Monte Carlo Methods for Uncertainty Quantification

Size: px
Start display at page:

Download "Monte Carlo Methods for Uncertainty Quantification"

Transcription

1 Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford) Monte Carlo methods 1 / 27

2 Lecture outline Lecture 4: PDE applications PDEs with uncertainty examples multilevel Monte Carlo Extensions Haji-Ali (Oxford) Monte Carlo methods 2 / 27

3 PDEs with Uncertainty Looking at the history of numerical methods for PDEs, the first steps were about improving the modelling: 1D 2D 3D steady unsteady laminar flow turbulence modelling large eddy simulation direct Navier-Stokes simple geometries (e.g. a wing) complex geometries (e.g. an aircraft in landing configuration) adding new features such as combustion, coupling to structural / thermal analyses, etc.... and then engineering switched from analysis to design. Haji-Ali (Oxford) Monte Carlo methods 3 / 27

4 PDEs with Uncertainty The big move now is towards handling uncertainty: uncertainty in modelling parameters uncertainty in geometry uncertainty in initial conditions uncertainty in spatially-varying material properties inclusion of stochastic source terms Engineering wants to move to robust design taking into account the effects of uncertainty. Other areas want to move into Bayesian inference, starting with an a priori distribution for the uncertainty, and then using data to derive an improved a posteriori distribution. Haji-Ali (Oxford) Monte Carlo methods 4 / 27

5 PDEs with Uncertainty Range of applications: parabolic, elliptic, hyperbolic, numerical homogenization, reduced basis approximation. Examples: Long-term climate modelling: Lots of sources of uncertainty including the effects of aerosols, clouds, carbon cycle, ocean circulation ( Short-range weather prediction Considerable uncertainty in the initial data due to limited measurements Haji-Ali (Oxford) Monte Carlo methods 5 / 27

6 PDEs with Uncertainty Engineering analysis Perhaps the biggest uncertainty is geometric due to manufacturing tolerances Nuclear waste repository and oil reservoir modelling Considerable uncertainty about porosity of rock Astronomy Random spatial/temporal variations in air density disturb correlation in signals received by different antennas Finance Stochastic forcing due to market behaviour Haji-Ali (Oxford) Monte Carlo methods 6 / 27

7 PDEs with Uncertainty In the past, Monte Carlo simulation has been viewed as impractical due to its expense, and so people have used other methods: stochastic collocation polynomial chaos Because of Multilevel Monte Carlo, this is changing and there are now several research groups using MLMC for PDE applications The approach is very simple, in principle: use a sequence of grids of increasing resolution in space (and time) as with SDEs, determine the optimal allocation of computational effort on the different levels the savings can be much greater because the cost goes up more rapidly with level (higher dimensionality). Haji-Ali (Oxford) Monte Carlo methods 7 / 27

8 PDEs with Uncertainty: Example Elliptic PDE coming from Darcy s law: ( ) κ(x) p = 0 where the permeability κ(x) is uncertain, and log κ(x) is often modelled as being Normally distributed with a spatial covariance such as R(log κ(x 1 ), log κ(x 2 )) = σ 2 exp( x 1 x 2 /λ) Modelling of oil reservoirs and groundwater contamination in nuclear waste repositories (Giles, Scheichl, Cliffe, 2011). Haji-Ali (Oxford) Monte Carlo methods 8 / 27

9 Stochastic Field A typical realisation of κ for λ = 0.01, σ = 1. Haji-Ali (Oxford) Monte Carlo methods 9 / 27

10 Stochastic Field Samples of log κ are provided by a Karhunen-Loève expansion: log κ(x, ω) = θn ξ n (ω) f n (x), n=0 where θ n, f n are eigenvalues / eigenfunctions of the correlation function: R(x, y) f n (y) dy = θ n f n (x) and ξ n (ω) are standard Normal random variables. Numerical experiments truncate the expansion. (Latest 2D/3D work uses an efficient FFT construction based on a circulate embedding.) Haji-Ali (Oxford) Monte Carlo methods 10 / 27

11 Stochastic Field Decay of 1D eigenvalues λ=0.01 λ=0.1 λ=1 eigenvalue n When λ = 1, can use a low-dimensional polynomial chaos approach, but it s impractical for smaller λ. Haji-Ali (Oxford) Monte Carlo methods 11 / 27

12 PDEs with Uncertainty: Results Boundary conditions for unit square [0, 1] 2 : fixed pressure: p(0, x 2 )=1, p(1, x 2 )=0 Neumann b.c.: p/ x 2 (x 1, 0)= p/ x 2 (x 1, 1)=0 Output quantity mass flux: Correlation length: λ = 0.2 k p x 1 dx 2 Coarsest grid: h = 1/8 (comparable to λ) Finest grid: h = 1/128 Karhunen-Loève truncation: m KL = 4000 Cost taken to be proportional to number of nodes. h 2 l Haji-Ali (Oxford) Monte Carlo methods 12 / 27

13 2D Results log 2 variance 4 6 log 2 mean P l P l P l 1 10 P l P l P l level l level l V[ P l P l 1 ] h 2 l E[ P l P l 1 ] h 2 l Haji-Ali (Oxford) Monte Carlo methods 13 / 27

14 MLMC General Theorem If there exist independent estimators Ŷl based on N l Monte Carlo samples, each costing C l, and positive constants α, β, γ, c 1, c 2, c 3 such that α 1 2 min(β, γ) and i) E[ P l P] c 1 2 α l E[ P 0 ], l = 0 ii) E[Ŷl] = E[ P l P l 1 ], l > 0 iii) V[Ŷl] c 2 N 1 l 2 β l iv) E[C l ] c 3 2 γ l Haji-Ali (Oxford) Monte Carlo methods 14 / 27

15 MLMC General Theorem then there exists a positive constant c 4 such that for any ε<1 there exist L and N l for which the multilevel estimator Ŷ = L Ŷ l, l=0 [ (Ŷ ) ] 2 has a mean-square-error with bound E E[P] < ε 2 with a computational cost C with bound c 4 ε 2, β > γ, C c 4 ε 2 (log ε) 2, β = γ, c 4 ε 2 (γ β)/α, 0 < β < γ. Haji-Ali (Oxford) Monte Carlo methods 15 / 27

16 2D Results ε= ε=0.001 ε=0.002 ε=0.005 ε= Std MC MLMC N l ε 2 Cost level l accuracy ε Haji-Ali (Oxford) Monte Carlo methods 16 / 27

17 Complexity analysis Relating things back to the MLMC theorem: E[ P l P] 2 2l = α = 2 V l 2 2l = β = 2 C l 2 dl = γ = d (dimension of PDE) To achieve r.m.s. accuracy ε requires finest level grid spacing h ε 1/2 and hence we get the following complexity: dim MC MLMC 1 ε 2.5 ε 2 2 ε 3 ε 2 (log ε) 2 3 ε 3.5 ε 2.5 Haji-Ali (Oxford) Monte Carlo methods 17 / 27

18 Non-geometric multilevel Almost all applications of multilevel in the literature so far use a geometric sequence of levels, refining the timestep (or the spatial discretisation for PDEs) by a constant factor when going from level l to level l + 1. Coming from a multigrid background, this is very natural, but it is NOT a requirement of the multilevel Monte Carlo approach. All MLMC needs is a sequence of levels with increasing accuracy increasing cost increasingly small difference between outputs on successive levels Haji-Ali (Oxford) Monte Carlo methods 18 / 27

19 Applying MLMC to your problems First, identify the approximation parameter(s) in the problem to build a hierarchy of approximations. We also need to make sure that we can to sample correlated approximations. Try to find estimators that increase the variance convergence rate, β, as much as possible to get the optimal complexity. The MLMC/MIMC theory depends on a set of assumptions. Checking these assumptions numerically is straightforward but proving them can be challenging. Haji-Ali (Oxford) Monte Carlo methods 19 / 27

20 Multilevel Monte Carlo: Summary Let l P = Pl P l 1 and 0 = P 0 and observe that E[P] = Then, the MLMC estimator E[ l P] l=0 L 1 N l N l l=0 m=1 L E[ l P]. l=0 l P(l,m) l with optimal choice of L and N l has complexity γ β 2 max(0, O (ε α ) ), ( when γ β and O ε 2 log ε 2) otherwise. Haji-Ali (Oxford) Monte Carlo methods 20 / 27

21 Multilevel Monte Carlo for high-dimensional problems The problem is that the cost usually grows exponentially as the number of discretization parameters, d, increases, i.e., the cost is O ( 2 dγl). On the other hand, the weak error, O ( 2 αl), and variance, O ( 2 βl), do not decrease with increasing number of discretization parameters. Leading to a complexity that suffers from the curse of dimensionality dγ β 2 max(0, O (ε α ) ). Can we leverage some mixed-regularity between these discretization parameters to increase the convergence rate of the weak error and the variance? Haji-Ali (Oxford) Monte Carlo methods 21 / 27

22 Multi-Index Monte Carlo Haji-Ali (Oxford) Monte Carlo methods 22 / 27

23 Multi-Index Monte Carlo Haji-Ali (Oxford) Monte Carlo methods 22 / 27

24 Multi-Index Monte Carlo Let l = (l i ) d i=1 Nd be a multi-index for d discretization parameters and denote by P l the corresponding approximation. Then, define the i th -dimension difference operator { Pl if l i = 0, i,l P = P l P l ei otherwise Observe, again, that E[g] = E[ l P] E[ l P], l N d d and l P = i,l P. for some I N d. Then, estimate the expectations with independent Monte Carlo samplers to yield the MIMC estimator 1 N l N l l I m=1 l I l P(m). i=1 Haji-Ali (Oxford) Monte Carlo methods 23 / 27

25 Multi-Index Monte Carlo Assuming that the cost is O ( 2 γ l ), and ( E[ l g] = O 2 α l ), ( V[ l g] = O 2 β l ), l 2 Decreasing ε where l = l 1 + l l d. Then, there is an optimal choice of N l and I (total degree or simplex) so that the complexity of MIMC is l 1 O (ε 2 max(0, γ β α ) log ε d 1 ), ( when γ β and O ε 2 log ε 2d+max(0,d 3)) otherwise. Haji-Ali (Oxford) Monte Carlo methods 24 / 27

26 Other MLMC extensions Unbiased MLMC: Based on the observation E[P] = E[ l P] = E[ l P/pl ], l=0 where, in the RHS, l is a random variable with P[l = i] = p i, chosen optimally. Useful when β > γ to simplify the analysis of some composite methods but has the same complexity as MLMC. Multilevel Richardson-Romberg extrapolation (ML2R): Applying Richardson extrapolation to the weak error estimate, find optimal w l in E[ P L L ] = w l E[ l P] l=0 to have a smaller number of required levels, L. ML2R is useful when β γ and improves the computational complexity. Haji-Ali (Oxford) Monte Carlo methods 25 / 27

27 Other hierarchical samplers The same multilevel/multi-index ideas (and extensions) can be easily applied (and laboriously analysed) to other samplers such as: Stochastic Collocation and Quasi-Monte Carlo: When we have higher mixed regularity between the stochastic variables. Leads to better complexities. Random L 2 projection: To produce surrogate models of the quantities of interest instead of computing their expectations. Useful for regression and Machine Learning. Markov Chain Monte Carlo or Sequential Monte Carlo: for inverse problems where the expectation is with respect to a posterior distribution depending on a set of observed data points. Haji-Ali (Oxford) Monte Carlo methods 26 / 27

28 Final comments Uncertainty Quantification is a hot topic, with its own conferences and journals Monte Carlo methods are a powerful approach to handle uncertainty in a number of different settings Multilevel Monte Carlo greatly reduces the cost in a lot of settings, particularly when dealing with PDEs for more details, see (Giles, 2015) in Acta Numerica. Haji-Ali (Oxford) Monte Carlo methods 27 / 27

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification May 30 31, 2013 Mike Giles (Oxford) Monte

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24 Lecture outline

More information

Multilevel Monte Carlo for VaR

Multilevel Monte Carlo for VaR Multilevel Monte Carlo for VaR Mike Giles, Wenhui Gou, Abdul-Lateef Haji-Ali Mathematical Institute, University of Oxford (BNP Paribas, Hong Kong) (also discussions with Ralf Korn, Klaus Ritter) Advances

More information

Multilevel Monte Carlo for Basket Options

Multilevel Monte Carlo for Basket Options MLMC for basket options p. 1/26 Multilevel Monte Carlo for Basket Options Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance WSC09,

More information

From CFD to computational finance (and back again?)

From CFD to computational finance (and back again?) From CFD to computational finance (and back again?) Mike Giles University of Oxford Mathematical Institute MIT Center for Computational Engineering Seminar March 14th, 2013 Mike Giles (Oxford) CFD to finance

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Multilevel quasi-monte Carlo path simulation

Multilevel quasi-monte Carlo path simulation Multilevel quasi-monte Carlo path simulation Michael B. Giles and Ben J. Waterhouse Lluís Antoni Jiménez Rugama January 22, 2014 Index 1 Introduction to MLMC Stochastic model Multilevel Monte Carlo Milstein

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Multilevel Monte Carlo Simulation

Multilevel Monte Carlo Simulation Multilevel Monte Carlo p. 1/48 Multilevel Monte Carlo Simulation Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance Workshop on Computational

More information

Multilevel Monte Carlo methods

Multilevel Monte Carlo methods Multilevel Monte Carlo methods Mike Giles Mathematical Institute, University of Oxford SIAM Conference on Uncertainty Quantification April 5-8, 2016 Acknowledgements to many collaborators: Frances Kuo,

More information

Multilevel Monte Carlo methods

Multilevel Monte Carlo methods Multilevel Monte Carlo methods Mike Giles Mathematical Institute, University of Oxford LMS/ CRISM Summer School in Computational Stochastics University of Warwick, July 11, 2018 With acknowledgements to

More information

Seminar: Efficient Monte Carlo Methods for Uncertainty Quantification

Seminar: Efficient Monte Carlo Methods for Uncertainty Quantification Seminar: Efficient Monte Carlo Methods for Uncertainty Quantification Elisabeth Ullmann Lehrstuhl für Numerische Mathematik (M2) TU München Elisabeth Ullmann (TU München) Efficient Monte Carlo for UQ 1

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Variance Reduction Through Multilevel Monte Carlo Path Calculations

Variance Reduction Through Multilevel Monte Carlo Path Calculations Variance Reduction Through Mutieve Monte Caro Path Cacuations Mike Gies gies@comab.ox.ac.uk Oxford University Computing Laboratory Mutieve Monte Caro p. 1/30 Mutigrid A powerfu technique for soving PDE

More information

Computing Greeks with Multilevel Monte Carlo Methods using Importance Sampling

Computing Greeks with Multilevel Monte Carlo Methods using Importance Sampling Computing Greeks with Multilevel Monte Carlo Methods using Importance Sampling Supervisor - Dr Lukas Szpruch Candidate Number - 605148 Dissertation for MSc Mathematical & Computational Finance Trinity

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling Lecture outline Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification Lecture 2: Variance reduction

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Program Advisor: Howard Elman Department of Computer Science May 5, 2016 Tengfei

More information

Module 2: Monte Carlo Methods

Module 2: Monte Carlo Methods Module 2: Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute MC Lecture 2 p. 1 Greeks In Monte Carlo applications we don t just want to know the expected

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

Fast Convergence of Regress-later Series Estimators

Fast Convergence of Regress-later Series Estimators Fast Convergence of Regress-later Series Estimators New Thinking in Finance, London Eric Beutner, Antoon Pelsser, Janina Schweizer Maastricht University & Kleynen Consultants 12 February 2014 Beutner Pelsser

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I January

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

AD in Monte Carlo for finance

AD in Monte Carlo for finance AD in Monte Carlo for finance Mike Giles giles@comlab.ox.ac.uk Oxford University Computing Laboratory AD & Monte Carlo p. 1/30 Overview overview of computational finance stochastic o.d.e. s Monte Carlo

More information

Module 4: Monte Carlo path simulation

Module 4: Monte Carlo path simulation Module 4: Monte Carlo path simulation Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Module 4: Monte Carlo p. 1 SDE Path Simulation In Module 2, looked at the case

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016 Probabilistic Meshless Methods for Bayesian Inverse Problems Jon Cockayne July 8, 2016 1 Co-Authors Chris Oates Tim Sullivan Mark Girolami 2 What is PN? Many problems in mathematics have no analytical

More information

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1.

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1. Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Lecture 1 p. 1 Geometric Brownian Motion In the case of Geometric Brownian Motion ds t = rs t dt+σs

More information

Efficient Deterministic Numerical Simulation of Stochastic Asset-Liability Management Models in Life Insurance

Efficient Deterministic Numerical Simulation of Stochastic Asset-Liability Management Models in Life Insurance Efficient Deterministic Numerical Simulation of Stochastic Asset-Liability Management Models in Life Insurance Thomas Gerstner, Michael Griebel, Markus Holtz Institute for Numerical Simulation, University

More information

"Vibrato" Monte Carlo evaluation of Greeks

Vibrato Monte Carlo evaluation of Greeks "Vibrato" Monte Carlo evaluation of Greeks (Smoking Adjoints: part 3) Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance MCQMC 2008,

More information

Parallel Multilevel Monte Carlo Simulation

Parallel Multilevel Monte Carlo Simulation Parallel Simulation Mathematisches Institut Goethe-Universität Frankfurt am Main Advances in Financial Mathematics Paris January 7-10, 2014 Simulation Outline 1 Monte Carlo 2 3 4 Algorithm Numerical Results

More information

Calibration of Interest Rates

Calibration of Interest Rates WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

Introduction to Sequential Monte Carlo Methods

Introduction to Sequential Monte Carlo Methods Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set

More information

Assicurazioni Generali: An Option Pricing Case with NAGARCH

Assicurazioni Generali: An Option Pricing Case with NAGARCH Assicurazioni Generali: An Option Pricing Case with NAGARCH Assicurazioni Generali: Business Snapshot Find our latest analyses and trade ideas on bsic.it Assicurazioni Generali SpA is an Italy-based insurance

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

ANALYSIS OF THE BINOMIAL METHOD

ANALYSIS OF THE BINOMIAL METHOD ANALYSIS OF THE BINOMIAL METHOD School of Mathematics 2013 OUTLINE 1 CONVERGENCE AND ERRORS OUTLINE 1 CONVERGENCE AND ERRORS 2 EXOTIC OPTIONS American Options Computational Effort OUTLINE 1 CONVERGENCE

More information

Computational Finance Binomial Trees Analysis

Computational Finance Binomial Trees Analysis Computational Finance Binomial Trees Analysis School of Mathematics 2018 Review - Binomial Trees Developed a multistep binomial lattice which will approximate the value of a European option Extended the

More information

Richardson Extrapolation Techniques for the Pricing of American-style Options

Richardson Extrapolation Techniques for the Pricing of American-style Options Richardson Extrapolation Techniques for the Pricing of American-style Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of American-style Options In this paper we re-examine

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING Semih Yön 1, Cafer Erhan Bozdağ 2 1,2 Department of Industrial Engineering, Istanbul Technical University, Macka Besiktas, 34367 Turkey Abstract.

More information

Stability in geometric & functional inequalities

Stability in geometric & functional inequalities Stability in geometric & functional inequalities A. Figalli The University of Texas at Austin www.ma.utexas.edu/users/figalli/ Alessio Figalli (UT Austin) Stability in geom. & funct. ineq. Krakow, July

More information

1 Explaining Labor Market Volatility

1 Explaining Labor Market Volatility Christiano Economics 416 Advanced Macroeconomics Take home midterm exam. 1 Explaining Labor Market Volatility The purpose of this question is to explore a labor market puzzle that has bedeviled business

More information

Barrier Option. 2 of 33 3/13/2014

Barrier Option. 2 of 33 3/13/2014 FPGA-based Reconfigurable Computing for Pricing Multi-Asset Barrier Options RAHUL SRIDHARAN, GEORGE COOKE, KENNETH HILL, HERMAN LAM, ALAN GEORGE, SAAHPC '12, PROCEEDINGS OF THE 2012 SYMPOSIUM ON APPLICATION

More information

GPD-POT and GEV block maxima

GPD-POT and GEV block maxima Chapter 3 GPD-POT and GEV block maxima This chapter is devoted to the relation between POT models and Block Maxima (BM). We only consider the classical frameworks where POT excesses are assumed to be GPD,

More information

Estimating Value-at-Risk using Multilevel Monte Carlo Maximum Entropy method

Estimating Value-at-Risk using Multilevel Monte Carlo Maximum Entropy method Estimating Value-at-Risk using Multilevel Monte Carlo Maximum Entropy method Wenhui Gou University of Oxford A thesis submitted for the degree of MSc Mathematical and Computational Finance June 24, 2016

More information

An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm

An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm Sanja Lazarova-Molnar, Graham Horton Otto-von-Guericke-Universität Magdeburg Abstract The paradigm of the proxel ("probability

More information

A Stochastic Reserving Today (Beyond Bootstrap)

A Stochastic Reserving Today (Beyond Bootstrap) A Stochastic Reserving Today (Beyond Bootstrap) Presented by Roger M. Hayne, PhD., FCAS, MAAA Casualty Loss Reserve Seminar 6-7 September 2012 Denver, CO CAS Antitrust Notice The Casualty Actuarial Society

More information

Modeling Portfolios that Contain Risky Assets Stochastic Models I: One Risky Asset

Modeling Portfolios that Contain Risky Assets Stochastic Models I: One Risky Asset Modeling Portfolios that Contain Risky Assets Stochastic Models I: One Risky Asset C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling March 25, 2014 version c 2014

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Convergence analysis of multifidelity Monte Carlo estimation

Convergence analysis of multifidelity Monte Carlo estimation Noname manuscript No. (will be inserted by the editor) Convergence analysis of multifidelity Monte Carlo estimation Benjamin Peherstorfer Max Gunzburger Karen Willcox Received: date / Accepted: date Abstract

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Other Miscellaneous Topics and Applications of Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Application of MCMC Algorithm in Interest Rate Modeling

Application of MCMC Algorithm in Interest Rate Modeling Application of MCMC Algorithm in Interest Rate Modeling Xiaoxia Feng and Dejun Xie Abstract Interest rate modeling is a challenging but important problem in financial econometrics. This work is concerned

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Multilevel path simulation for jump-diffusion SDEs

Multilevel path simulation for jump-diffusion SDEs Multilevel path simulation for jump-diffusion SDEs Yuan Xia, Michael B. Giles Abstract We investigate the extension of the multilevel Monte Carlo path simulation method to jump-diffusion SDEs. We consider

More information

Laplace approximation

Laplace approximation NPFL108 Bayesian inference Approximate Inference Laplace approximation Filip Jurčíček Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic Home page: http://ufal.mff.cuni.cz/~jurcicek

More information

A New Multivariate Kurtosis and Its Asymptotic Distribution

A New Multivariate Kurtosis and Its Asymptotic Distribution A ew Multivariate Kurtosis and Its Asymptotic Distribution Chiaki Miyagawa 1 and Takashi Seo 1 Department of Mathematical Information Science, Graduate School of Science, Tokyo University of Science, Tokyo,

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

High Dimensional Bayesian Optimisation and Bandits via Additive Models

High Dimensional Bayesian Optimisation and Bandits via Additive Models 1/20 High Dimensional Bayesian Optimisation and Bandits via Additive Models Kirthevasan Kandasamy, Jeff Schneider, Barnabás Póczos ICML 15 July 8 2015 2/20 Bandits & Optimisation Maximum Likelihood inference

More information

Monte Carlo Based Reliability Analysis

Monte Carlo Based Reliability Analysis Monte Carlo Based Reliability Analysis Martin Schwarz 15 May 2014 Martin Schwarz Monte Carlo Based Reliability Analysis 15 May 2014 1 / 19 Plan of Presentation Description of the problem Monte Carlo Simulation

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

Adaptive Experiments for Policy Choice. March 8, 2019

Adaptive Experiments for Policy Choice. March 8, 2019 Adaptive Experiments for Policy Choice Maximilian Kasy Anja Sautmann March 8, 2019 Introduction The goal of many experiments is to inform policy choices: 1. Job search assistance for refugees: Treatments:

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Des Higham Department of Mathematics University of Strathclyde Montreal, Feb. 2006 p.1/17 Lecture 2, Part 2: Mean Exit Times

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

A distributed Laplace transform algorithm for European options

A distributed Laplace transform algorithm for European options A distributed Laplace transform algorithm for European options 1 1 A. J. Davies, M. E. Honnor, C.-H. Lai, A. K. Parrott & S. Rout 1 Department of Physics, Astronomy and Mathematics, University of Hertfordshire,

More information

An Improved Skewness Measure

An Improved Skewness Measure An Improved Skewness Measure Richard A. Groeneveld Professor Emeritus, Department of Statistics Iowa State University ragroeneveld@valley.net Glen Meeden School of Statistics University of Minnesota Minneapolis,

More information

Lecture Note 9 of Bus 41914, Spring Multivariate Volatility Models ChicagoBooth

Lecture Note 9 of Bus 41914, Spring Multivariate Volatility Models ChicagoBooth Lecture Note 9 of Bus 41914, Spring 2017. Multivariate Volatility Models ChicagoBooth Reference: Chapter 7 of the textbook Estimation: use the MTS package with commands: EWMAvol, marchtest, BEKK11, dccpre,

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

The Evaluation of American Compound Option Prices under Stochastic Volatility. Carl Chiarella and Boda Kang

The Evaluation of American Compound Option Prices under Stochastic Volatility. Carl Chiarella and Boda Kang The Evaluation of American Compound Option Prices under Stochastic Volatility Carl Chiarella and Boda Kang School of Finance and Economics University of Technology, Sydney CNR-IMATI Finance Day Wednesday,

More information

MONTE CARLO EXTENSIONS

MONTE CARLO EXTENSIONS MONTE CARLO EXTENSIONS School of Mathematics 2013 OUTLINE 1 REVIEW OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO 3 SUMMARY MONTE CARLO SO FAR... Simple to program

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #6 EPSY 905: Maximum Likelihood In This Lecture The basics of maximum likelihood estimation Ø The engine that

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Financial Times Series. Lecture 6

Financial Times Series. Lecture 6 Financial Times Series Lecture 6 Extensions of the GARCH There are numerous extensions of the GARCH Among the more well known are EGARCH (Nelson 1991) and GJR (Glosten et al 1993) Both models allow for

More information

Multilevel Monte Carlo methods for finance

Multilevel Monte Carlo methods for finance Multilevel Monte Carlo methods for finance Mike Giles Mathematical Institute, University of Oxford Oxford-Man Institute of Quantitative Finance HPCFinance Final Conference March 14, 2016 Mike Giles (Oxford)

More information

European option pricing under parameter uncertainty

European option pricing under parameter uncertainty European option pricing under parameter uncertainty Martin Jönsson (joint work with Samuel Cohen) University of Oxford Workshop on BSDEs, SPDEs and their Applications July 4, 2017 Introduction 2/29 Introduction

More information

Lattice (Binomial Trees) Version 1.2

Lattice (Binomial Trees) Version 1.2 Lattice (Binomial Trees) Version 1. 1 Introduction This plug-in implements different binomial trees approximations for pricing contingent claims and allows Fairmat to use some of the most popular binomial

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

Statistical Methods in Financial Risk Management

Statistical Methods in Financial Risk Management Statistical Methods in Financial Risk Management Lecture 1: Mapping Risks to Risk Factors Alexander J. McNeil Maxwell Institute of Mathematical Sciences Heriot-Watt University Edinburgh 2nd Workshop on

More information

Construction and behavior of Multinomial Markov random field models

Construction and behavior of Multinomial Markov random field models Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2010 Construction and behavior of Multinomial Markov random field models Kim Mueller Iowa State University Follow

More information

The Multinomial Logit Model Revisited: A Semiparametric Approach in Discrete Choice Analysis

The Multinomial Logit Model Revisited: A Semiparametric Approach in Discrete Choice Analysis The Multinomial Logit Model Revisited: A Semiparametric Approach in Discrete Choice Analysis Dr. Baibing Li, Loughborough University Wednesday, 02 February 2011-16:00 Location: Room 610, Skempton (Civil

More information

15 : Approximate Inference: Monte Carlo Methods

15 : Approximate Inference: Monte Carlo Methods 10-708: Probabilistic Graphical Models 10-708, Spring 2016 15 : Approximate Inference: Monte Carlo Methods Lecturer: Eric P. Xing Scribes: Binxuan Huang, Yotam Hechtlinger, Fuchen Liu 1 Introduction to

More information

CS 774 Project: Fall 2009 Version: November 27, 2009

CS 774 Project: Fall 2009 Version: November 27, 2009 CS 774 Project: Fall 2009 Version: November 27, 2009 Instructors: Peter Forsyth, paforsyt@uwaterloo.ca Office Hours: Tues: 4:00-5:00; Thurs: 11:00-12:00 Lectures:MWF 3:30-4:20 MC2036 Office: DC3631 CS

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 2 Random number generation January 18, 2018

More information