage risk-averse asset allocation with transaction costs Multistage risk-averse asset allocation with transaction costs 1 Introduction Václav Kozmík 1 Abstract. This paper deals with asset allocation problems formulated as multistage stochastic programming models.

More information

2018 Predictive Analytics Symposium Session 10: Cracking the Black Box with Awareness & Validation

2018 Predictive Analytics Symposium Session 10: Cracking the Black Box with Awareness & Validation 2018 Predictive Analytics Symposium Session 10: Cracking the Black Box with Awareness & Validation SOA Antitrust Compliance Guidelines SOA Presentation Disclaimer Cracking the Black Box with Awareness

More information

Abstract Making good predictions for stock prices is an important task for the financial industry. The way these predictions are carried out is often

Abstract Making good predictions for stock prices is an important task for the financial industry. The way these predictions are carried out is often Abstract Making good predictions for stock prices is an important task for the financial industry. The way these predictions are carried out is often by using artificial intelligence that can learn from

More information

Portfolio selection with multiple risk measures

Portfolio selection with multiple risk measures Portfolio selection with multiple risk measures Garud Iyengar Columbia University Industrial Engineering and Operations Research Joint work with Carlos Abad Outline Portfolio selection and risk measures

More information

Behavioral patterns of long term saving : Predictive analysis of adverse behaviors on a savings portfolio

Behavioral patterns of long term saving : Predictive analysis of adverse behaviors on a savings portfolio Behavioral patterns of long term saving : Predictive analysis of adverse behaviors on a savings portfolio Introduction What is the context of this case study and what about the underlying challenges? Introduction

More information

Comparison of Logit Models to Machine Learning Algorithms for Modeling Individual Daily Activity Patterns

Comparison of Logit Models to Machine Learning Algorithms for Modeling Individual Daily Activity Patterns Comparison of Logit Models to Machine Learning Algorithms for Modeling Individual Daily Activity Patterns Daniel Fay, Peter Vovsha, Gaurav Vyas (WSP USA) 1 Logit vs. Machine Learning Models Logit Models:

More information

Agricultural and Applied Economics 637 Applied Econometrics II

Agricultural and Applied Economics 637 Applied Econometrics II Agricultural and Applied Economics 637 Applied Econometrics II Assignment I Using Search Algorithms to Determine Optimal Parameter Values in Nonlinear Regression Models (Due: February 3, 2015) (Note: Make

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

Econ 582 Nonlinear Regression

Econ 582 Nonlinear Regression Econ 582 Nonlinear Regression Eric Zivot June 3, 2013 Nonlinear Regression In linear regression models = x 0 β (1 )( 1) + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β it is assumed that the regression

More information

Research Memo: Adding Nonfarm Employment to the Mixed-Frequency VAR Model

Research Memo: Adding Nonfarm Employment to the Mixed-Frequency VAR Model Research Memo: Adding Nonfarm Employment to the Mixed-Frequency VAR Model Kenneth Beauchemin Federal Reserve Bank of Minneapolis January 2015 Abstract This memo describes a revision to the mixed-frequency

More information

Exact Inference (9/30/13) 2 A brief review of Forward-Backward and EM for HMMs

Exact Inference (9/30/13) 2 A brief review of Forward-Backward and EM for HMMs STA561: Probabilistic machine learning Exact Inference (9/30/13) Lecturer: Barbara Engelhardt Scribes: Jiawei Liang, He Jiang, Brittany Cohen 1 Validation for Clustering If we have two centroids, η 1 and

More information

Decision making in the presence of uncertainty

Decision making in the presence of uncertainty CS 2750 Foundations of AI Lecture 20 Decision making in the presence of uncertainty Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Decision-making in the presence of uncertainty Computing the probability

More information

Investigating Algorithmic Stock Market Trading using Ensemble Machine Learning Methods

Investigating Algorithmic Stock Market Trading using Ensemble Machine Learning Methods Investigating Algorithmic Stock Market Trading using Ensemble Machine Learning Methods Khaled Sharif University of Jordan * kldsrf@gmail.com Mohammad Abu-Ghazaleh University of Jordan * mohd.ag@live.com

More information