CHAPTER 4 Nominal and Effective Interest Rates

Size: px
Start display at page:

Download "CHAPTER 4 Nominal and Effective Interest Rates"

Transcription

1 CHAPTER 4 Nominal and Effective Interest Rates 4-1

2 4.1 Nominal and Effective Interest Rate Statements q q The time standard for interest computations One Year Interest can be computed more frequently than one time a year Ø Annually One time a year (at the end) Ø Every 6 months 2 times a year (semi-annual) Ø Every quarter 4 times a year (quarterly) Ø Every Month 12 times a year (monthly) Ø Every Week 52 times a year (weekly) Ø Every Day 365 times a year (daily) Ø Continuous infinite number of compounding periods in a year. 4-2

3 Three Time Based Units q Interest Period The period over which the interest is expressed (always stated). Ø Ex: 1% per month q Compounding Period (CP) The shortest time unit over which interest is charged or earned. Ø Ex: 8% per year, compounded monthly q Compounding Frequency The number of times m that compounding occurs within time period t. Ø Ex: 1% per month, compounded monthly has m = 1 Ø Ex: 10% per year, compounded monthly has m = 12 One Year is segmented into: 365 days, 52 weeks, 12 months One quarter is: 3 months with 4 quarters/year 4-3

4 Nominal Rate of Interest (r) q Definition: An interest rate that does not include any consideration of compounding r = interest rate per period X number of periods q For example, if interest rate is 1.5% per month Ø Nominal rate per year = 18% Ø Semi-annual nominal rate = 9% Ø 4.5% per quarter 4-4

5 Effective Interest Rate Definition: qthe effective interest rate is the actual rate that applies for a stated period of time. qthe compounding of interest during the time period of the corresponding nominal rate is accounted for by the effective interest rate. qthe effective rate is commonly expressed on an annual basis denoted as i a All interest formulas, factors, tabulated values, and spreadsheet relations must have the effective interest rate to properly account for the time value of money. 4-5

6 Interest statement q r % per time period, compounded m-ly Ø 12% per year, compounded monthly -> the effective rate is 1% per month Ø 12% per year, compounded quarterly -> the effective rate is 3% per quarter Ø 3% per quarter, compounded monthly -> the effective rate is 1% per month q If the compounding frequency is not stated, it is assumed to be the same as the time period of r, in which case the nominal and effective rates have the same value Ø 12% per year or 2% per month 4-6

7 The Effective Rate per CP The Effective rate per compounding period (CP) is: r% per time period t r = m compounding periods per t m Ex: 9% per year, compounded quarterly: r = 9%, m = 4(4 quarters in a year), CP=quarter i per month = 0.09/4 = 2.25% per quarter 4-7

8 4.2 Effective Annual Interest Rate q Notation r = the nominal interest rate per year. m = the number of compounding periods within the year. i = the effective interest rate per compounding period (r /m) i a or i e = the true, effective annual rate given the value of m. 4-8

9 Derivation of the relationship q Interest could be compounded more than one time within the year! m Assume the one year is now divided into m compounding periods. 4-9

10 Derivation of the relationship q Compounding frequencies per year = m, Effective rate per CP = r/m, q Solving for i a yields; 1 + i a = (1+r/m) m i a = (1 + r/m ) m 1 Thus, i a = ( 1+ r/m) m

11 Example q Given: interest is 18% per year, compounded monthly P=$1,000. What is the future value after 1 year? 4-11

12 Example: 12% Nominal No. of EAIR EAIR Comp. Per. (Decimal) (per cent) Annual % semi-annual % Quartertly % Bi-monthly % Monthly % Weekly % Daily % Hourly % Minutes % seconds % See Table 4.3 for more figures 4-12

13 Example 4.2: Credit card case q APR(annual percentage rate): nominal rate q APR = 14.24% with no CP mentioned -> CP= 1year q However credit card payments are required monthly (a) Effective interest rate if CP=year and CP=month 4-13

14 Example 4.2: Credit card case (b) If he accepts the card and completes the $1,000 transfer, what is the total balance he owes after one month later? 4-14

15 Example 4.4: Credit card case q 1년간연체시상환하여야할총액과실질이자율? 연체시이자율 : 29.99%/12 = 2.499% per month 연체수수료 : $

16 Example 4.4: Credit card case To find an effective monthly rate =1000(F/P, i, 12) = 1000(1+i) 12 i= 5.278% -> compare with 1.187%! Effective annual rate? 4-16

17 Section Equivalence Relations: Comparing Payment Period and Compounding Period Lengths (PP vs. CP) 4-17

18 Payment Period (PP) q Recall: Ø CP is the compounding period q PP : frequency of payments or receipts Ø PP is the payment period q Why CP and PP? Ø Often the frequency of depositing funds or making payments does not coincide with the frequency of compounding. 4-18

19 Equivalence: Comparing PP to CP q Reality: ØPP and CP s do not always match up; q Savings Accounts for example; ØMonthly deposits with, ØQuarterly interest earned or paid; ØThey don t match! q Make them match! (by adjusting the interest period to match the payment period.) 4-19

20 Ex. 4.7 Single Amounts: PP >= CP q r = 12% per year, compounded semiannually q Future worth at 10-year? F 10 =? r = 12%/yr, c.s.a $1,000 $1,500 $3,

21 Ex. 4.7 Single Amounts: PP >= CP q Method 1. (n relates to months) Ø Determine effective rate per CP and set n equal to the number of CPs between P and F 4-21

22 Ex. 4.7 Single Amounts: PP >= CP q Method 2. (n relates to years) Ø Determine the effective rate for the time period t of the nominal rate, and set n equal to the total number of periods 4-22

23 Ex. 4.8 Series : PP >= CP F 7 =?? q Consider: A = $500 every 6 months Find F 7 if r = 8%/yr, c.q. (PP > CP) q Fine the effective rate per PP! q Determine n as the total number of PP 4-23

24 Ex. 4.8 Series : PP >= CP q We need i per 6-months effective q Now, the interest matches the payments. 4-24

25 Example 4.9 Credit card case q Want to payoff $1,030 by monthly automatic checking account transfer for 2 years q What amount? And APY? q APY(Annual percentage Yield): effective rate 4-25

26 Section 4.8 Effective Interest Rate for Continuous Compounding 4-26

27 Continuous Compounding q Recall: ØEAIR = i = (1 + r/m) m 1 ØWhat happens if we let m approach infinity? ØThat means an infinite number of compounding periods within a year or, Ø The time between compounding approaches 0. ØWe will see that a limiting value will be approached for a given value of r 4-27

28 Derivation of Continuous Compounding q We can state, in general terms for the EAIR: i r = (1 + ) m -1 m m é ù r r m æ r ö (1 + ) - 1 = ê 1+ ú -1 m ê ç è m ø ú ë û r 4-28

29 Derivation of Continuous Compounding q Recall that h æ 1 ö lim ç 1+ = e = h è h ø m r æ r ö lim ç 1 + = e, m è m ø So that: m é ù æ r ö r r i = lim ê 1+ ú - 1 = e -1. m ê ç è m ø ú ë û 4-29 r

30 Derivation of Continuous Compounding q The EAIR when interest is compounded continuously is then: EAIR = e r 1 Where r is the nominal rate of interest compounded continuously. This is the max. interest rate for any value of r compounded continuously. 4-30

31 Ex (a) q r = 18% per year, compounded continuously n Effective annual rate? e = = 19.72%/year The 19.72% represents the MAXIMUM EAIR for 18% compounded anyway you choose! n Effective monthly rate? r/month = 0.18/12 = 1.5%/month effective monthly rate is e = 1.511%/month 4-31

32 Finding r from the cont. comp. EAIR q To find the equivalent nominal rate given the EAIR when interest is compounded continuously, apply: i = e r -1 e r = i + 1 \ r = ln( i + 1) 4-32

33 Ex (b) q An investor requires an effective return of at least 15% per year. q What is the minimum annual nominal rate that is acceptable? q Nominal rate with continuously compounding! r = ln(1.15) = = 13.98% A rate of 13.98% per year, with c.c. generates the same as 15% true effective annual rate. 4-33

34 Ex q P=$5,000, n= 10 years, r=10% per year q Marci receives annual compounding, while Suzanne continuous compounding 4-34

Nominal and Effective Interest Rates

Nominal and Effective Interest Rates Nominal and Effective Interest Rates 4.1 Introduction In all engineering economy relations developed thus far, the interest rate has been a constant, annual value. For a substantial percentage of the projects

More information

CE 314 Engineering Economy. Chapter 4. Nominal and Effective Interest Rates. Interest is quoted on the basis of:

CE 314 Engineering Economy. Chapter 4. Nominal and Effective Interest Rates. Interest is quoted on the basis of: CE 314 Engineering Economy Chapter 4 Nominal and Effective Interest Rates Interest is quoted on the basis of: 1. Quotation using a Nominal Interest Rate 2. Quoting an Effective Periodic Interest Rate Nominal

More information

Engineering Economics

Engineering Economics Chapter- 4 b Engineering Economics College of Biomedical Engineering and Applied Science Nominal Interest Rates: Nominal interest rate ( r ) is an interest rate that does not include any consideration

More information

Financial Market Analysis (FMAx) Module 2

Financial Market Analysis (FMAx) Module 2 Financial Market Analysis (FMAx) Module 2 Bond Pricing This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for Capacity Development

More information

Chapter 3 Mathematics of Finance

Chapter 3 Mathematics of Finance Chapter 3 Mathematics of Finance Section 2 Compound and Continuous Interest Learning Objectives for Section 3.2 Compound and Continuous Compound Interest The student will be able to compute compound and

More information

(Refer Slide Time: 2:20)

(Refer Slide Time: 2:20) Engineering Economic Analysis Professor Dr. Pradeep K Jha Department of Mechanical and Industrial Engineering Indian Institute of Technology Roorkee Lecture 09 Compounding Frequency of Interest: Nominal

More information

5= /

5= / Chapter 6 Finance 6.1 Simple Interest and Sequences Review: I = Prt (Simple Interest) What does Simple mean? Not Simple = Compound I part Interest is calculated once, at the end. Ex: (#10) If you borrow

More information

Interest Formulas. Simple Interest

Interest Formulas. Simple Interest Interest Formulas You have $1000 that you wish to invest in a bank. You are curious how much you will have in your account after 3 years since banks typically give you back some interest. You have several

More information

Multiple Compounding Periods in a Year. Principles of Engineering Economic Analysis, 5th edition

Multiple Compounding Periods in a Year. Principles of Engineering Economic Analysis, 5th edition Multiple Compounding Periods in a Year Example 2.36 Rebecca Carlson purchased a car for $25,000 by borrowing the money at 8% per year compounded monthly. She paid off the loan with 60 equal monthly payments,

More information

Basics. 7: Compounding Frequency. Lingua Franca (Language of the Trade) 7.1 Nominal and Effective Interest. Nominal and Effective.

Basics. 7: Compounding Frequency. Lingua Franca (Language of the Trade) 7.1 Nominal and Effective Interest. Nominal and Effective. Basics 7: Compounding Frequency Compounding frequency affects rate of growth of savings or debt $1 after 1 year at 18% per year compounded annually $118. $1 after 1 year at 18% per year compounded monthly

More information

1. If x² - y² = 55, and x - y = 11, then y = 2. If the slope of a line is ½ and the y- intercept is 3, what is the x-intercept of the same line?

1. If x² - y² = 55, and x - y = 11, then y = 2. If the slope of a line is ½ and the y- intercept is 3, what is the x-intercept of the same line? 1/20/2016 SAT Warm-Up 1. If x² - y² = 55, and x - y = 11, then y = 2. If the slope of a line is ½ and the y- intercept is 3, what is the x-intercept of the same line? Simple Interest = Pin where P = principal

More information

Day 3 Simple vs Compound Interest.notebook April 07, Simple Interest is money paid or earned on the. The Principal is the

Day 3 Simple vs Compound Interest.notebook April 07, Simple Interest is money paid or earned on the. The Principal is the LT: I can calculate simple and compound interest. p.11 What is Simple Interest? What is Principal? Simple Interest is money paid or earned on the. The Principal is the What is the Simple Interest Formula?

More information

Section 4B: The Power of Compounding

Section 4B: The Power of Compounding Section 4B: The Power of Compounding Definitions The principal is the amount of your initial investment. This is the amount on which interest is paid. Simple interest is interest paid only on the original

More information

Review of Derivatives I. Matti Suominen, Aalto

Review of Derivatives I. Matti Suominen, Aalto Review of Derivatives I Matti Suominen, Aalto 25 SOME STATISTICS: World Financial Markets (trillion USD) 2 15 1 5 Securitized loans Corporate bonds Financial institutions' bonds Public debt Equity market

More information

Calculating Interest in the Real World Project

Calculating Interest in the Real World Project Name: Due Date: Background Learn the Lingo: Calculating Interest in the Real World Project Interest the amount of money paid for the use of money. (If you are borrowing money, you pay interest to the bank/lender.)

More information

Introduction to the Compound Interest Formula

Introduction to the Compound Interest Formula Introduction to the Compound Interest Formula Lesson Objectives: students will be introduced to the formula students will learn how to determine the value of the required variables in order to use the

More information

Chapter 6 Homework Math 373 Fall 2014

Chapter 6 Homework Math 373 Fall 2014 Chapter 6 Homework Math 373 Fall 2014 Chapter 6, Section 2 1. Changyue purchases a zero coupon bond for 600. The bond will mature in 8 years for 1000. Calculate the annual effective yield rate earned by

More information

Simple Interest. Simple Interest is the money earned (or owed) only on the borrowed. Balance that Interest is Calculated On

Simple Interest. Simple Interest is the money earned (or owed) only on the borrowed. Balance that Interest is Calculated On MCR3U Unit 8: Financial Applications Lesson 1 Date: Learning goal: I understand simple interest and can calculate any value in the simple interest formula. Simple Interest is the money earned (or owed)

More information

Interest Rates & Present Value. 1. Introduction to Options. Outline

Interest Rates & Present Value. 1. Introduction to Options. Outline 1. Introduction to Options 1.2 stock option pricing preliminaries Math4143 W08, HM Zhu Outline Continuously compounded interest rate More terminologies on options Factors affecting option prices 2 Interest

More information

IE 302 Engineering g Economy. Dr. M. Jeya Chandra Class #1

IE 302 Engineering g Economy. Dr. M. Jeya Chandra Class #1 IE 302 Engineering g Economy Dr. M. Jeya Chandra Class #1 1 Applications of Engineering Economics: Selecting one or more projects for investment from a given set, using one or more criteria, based on the

More information

Compounding More than Once a Year

Compounding More than Once a Year Compounding More than Once a Year by CHED on December 22, 2017 lesson duration of 5 minutes under General Mathematics generated on December 22, 2017 at 04:18 pm Tags: Simple and Compound Interest Generated:

More information

We can solve quadratic equations by transforming the. left side of the equation into a perfect square trinomial

We can solve quadratic equations by transforming the. left side of the equation into a perfect square trinomial Introduction We can solve quadratic equations by transforming the left side of the equation into a perfect square trinomial and using square roots to solve. Previously, you may have explored perfect square

More information

Sample Investment Device CD (Certificate of Deposit) Savings Account Bonds Loans for: Car House Start a business

Sample Investment Device CD (Certificate of Deposit) Savings Account Bonds Loans for: Car House Start a business Simple and Compound Interest (Young: 6.1) In this Lecture: 1. Financial Terminology 2. Simple Interest 3. Compound Interest 4. Important Formulas of Finance 5. From Simple to Compound Interest 6. Examples

More information

IE463 Chapter 2. Objective. Time Value of Money (Money- Time Relationships)

IE463 Chapter 2. Objective. Time Value of Money (Money- Time Relationships) IE463 Chapter 2 Time Value of Money (Money- Time Relationships) Objective Given a cash flow (or series of cash flows) occurring at some point in time, the objective is to find its equivalent value at another

More information

Economics 135. Bond Pricing and Interest Rates. Professor Kevin D. Salyer. UC Davis. Fall 2009

Economics 135. Bond Pricing and Interest Rates. Professor Kevin D. Salyer. UC Davis. Fall 2009 Economics 135 Bond Pricing and Interest Rates Professor Kevin D. Salyer UC Davis Fall 2009 Professor Kevin D. Salyer (UC Davis) Money and Banking Fall 2009 1 / 12 Bond Pricing Formulas - Interest Rates

More information

1. Interest Rate. Three components of interest: Principal Interest rate Investment horizon (Time)

1. Interest Rate. Three components of interest: Principal Interest rate Investment horizon (Time) 1 Key Concepts The future value of an investment made today The present value of cash to be received at some future date The return on an investment The number of periods that equates a present value and

More information

CHAPTER 5. Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS. McGraw-Hill/Irwin

CHAPTER 5. Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS. McGraw-Hill/Irwin CHAPTER 5 Introduction to Risk, Return, and the Historical Record McGraw-Hill/Irwin Copyright 2011 by The McGraw-Hill Companies, Inc. All rights reserved. 5-2 Interest Rate Determinants Supply Households

More information

TIME VALUE OF MONEY. Charles I. Welty

TIME VALUE OF MONEY. Charles I. Welty TIME VALUE OF MONEY Charles I. Welty Copyright Charles I. Welty - 2004 Introduction Time Value of Money... 1 Overview... 1 Present and Future Value... 2 Interest or Interest Rate... 2 APR and APY... 2

More information

Measuring Interest Rates. Interest Rates Chapter 4. Continuous Compounding (Page 77) Types of Rates

Measuring Interest Rates. Interest Rates Chapter 4. Continuous Compounding (Page 77) Types of Rates Interest Rates Chapter 4 Measuring Interest Rates The compounding frequency used for an interest rate is the unit of measurement The difference between quarterly and annual compounding is analogous to

More information

P+I= Simple Interest : I Prt I= /2. =$z048. part. Complex. Bought F- $ =19. invested at the beginning. Simple.

P+I= Simple Interest : I Prt I= /2. =$z048. part. Complex. Bought F- $ =19. invested at the beginning. Simple. One Chapter 6 Finance 61 Simple Interest and Sequences Review: I Prt (Simple Interest) What does Simple mean? Simple - Complex Compound part than More Ex: (#10) If you borrow $1600 for 2 years at 14% annual

More information

Chapter 2: BASICS OF FIXED INCOME SECURITIES

Chapter 2: BASICS OF FIXED INCOME SECURITIES Chapter 2: BASICS OF FIXED INCOME SECURITIES 2.1 DISCOUNT FACTORS 2.1.1 Discount Factors across Maturities 2.1.2 Discount Factors over Time 2.1 DISCOUNT FACTORS The discount factor between two dates, t

More information

Section 3.5: COMPOUND INTEREST FORMULA

Section 3.5: COMPOUND INTEREST FORMULA Section 3.5: COMPOUND INTEREST FORMULA OBJECTIVES Become familiar with the derivation of the compound interest formula. Make computations using the compound interest formula. Key Terms compound interest

More information

Chapter 5. Interest Rates ( ) 6. % per month then you will have ( 1.005) = of 2 years, using our rule ( ) = 1.

Chapter 5. Interest Rates ( ) 6. % per month then you will have ( 1.005) = of 2 years, using our rule ( ) = 1. Chapter 5 Interest Rates 5-. 6 a. Since 6 months is 24 4 So the equivalent 6 month rate is 4.66% = of 2 years, using our rule ( ) 4 b. Since one year is half of 2 years ( ).2 2 =.0954 So the equivalent

More information

3. Time value of money. We will review some tools for discounting cash flows.

3. Time value of money. We will review some tools for discounting cash flows. 1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned

More information

3. Time value of money

3. Time value of money 1 Simple interest 2 3. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned

More information

CHAPTER 3. Compound Interest

CHAPTER 3. Compound Interest CHAPTER 3 Compound Interest Recall What can you say to the amount of interest earned in simple interest? Do you know? An interest can also earn an interest? Compound Interest Whenever a simple interest

More information

Sequences, Series, and Limits; the Economics of Finance

Sequences, Series, and Limits; the Economics of Finance CHAPTER 3 Sequences, Series, and Limits; the Economics of Finance If you have done A-level maths you will have studied Sequences and Series in particular Arithmetic and Geometric ones) before; if not you

More information

Introduction to the Hewlett-Packard (HP) 10B Calculator and Review of Mortgage Finance Calculations

Introduction to the Hewlett-Packard (HP) 10B Calculator and Review of Mortgage Finance Calculations Introduction to the Hewlett-Packard (HP) 0B Calculator and Review of Mortgage Finance Calculations Real Estate Division Faculty of Commerce and Business Administration University of British Columbia Introduction

More information

Math 147 Section 6.2. Application Example

Math 147 Section 6.2. Application Example Math 147 Section 6.2 Annual Percentage Yield Doubling Time Geometric Sequences 1 Application Example Mary Stahley invested $2500 in a 36-month certificate of deposit (CD) that earned 9.5% annual simple

More information

Functions - Compound Interest

Functions - Compound Interest 10.6 Functions - Compound Interest Objective: Calculate final account balances using the formulas for compound and continuous interest. An application of exponential functions is compound interest. When

More information

Introduction to Computational Finance and Financial Econometrics Return Calculations

Introduction to Computational Finance and Financial Econometrics Return Calculations You can t see this text! Introduction to Computational Finance and Financial Econometrics Return Calculations Eric Zivot Spring 2015 Eric Zivot (Copyright 2015) Return Calculations 1 / 56 Outline 1 The

More information

Mortgages & Equivalent Interest

Mortgages & Equivalent Interest Mortgages & Equivalent Interest A mortgage is a loan which you then pay back with equal payments at regular intervals. Thus a mortgage is an annuity! A down payment is a one time payment you make so that

More information

Compound Interest. Table of Contents. 1 Mathematics of Finance. 2 Compound Interest. 1 Mathematics of Finance 1. 2 Compound Interest 1

Compound Interest. Table of Contents. 1 Mathematics of Finance. 2 Compound Interest. 1 Mathematics of Finance 1. 2 Compound Interest 1 Compound Interest Table of Contents 1 Mathematics of Finance 1 2 Compound Interest 1 3 Compound Interest Computations 3 4 The Effective Rate 5 5 Homework Problems 7 5.1 Instructions......................................

More information

Chapter 21: Savings Models

Chapter 21: Savings Models October 14, 2013 This time Arithmetic Growth Simple Interest Geometric Growth Compound Interest A limit to Compounding Simple Interest Simple Interest Simple Interest is interest that is paid on the original

More information

troduction to Algebra

troduction to Algebra Chapter Six Percent Percents, Decimals, and Fractions Understanding Percent The word percent comes from the Latin phrase per centum,, which means per 100. Percent means per one hundred. The % symbol is

More information

January 29. Annuities

January 29. Annuities January 29 Annuities An annuity is a repeating payment, typically of a fixed amount, over a period of time. An annuity is like a loan in reverse; rather than paying a loan company, a bank or investment

More information

Notes: Review of Future & Present Value, Some Statistics & Calculating Security Returns

Notes: Review of Future & Present Value, Some Statistics & Calculating Security Returns Notes: Review of Future & Present Value, Some Statistics & Calculating Security Returns I. Future Values How much is money today worth in the future? This is the future value (FV) of money today. a) Simple

More information

CHAPTER 5. Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS. McGraw-Hill/Irwin

CHAPTER 5. Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS. McGraw-Hill/Irwin CHAPTER 5 Introduction to Risk, Return, and the Historical Record McGraw-Hill/Irwin Copyright 2011 by The McGraw-Hill Companies, Inc. All rights reserved. 5-2 Interest Rate Determinants Supply Households

More information

MFE8812 Bond Portfolio Management

MFE8812 Bond Portfolio Management MFE8812 Bond Portfolio Management William C. H. Leon Nanyang Business School January 16, 2018 1 / 63 William C. H. Leon MFE8812 Bond Portfolio Management 1 Overview Value of Cash Flows Value of a Bond

More information

11/15/2017. Domain: Range: y-intercept: Asymptote: End behavior: Increasing: Decreasing:

11/15/2017. Domain: Range: y-intercept: Asymptote: End behavior: Increasing: Decreasing: Sketch the graph of f(x) and find the requested information f x = 3 x Domain: Range: y-intercept: Asymptote: End behavior: Increasing: Decreasing: Sketch the graph of f(x) and find the requested information

More information

Section10.1.notebook May 24, 2014

Section10.1.notebook May 24, 2014 Unit 9 Borrowing Money 1 Most people will need to take out a loan sometime in their lives. Few people can afford expensive purchases such as a car or a house without borrowing money from a financial institution.

More information

Mathematics of Finance

Mathematics of Finance CHAPTER 55 Mathematics of Finance PAMELA P. DRAKE, PhD, CFA J. Gray Ferguson Professor of Finance and Department Head of Finance and Business Law, James Madison University FRANK J. FABOZZI, PhD, CFA, CPA

More information

Engineering Economics ECIV 5245

Engineering Economics ECIV 5245 Engineering Economics ECIV 5245 Chapter 3 Interest and Equivalence Cash Flow Diagrams (CFD) Used to model the positive and negative cash flows. At each time at which cash flow will occur, a vertical arrow

More information

Compound Interest. Contents. 1 Mathematics of Finance. 2 Compound Interest

Compound Interest. Contents. 1 Mathematics of Finance. 2 Compound Interest Compound Interest Contents 1 Mathematics of Finance 1 2 Compound Interest 1 3 Compound Interest Computations 3 4 The Effective Rate 5 5 Document License CC BY-ND 4.0) 7 5.1 License Links.....................................

More information

Interest Rate Floors and Vaulation

Interest Rate Floors and Vaulation Interest Rate Floors and Vaulation Alan White FinPricing http://www.finpricing.com Summary Interest Rate Floor Introduction The Benefits of a Floor Floorlet Payoff Valuation Practical Notes A real world

More information

Name Date. Explore Compound Interest

Name Date. Explore Compound Interest 3-4 Exercises Explore Compound Interest Round to the nearest cent where necessary. 1. How much interest would $2,000 earn in one year at the rate of 4.2%? $84 2. How much interest would $2,000 earn, compounded

More information

Lecture Notes 2. XII. Appendix & Additional Readings

Lecture Notes 2. XII. Appendix & Additional Readings Foundations of Finance: Concepts and Tools for Portfolio, Equity Valuation, Fixed Income, and Derivative Analyses Professor Alex Shapiro Lecture Notes 2 Concepts and Tools for Portfolio, Equity Valuation,

More information

Mathematics for Economists

Mathematics for Economists Department of Economics Mathematics for Economists Chapter 4 Mathematics of Finance Econ 506 Dr. Mohammad Zainal 4 Mathematics of Finance Compound Interest Annuities Amortization and Sinking Funds Arithmetic

More information

Time Value Tools: Program Overview

Time Value Tools: Program Overview Time Value Tools: Program Overview The Time Value Tools program is used to solve three types of Time Value of Money problems: Single Payment, Series of Payments, and Loan Payments. Each problem may be

More information

Interest Rate Caps and Vaulation

Interest Rate Caps and Vaulation Interest Rate Caps and Vaulation Alan White FinPricing http://www.finpricing.com Summary Interest Rate Cap Introduction The Benefits of a Cap Caplet Payoffs Valuation Practical Notes A real world example

More information

CHAPTER 5. Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS

CHAPTER 5. Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS CHAPTER 5 Introduction to Risk, Return, and the Historical Record INVESTMENTS BODIE, KANE, MARCUS McGraw-Hill/Irwin Copyright 2011 by The McGraw-Hill Companies, Inc. All rights reserved. 5-2 Supply Interest

More information

Section 8.3 Compound Interest

Section 8.3 Compound Interest Section 8.3 Compound Interest Objectives 1. Use the compound interest formulas. 2. Calculate present value. 3. Understand and compute effective annual yield. 4/24/2013 Section 8.3 1 Compound interest is

More information

Interest: The money earned from an investment you have or the cost of borrowing money from a lender.

Interest: The money earned from an investment you have or the cost of borrowing money from a lender. 8.1 Simple Interest Interest: The money earned from an investment you have or the cost of borrowing money from a lender. Simple Interest: "I" Interest earned or paid that is calculated based only on the

More information

Mathematics of Financial Derivatives

Mathematics of Financial Derivatives Mathematics of Financial Derivatives Lecture 9 Solesne Bourguin bourguin@math.bu.edu Boston University Department of Mathematics and Statistics Table of contents 1. Zero-coupon rates and bond pricing 2.

More information

Mathematics of Financial Derivatives. Zero-coupon rates and bond pricing. Lecture 9. Zero-coupons. Notes. Notes

Mathematics of Financial Derivatives. Zero-coupon rates and bond pricing. Lecture 9. Zero-coupons. Notes. Notes Mathematics of Financial Derivatives Lecture 9 Solesne Bourguin bourguin@math.bu.edu Boston University Department of Mathematics and Statistics Zero-coupon rates and bond pricing Zero-coupons Definition:

More information

Nominal and Effective Interest Rates

Nominal and Effective Interest Rates Nominal and Effective Interest Rates Effective interest rates tell you how much interest accrues over some integer number of interest periods with the effects of compounding included. Nominal interest

More information

What is Value? Engineering Economics: Session 2. Page 1

What is Value? Engineering Economics: Session 2. Page 1 Engineering Economics: Session 2 Engineering Economic Analysis: Slide 26 What is Value? Engineering Economic Analysis: Slide 27 Page 1 Review: Cash Flow Equivalence Type otation Formula Excel Single Uniform

More information

Interest Rates: Credit Cards and Annuities

Interest Rates: Credit Cards and Annuities Interest Rates: Credit Cards and Annuities 25 April 2014 Interest Rates: Credit Cards and Annuities 25 April 2014 1/25 Last Time Last time we discussed loans and saw how big an effect interest rates were

More information

Answers are on next slide. Graphs follow.

Answers are on next slide. Graphs follow. Sec 3.1 Exponential Functions and Their Graphs November 27, 2018 Exponential Function - the independent variable is in the exponent. Model situations with constant percentage change exponential growth

More information

Answers are on next slide. Graphs follow.

Answers are on next slide. Graphs follow. Sec 3.1 Exponential Functions and Their Graphs Exponential Function - the independent variable is in the exponent. Model situations with constant percentage change exponential growth exponential decay

More information

Computing compound interest and composition of functions

Computing compound interest and composition of functions Computing compound interest and composition of functions In today s topic we will look at using EXCEL to compute compound interest. The method we will use will also allow us to discuss composition of functions.

More information

Section 5.1 Simple and Compound Interest

Section 5.1 Simple and Compound Interest Section 5.1 Simple and Compound Interest Question 1 What is simple interest? Question 2 What is compound interest? Question 3 - What is an effective interest rate? Question 4 - What is continuous compound

More information

Chapter 2 Time Value of Money

Chapter 2 Time Value of Money 1. Future Value of a Lump Sum 2. Present Value of a Lump Sum 3. Future Value of Cash Flow Streams 4. Present Value of Cash Flow Streams 5. Perpetuities 6. Uneven Series of Cash Flows 7. Other Compounding

More information

Questions 3-6 are each weighted twice as much as each of the other questions.

Questions 3-6 are each weighted twice as much as each of the other questions. Mathematics 107 Professor Alan H. Stein December 1, 005 SOLUTIONS Final Examination Questions 3-6 are each weighted twice as much as each of the other questions. 1. A savings account is opened with a deposit

More information

TIME VALUE OF MONEY. Lecture Notes Week 4. Dr Wan Ahmad Wan Omar

TIME VALUE OF MONEY. Lecture Notes Week 4. Dr Wan Ahmad Wan Omar TIME VALUE OF MONEY Lecture Notes Week 4 Dr Wan Ahmad Wan Omar Lecture Notes Week 4 4. The Time Value of Money The notion on time value of money is based on the idea that money available at the present

More information

4.7 Compound Interest

4.7 Compound Interest 4.7 Compound Interest 4.7 Compound Interest Objective: Determine the future value of a lump sum of money. 1 Simple Interest Formula: InterestI = Prt Principal interest rate time in years 2 A credit union

More information

Time Value of Money. Lakehead University. Outline of the Lecture. Fall Future Value and Compounding. Present Value and Discounting

Time Value of Money. Lakehead University. Outline of the Lecture. Fall Future Value and Compounding. Present Value and Discounting Time Value of Money Lakehead University Fall 2004 Outline of the Lecture Future Value and Compounding Present Value and Discounting More on Present and Future Values 2 Future Value and Compounding Future

More information

Quantitative Literacy: Thinking Between the Lines

Quantitative Literacy: Thinking Between the Lines Quantitative Literacy: Thinking Between the Lines Crauder, Noell, Evans, Johnson Chapter 4: Personal Finance 2013 W. H. Freeman and Company 1 Chapter 4: Personal Finance Lesson Plan Saving money: The power

More information

Lectures 2-3 Foundations of Finance

Lectures 2-3 Foundations of Finance Lecture 2-3: Time Value of Money I. Reading II. Time Line III. Interest Rate: Discrete Compounding IV. Single Sums: Multiple Periods and Future Values V. Single Sums: Multiple Periods and Present Values

More information

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. Assuming positive cash flows and interest rates, the future value increases and the present value

More information

Lectures 1-2 Foundations of Finance

Lectures 1-2 Foundations of Finance Lectures 1-2: Time Value of Money I. Reading A. RWJ Chapter 5. II. Time Line A. $1 received today is not the same as a $1 received in one period's time; the timing of a cash flow affects its value. B.

More information

Interest Compounded Annually. Table 3.27 Interest Computed Annually

Interest Compounded Annually. Table 3.27 Interest Computed Annually 33 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions 3.6 Mathematics of Finance What you ll learn about Interest Compounded Annually Interest Compounded k Times per Year Interest Compounded Continuously

More information

Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.5. THE NUMBER e

Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.5. THE NUMBER e Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.5 THE NUMBER e Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally The Natural Number

More information

FOUNDATIONS OF CORPORATE FINANCE

FOUNDATIONS OF CORPORATE FINANCE edition 2 FOUNDATIONS OF CORPORATE FINANCE Kent A. Hickman Gonzaga University Hugh O. Hunter San Diego State University John W. Byrd Fort Lewis College chapter 4 Time Is Money 00 After learning from his

More information

Duopoly models Multistage games with observed actions Subgame perfect equilibrium Extensive form of a game Two-stage prisoner s dilemma

Duopoly models Multistage games with observed actions Subgame perfect equilibrium Extensive form of a game Two-stage prisoner s dilemma Recap Last class (September 20, 2016) Duopoly models Multistage games with observed actions Subgame perfect equilibrium Extensive form of a game Two-stage prisoner s dilemma Today (October 13, 2016) Finitely

More information

Financial Maths: Interest

Financial Maths: Interest Financial Maths: Interest Basic increase and decrease: Let us assume that you start with R100. You increase it by 10%, and then decrease it by 10%. How much money do you have at the end? Increase by 10%

More information

TIME VALUE OF MONEY (TVM) IEG2H2-w2 1

TIME VALUE OF MONEY (TVM) IEG2H2-w2 1 TIME VALUE OF MONEY (TVM) IEG2H2-w2 1 After studying TVM, you should be able to: 1. Understand what is meant by "the time value of money." 2. Understand the relationship between present and future value.

More information

APPM 2360 Project 1. Due: Friday October 6 BEFORE 5 P.M.

APPM 2360 Project 1. Due: Friday October 6 BEFORE 5 P.M. APPM 2360 Project 1 Due: Friday October 6 BEFORE 5 P.M. 1 Introduction A pair of close friends are currently on the market to buy a house in Boulder. Both have obtained engineering degrees from CU and

More information

Graph A Graph B Graph C Graph D. t g(t) h(t) k(t) f(t) Graph

Graph A Graph B Graph C Graph D. t g(t) h(t) k(t) f(t) Graph MATH 119 Chapter 1 Test (Sample B ) NAME: 1) Each of the function in the following table is increasing or decreasing in different way. Which of the graphs below best fits each function Graph A Graph B

More information

Example: from 15 January 2006 to Rule Result 13 March Y 3 (from 15 January 2006 to 15 January 2009) 2. Count the number of remaining months and

Example: from 15 January 2006 to Rule Result 13 March Y 3 (from 15 January 2006 to 15 January 2009) 2. Count the number of remaining months and 1 Interest rate 1.1 Measuring time In finance the most common unit of time is the year, perhaps because it is one that everyone presumes to know well. Although, as we will see, the year can actually create

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assn.1-.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How long will it take for the value of an account to be $890 if $350 is deposited

More information

Chapter 10: The Mathematics of Money

Chapter 10: The Mathematics of Money Chapter 10: The Mathematics of Money Percent Increases and Decreases If a shirt is marked down 20% and it now costs $32, how much was it originally? Simple Interest If you invest a principle of $5000 and

More information

Mr. Orchard s Math 140 WIR Final Exam Review Week 14

Mr. Orchard s Math 140 WIR Final Exam Review Week 14 1. A construction company has allocated $1.92 million to buy new bulldozers, backhoes, and dumptrucks. Bulldozers cost $16,000 each, backhoes cost $24,000 each, and dumptrucks cost $32,000 each. The company

More information

Unit 9: Borrowing Money

Unit 9: Borrowing Money Unit 9: Borrowing Money 1 Financial Vocab Amortization Table A that lists regular payments of a loan and shows how much of each payment goes towards the interest charged and the principal borrowed, as

More information

Chapter 04 - More General Annuities

Chapter 04 - More General Annuities Chapter 04 - More General Annuities 4-1 Section 4.3 - Annuities Payable Less Frequently Than Interest Conversion Payment 0 1 0 1.. k.. 2k... n Time k = interest conversion periods before each payment n

More information

The Theory of Interest

The Theory of Interest Chapter 1 The Theory of Interest One of the first types of investments that people learn about is some variation on the savings account. In exchange for the temporary use of an investor s money, a bank

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MGF 1107 Practice Final Dr. Schnackenberg MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Graph the equation. Select integers for x, -3 x 3. 1) y

More information

Math 1324 Finite Mathematics Chapter 4 Finance

Math 1324 Finite Mathematics Chapter 4 Finance Math 1324 Finite Mathematics Chapter 4 Finance Simple Interest: Situation where interest is calculated on the original principal only. A = P(1 + rt) where A is I = Prt Ex: A bank pays simple interest at

More information

Interest Rate Markets

Interest Rate Markets Interest Rate Markets 5. Chapter 5 5. Types of Rates Treasury rates LIBOR rates Repo rates 5.3 Zero Rates A zero rate (or spot rate) for maturity T is the rate of interest earned on an investment with

More information

Math Week in Review #10

Math Week in Review #10 Math 166 Fall 2008 c Heather Ramsey Page 1 Chapter F - Finance Math 166 - Week in Review #10 Simple Interest - interest that is computed on the original principal only Simple Interest Formulas Interest

More information