Lecture 2: Rough Heston models: Pricing and hedging

Size: px
Start display at page:

Download "Lecture 2: Rough Heston models: Pricing and hedging"

Transcription

1 Lecture 2: Rough Heston models: Pricing and hedging Mathieu Rosenbaum École Polytechnique European Summer School in Financial Mathematics, Dresden August 217 Mathieu Rosenbaum Rough Heston models 1

2 Table of contents 1 Introduction Mathieu Rosenbaum Rough Heston models 2

3 Table of contents 1 Introduction Mathieu Rosenbaum Rough Heston models 3

4 A well-know stochastic volatility model The Heston model A very popular stochastic volatility model for a stock price is the Heston model : ds t = S t Vt dw t dv t = λ(θ V t )dt + λν V t db t, dw t, db t = ρdt. Popularity of the Heston model Reproduces several important features of low frequency price data : leverage effect, time-varying volatility, fat tails,... Provides quite reasonable dynamics for the volatility surface. Explicit formula for the characteristic function of the asset log-price very efficient model calibration procedures. Mathieu Rosenbaum Rough Heston models 4

5 But... Volatility is rough! In Heston model, volatility follows a Brownian diffusion. It is shown in Gatheral et al. that log-volatility time series behave in fact like a fractional Brownian motion, with Hurst parameter of order.1. More precisely, basically all the statistical stylized facts of volatility are retrieved when modeling it by a rough fractional Brownian motion. From Alos, Fukasawa and Bayer et al., we know that such model also enables us to reproduce very well the behavior of the implied volatility surface, in particular the at-the-money skew (without jumps). Mathieu Rosenbaum Rough Heston models 5

6 Fractional Brownian motion (I) Definition The fractional Brownian motion with Hurst parameter H is the only process W H to satisfy : Self-similarity : (W H at ) L = a H (W H t ). Stationary increments : (W H t+h W H t ) L = (W H h ). Gaussian process with E[W H 1 ] = and E[(W H 1 )2 ] = 1. Mathieu Rosenbaum Rough Heston models 6

7 Fractional Brownian motion (II) Proposition For all ε >, W H is (H ε)-hölder a.s. Proposition The absolute moments satisfy E[ W H t+h W H t q ] = K q h Hq. Mandelbrot-van Ness representation t Wt H = dw ( s (t s) H 1 (t s) H ( s) 1 2 H ) dw s. Mathieu Rosenbaum Rough Heston models 7

8 Modifying Heston model Rough Heston model It is natural to modify Heston model and consider its rough version : ds t = S t Vt dw t V t = V + 1 Γ(α) t (t s) α 1 λ(θ V s )ds + λν Γ(α) with dw t, db t = ρdt and α (1/2, 1). t (t s) α 1 V s db s, Mathieu Rosenbaum Rough Heston models 8

9 Pricing in Heston models Classical Heston model From simple arguments based on the Markovian structure of the model and Ito s formula, we get that in the classical Heston model, the characteristic function of the log-price X t = log(s t /S ) satisfies E[e iaxt ] = exp ( g(a, t) + V h(a, t) ), where h is solution of the following Riccati equation : t h = 1 2 ( a2 ia)+λ(iaρν 1)h(a, s)+ (λν)2 h 2 (a, s), h(a, ) =, 2 and t g(a, t) = θλ h(a, s)ds. Mathieu Rosenbaum Rough Heston models 9

10 Pricing in Heston models (2) Rough Heston models Pricing in rough models is much more intricate : Monte-Carlo for rough (non-heston) models : Bayer et al., Bennedsen et al., Horvath et al., McCrickerd and Pakkanen. Asymptotic formulas : Bayer et al., Forde et al., Jacquier et al. This work Goal : Deriving a Heston like formula in the rough case, together with hedging strategies. Tool : The microstructural foundations of rough volatility models based on Hawkes processes. We build a sequence of relevant high frequency models converging to our rough Heston process. We compute their characteristic function and pass to the limit. Mathieu Rosenbaum Rough Heston models 1

11 Bibliography Main references El Euch and Rosenbaum : The characteristic function of rough Heston models (16). El Euch and Rosenbaum : Perfect hedging in rough Heston models (17). Advertisement Eduardo Abi Jaber s talk. Abi Jaber, Larsson, Pulido and Gatheral, Keller-Ressel forthcoming works. Mathieu Rosenbaum Rough Heston models 11

12 Table of contents 1 Introduction Mathieu Rosenbaum Rough Heston models 12

13 Building the model Necessary conditions for a good microscopic price model We want : A tick-by-tick model. A model reproducing the stylized facts of modern electronic markets in the context of high frequency trading. A model helping us to understand the rough dynamics of the volatility from the high frequency behavior of market participants. A model helping us to understand leverage effect. A model helping us to derive a Heston like formula and hedging strategies. Mathieu Rosenbaum Rough Heston models 13

14 Digression : How is leverage effect generated? Traditional macroscopic explanations for leverage effect Asset price declines company becomes automatically more leveraged since the ratio of its debt with respect to the equity value becomes larger risk of the asset (the volatility) should become more important. Forecast of an increase of the volatility should be compensated by a higher rate of return, which can only be obtained through a decrease in the asset value. Microstructural component for leverage effect? We want to address the following question : Can leverage effect be partly generated from high frequency features of the asset? Mathieu Rosenbaum Rough Heston models 14

15 Building the model Stylized facts 1-2 Markets are highly endogenous, meaning that most of the orders have no real economic motivations but are rather sent by algorithms in reaction to other orders, see Bouchaud et al., Filimonov and Sornette. Mechanisms preventing statistical arbitrages take place on high frequency markets, meaning that at the high frequency scale, building strategies that are on average profitable is hardly possible. Mathieu Rosenbaum Rough Heston models 15

16 Building the model Stylized facts 3-4 There is some asymmetry in the liquidity on the bid and ask sides of the order book. In particular, a market maker is likely to raise the price by less following a buy order than to lower the price following the same size sell order, see Brennan et al., Brunnermeier and Pedersen, Hendershott and Seasholes. A large proportion of transactions is due to large orders, called metaorders, which are not executed at once but split in time. Mathieu Rosenbaum Rough Heston models 16

17 Building the model Hawkes processes Our tick-by-tick price model is based on Hawkes processes in dimension two, very much inspired by the approaches in Bacry et al. and Jaisson and R. A two-dimensional Hawkes process is a bivariate point process (N + t, N t ) t taking values in (R + ) 2 and with intensity (λ + t, λ t ) of the form : ( ) ( λ + t µ + = λ t µ ) t + ( ) ( ϕ1 (t s) ϕ 3 (t s) dn +. s ϕ 2 (t s) ϕ 4 (t s) dns ). Mathieu Rosenbaum Rough Heston models 17

18 Building the model The microscopic price model Our model is simply given by P t = N + t N t. N t + corresponds to the number of upward jumps of the asset in the time interval [, t] and Nt to the number of downward jumps. Hence, the instantaneous probability to get an upward (downward) jump depends on the location in time of the past upward and downward jumps. By construction, the price process lives on a discrete grid. Statistical properties of this model have been studied in details. Mathieu Rosenbaum Rough Heston models 18

19 Encoding the stylized facts The right parametrization of the model Recall that ( ) ( λ + t µ + = λ t µ ) t + ( ) ( ϕ1 (t s) ϕ 3 (t s) dn +. s ϕ 2 (t s) ϕ 4 (t s) dns High degree of endogeneity of the market L 1 norm of the largest eigenvalue of the kernel matrix close to one. No arbitrage ϕ 1 + ϕ 3 = ϕ 2 + ϕ 4. Liquidity asymmetry ϕ 3 = βϕ 2, with β > 1. Metaorders splitting ϕ 1 (x), ϕ 2 (x) ). K/x 1+α, α.6. x Mathieu Rosenbaum Rough Heston models 19

20 The scaling limit of the price model Limit theorem After suitable scaling in time and space, the long term limit of our price model satisfies the following rough Heston dynamics : V t = V + 1 Γ(α) with t P t = t Vs dw s 1 t V s ds, 2 (t s) α 1 λ(θ V s )ds + λν Γ(α) d W, B t = t (t s) α 1 V s db s, 1 β 2(1 + β 2 ) dt. Mathieu Rosenbaum Rough Heston models 2

21 The scaling limit of the price model Comments on the theorem The Hurst parameter H = α 1/2. Hence stylized facts of modern market microstructure naturally give rise to fractional dynamics and leverage effect. One of the only cases of scaling limit of a non ad hoc micro model where leverage effect appears in the limit. Compare with Nelson s limit of GARCH models for example. Uniqueness of the limiting solution is a difficult result. The proof requires the use of recent results in SPDEs theory by Mytnik and Salisbury. Obtaining a non-zero starting value for the volatility is a tricky point. To do so, we in fact consider a time-dependent µ. Mathieu Rosenbaum Rough Heston models 21

22 Table of contents 1 Introduction Mathieu Rosenbaum Rough Heston models 22

23 A general case Multidimensional Hawkes process To obtain the characteristic function of our microscopic price process, we derive the characteristic function of multidimensional Hawkes processes. Let us consider a d-dimensional Hawkes process N = (N 1,..., N d ) with intensity λ 1 t λ t =. λ d t = µ(t) + t φ(t s).dn s. Mathieu Rosenbaum Rough Heston models 23

24 Multidimensional Hawkes process Population interpretation Migrants of type k {1,.., d} arrive as a non-homogenous Poisson process with rate µ k (t). Each migrant of type k {1,.., d} gives birth to children of type j {1,.., d} following a non-homogenous Poisson process with rate φ j,k (t). Each child of type k {1,.., d} also gives birth to other children of type j {1,.., d} following a non-homogenous Poisson process with rate φ j,k (t). Mathieu Rosenbaum Rough Heston models 24

25 Multidimensional Hawkes process Towards the characteristic function Let (Ñ k,j ) 1 j d be d multivariate Hawkes processes with migrant rate (φ j,k ) 1 j d (for given k) and kernel matrix φ. Let Nt,k be the number of migrants of type k arrived up to time t of the initial Hawkes process. Let T1 k <... < T k N,k t type k. We have [, t] the arrival times of migrants of Nt k = Nt,k + law 1 j d 1 l N,j t Ñ j,k,(l) t T j l where the (Ñ j,k,(l) ) are independent copies of (Ñ j,k )., Mathieu Rosenbaum Rough Heston models 25

26 Characteristic function of multidimensional Hawkes processes Theorem We have E[exp(ia.N t )] = exp ( t ( ) ) C(a, t s) 1.µ(s)ds, where C : R d R + C d is solution of the following integral equation : C(a, t) = exp ( t ia + φ (s).(c(a, t s) 1)ds ). Mathieu Rosenbaum Rough Heston models 26

27 Deriving the characteristic function of the rough Heston model Strategy From our last theorem, we are able to derive the characteristic function of our high frequency price model. We then pass to the limit. Mathieu Rosenbaum Rough Heston models 27

28 We write : I 1 α f (x) = 1 x Γ(1 α) f (t) (x t) α dt, Dα f (x) = d dx I 1 α f (x). Theorem The characteristic function at time t for the rough Heston model is given by ( t exp g(a, s)ds + V ) θλ I 1 α g(a, t), with g(a, ) the unique solution of the fractional Riccati equation : D α g(a, s) = λθ 2 ( a2 ia) + λ(iaρν 1)g(a, s) + λν2 2θ g 2 (a, s). Mathieu Rosenbaum Rough Heston models 28

29 Table of contents 1 Introduction Mathieu Rosenbaum Rough Heston models 29

30 Dynamics of a European option price Consider a European option with payoff f (log(s T )). We study the dynamics of C T t = E[f (log(s T )) F t ]; t T. Define P T t (a) = E[exp(ia log(s T )) F t ]; a R. Fourier based hedging Writing ˆf for the Fourier transform of f, we have Ct T = 1 ˆf (a)pt T (a)da; dct T = 1 ˆf (a)dpt T (a)da. 2π 2π a R a R Mathieu Rosenbaum Rough Heston models 3

31 Conditional law of the rough Heston model Theorem The law of the process (S t t, V t t ) t = (S t+t, V t+t ) t is that of a rough Heston model with the following dynamics : ds t t = S t t V t t dw t t ; S t = S t, V t t =V t + 1 Γ(α) t t (t s) α 1 λ ( θ t (s) V t ) λν s ds+ (t s) α 1 V t s db t Γ(α) where (W t t, B t t ) = (W t +t W t, B t +t B t ) and θ t is an explicit F t -measurable process, depending on (V u ) u t. s, Mathieu Rosenbaum Rough Heston models 31

32 Generalized rough Heston model Generalized rough Heston So we naturally generalize the definition of the rough Heston model as follows : ds t = S t Vt dw t V t = V + 1 Γ(α) t (t s) α 1 λ(θ (s) V s )ds+ λν Γ(α) with dw t, db t = ρdt, α (1/2, 1). t (t s) α 1 V s db s, Mathieu Rosenbaum Rough Heston models 32

33 Characteristic function of the generalized rough-heston model Using the Hawkes framework, we get the following result : Theorem The characteristic function of log(s t /S ) in the generalized rough Heston model is given by exp ( t h(a, t s)(λθ s α (s) + V Γ(1 α) ds)), where h is the unique solution of the fractional Riccati equation D α h(a, t) = 1 2 ( a2 ia) + λ(iaρν 1)h(a, s) + (λν)2 h 2 (a, s). 2 Mathieu Rosenbaum Rough Heston models 33

34 Link between the characteristic function and the forward variance curve Link between θ and the forward variance curve θ. = D α (E[V. ] V ) + E[V. ]. Suitable expression for the characteristic function The characteristic function can be written as follows : with exp ( t g(a, t s)e[v s ]ds ), g(a, t) = 1 2 ( a2 ia) + λiaρνh(a, s) + (λν)2 h 2 (a, s). 2 Mathieu Rosenbaum Rough Heston models 34

35 Dynamics of a European option price Recall that P T t (a) = E[exp(ia log(s T )) F t ]. The conditional law of the rough Heston model being a generalized rough Heston, we deduce the following theorem : Theorem and P T t (a) = exp ( ia log(s t ) + T t g(a, s)e[v T s F t ]ds ) dp T t (a) = iap T t (a) ds t S t T t + Pt T (a) g(a, s)de[v T s F t ]ds. We can perfectly hedge the option with the underlying stock and the forward variance curve! (at least theoretically) Mathieu Rosenbaum Rough Heston models 35

36 Calibration We collect S&P implied volatility surface, from Bloomberg, for different maturities T j =.25,.5, 1, 1.5, 2 years, and different moneyness K/S =.8,.9,.95,.975, 1., 1.25, 1.5, 1.1, 1.2. Calibration results on data of 7 January 21 : ρ =.68; ν =.35; H =.9. Mathieu Rosenbaum Rough Heston models 36

37 Calibration results : Market vs model implied volatilities, 7 January 21 Mathieu Rosenbaum Rough Heston models 37

38 Calibration results : Market vs model implied volatilities, 7 January 21 Mathieu Rosenbaum Rough Heston models 38

39 Stability : Results on 8 February 21 (one month after calibration) Mathieu Rosenbaum Rough Heston models 39

40 Stability : Results on 8 February 21 (one month after calibration) Mathieu Rosenbaum Rough Heston models 4

41 Stability : Results on 7 April 21 (three months after calibration) Mathieu Rosenbaum Rough Heston models 41

42 Stability : Results on 7 April 21 (three months after calibration) Mathieu Rosenbaum Rough Heston models 42

Rough Heston models: Pricing, hedging and microstructural foundations

Rough Heston models: Pricing, hedging and microstructural foundations Rough Heston models: Pricing, hedging and microstructural foundations Omar El Euch 1, Jim Gatheral 2 and Mathieu Rosenbaum 1 1 École Polytechnique, 2 City University of New York 7 November 2017 O. El Euch,

More information

Rough volatility models: When population processes become a new tool for trading and risk management

Rough volatility models: When population processes become a new tool for trading and risk management Rough volatility models: When population processes become a new tool for trading and risk management Omar El Euch and Mathieu Rosenbaum École Polytechnique 4 October 2017 Omar El Euch and Mathieu Rosenbaum

More information

Pricing and hedging with rough-heston models

Pricing and hedging with rough-heston models Pricing and hedging with rough-heston models Omar El Euch, Mathieu Rosenbaum Ecole Polytechnique 1 January 216 El Euch, Rosenbaum Pricing and hedging with rough-heston models 1 Table of contents Introduction

More information

Rough volatility models

Rough volatility models Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de October 18, 2018 Weierstrass Institute for Applied Analysis and Stochastics Rough volatility models Christian Bayer EMEA Quant

More information

No-arbitrage and the decay of market impact and rough volatility: a theory inspired by Jim

No-arbitrage and the decay of market impact and rough volatility: a theory inspired by Jim No-arbitrage and the decay of market impact and rough volatility: a theory inspired by Jim Mathieu Rosenbaum École Polytechnique 14 October 2017 Mathieu Rosenbaum Rough volatility and no-arbitrage 1 Table

More information

How persistent and regular is really volatility? The Rough FSV model. Jim Gatheral, Thibault Jaisson and Mathieu Rosenbaum. Monday 17 th November 2014

How persistent and regular is really volatility? The Rough FSV model. Jim Gatheral, Thibault Jaisson and Mathieu Rosenbaum. Monday 17 th November 2014 How persistent and regular is really volatility?. Jim Gatheral, and Mathieu Rosenbaum Groupe de travail Modèles Stochastiques en Finance du CMAP Monday 17 th November 2014 Table of contents 1 Elements

More information

On VIX Futures in the rough Bergomi model

On VIX Futures in the rough Bergomi model On VIX Futures in the rough Bergomi model Oberwolfach Research Institute for Mathematics, February 28, 2017 joint work with Antoine Jacquier and Claude Martini Contents VIX future dynamics under rbergomi

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Order driven markets : from empirical properties to optimal trading

Order driven markets : from empirical properties to optimal trading Order driven markets : from empirical properties to optimal trading Frédéric Abergel Latin American School and Workshop on Data Analysis and Mathematical Modelling of Social Sciences 9 november 2016 F.

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

Beyond the Black-Scholes-Merton model

Beyond the Black-Scholes-Merton model Econophysics Lecture Leiden, November 5, 2009 Overview 1 Limitations of the Black-Scholes model 2 3 4 Limitations of the Black-Scholes model Black-Scholes model Good news: it is a nice, well-behaved model

More information

«Quadratic» Hawkes processes (for financial price series)

«Quadratic» Hawkes processes (for financial price series) «Quadratic» Hawkes processes (for financial price series) Fat-tails and Time Reversal Asymmetry Pierre Blanc, Jonathan Donier, JPB (building on previous work with Rémy Chicheportiche & Steve Hardiman)

More information

Recent Advances in Fractional Stochastic Volatility Models

Recent Advances in Fractional Stochastic Volatility Models Recent Advances in Fractional Stochastic Volatility Models Alexandra Chronopoulou Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign IPAM National Meeting of Women in

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Remarks on rough Bergomi: asymptotics and calibration

Remarks on rough Bergomi: asymptotics and calibration Department of Mathematics, Imperial College London Advances in Financial Mathematics, Paris, January 2017 Based on joint works with C Martini, A Muguruza, M Pakkanen and H Stone January 11, 2017 Implied

More information

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives Weierstrass Institute for Applied Analysis and Stochastics LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives John Schoenmakers 9th Summer School in Mathematical Finance

More information

QUANTITATIVE FINANCE RESEARCH CENTRE. Regime Switching Rough Heston Model QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE

QUANTITATIVE FINANCE RESEARCH CENTRE. Regime Switching Rough Heston Model QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 387 January 2018 Regime Switching Rough Heston Model Mesias Alfeus and Ludger

More information

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance Saddlepoint Approximation Methods for Pricing Financial Options on Discrete Realized Variance Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology Hong Kong * This is

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Calibration Lecture 4: LSV and Model Uncertainty

Calibration Lecture 4: LSV and Model Uncertainty Calibration Lecture 4: LSV and Model Uncertainty March 2017 Recap: Heston model Recall the Heston stochastic volatility model ds t = rs t dt + Y t S t dw 1 t, dy t = κ(θ Y t ) dt + ξ Y t dw 2 t, where

More information

Rough volatility: An overview

Rough volatility: An overview Rough volatility: An overview Jim Gatheral (joint work with Christian Bayer, Peter Friz, Omar El Euch, Masaaki Fukasawa, Thibault Jaisson, and Mathieu Rosenbaum) Advances in Financial Mathematics Paris,

More information

Stochastic Volatility (Working Draft I)

Stochastic Volatility (Working Draft I) Stochastic Volatility (Working Draft I) Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu 1 Introduction When using the Black-Scholes-Merton model to price derivative

More information

Rough volatility: An overview

Rough volatility: An overview Rough volatility: An overview Jim Gatheral Financial Engineering Practitioners Seminar, Columbia University, Monday January 22, 2018 Outline of this talk The term structure of the implied volatility skew

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

Extrapolation analytics for Dupire s local volatility

Extrapolation analytics for Dupire s local volatility Extrapolation analytics for Dupire s local volatility Stefan Gerhold (joint work with P. Friz and S. De Marco) Vienna University of Technology, Austria 6ECM, July 2012 Implied vol and local vol Implied

More information

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen Parametric Inference and Dynamic State Recovery from Option Panels Torben G. Andersen Joint work with Nicola Fusari and Viktor Todorov The Third International Conference High-Frequency Data Analysis in

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

Credit Risk : Firm Value Model

Credit Risk : Firm Value Model Credit Risk : Firm Value Model Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe and Karlsruhe Institute of Technology (KIT) Prof. Dr. Svetlozar Rachev

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Heston vs Heston. Antoine Jacquier. Department of Mathematics, Imperial College London. ICASQF, Cartagena, Colombia, June 2016

Heston vs Heston. Antoine Jacquier. Department of Mathematics, Imperial College London. ICASQF, Cartagena, Colombia, June 2016 Department of Mathematics, Imperial College London ICASQF, Cartagena, Colombia, June 2016 - Joint work with Fangwei Shi June 18, 2016 Implied volatility About models Calibration Implied volatility Asset

More information

Paper Review Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit by Jose da Fonseca and Riadh Zaatour

Paper Review Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit by Jose da Fonseca and Riadh Zaatour Paper Review Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit by Jose da Fonseca and Riadh Zaatour Xin Yu Zhang June 13, 2018 Mathematical and Computational Finance

More information

Parametric Inference and Dynamic State Recovery from Option Panels. Nicola Fusari

Parametric Inference and Dynamic State Recovery from Option Panels. Nicola Fusari Parametric Inference and Dynamic State Recovery from Option Panels Nicola Fusari Joint work with Torben G. Andersen and Viktor Todorov July 2012 Motivation Under realistic assumptions derivatives are nonredundant

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

arxiv: v2 [q-fin.pr] 23 Nov 2017

arxiv: v2 [q-fin.pr] 23 Nov 2017 VALUATION OF EQUITY WARRANTS FOR UNCERTAIN FINANCIAL MARKET FOAD SHOKROLLAHI arxiv:17118356v2 [q-finpr] 23 Nov 217 Department of Mathematics and Statistics, University of Vaasa, PO Box 7, FIN-6511 Vaasa,

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (42 pts) Answer briefly the following questions. 1. Questions

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Smile in the low moments

Smile in the low moments Smile in the low moments L. De Leo, T.-L. Dao, V. Vargas, S. Ciliberti, J.-P. Bouchaud 10 jan 2014 Outline 1 The Option Smile: statics A trading style The cumulant expansion A low-moment formula: the moneyness

More information

European option pricing under parameter uncertainty

European option pricing under parameter uncertainty European option pricing under parameter uncertainty Martin Jönsson (joint work with Samuel Cohen) University of Oxford Workshop on BSDEs, SPDEs and their Applications July 4, 2017 Introduction 2/29 Introduction

More information

Short-time asymptotics for ATM option prices under tempered stable processes

Short-time asymptotics for ATM option prices under tempered stable processes Short-time asymptotics for ATM option prices under tempered stable processes José E. Figueroa-López 1 1 Department of Statistics Purdue University Probability Seminar Purdue University Oct. 30, 2012 Joint

More information

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models Large Deviations and Stochastic Volatility with Jumps: TU Berlin with A. Jaquier and A. Mijatović (Imperial College London) SIAM conference on Financial Mathematics, Minneapolis, MN July 10, 2012 Implied

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Modeling and Pricing of Variance Swaps for Local Stochastic Volatilities with Delay and Jumps

Modeling and Pricing of Variance Swaps for Local Stochastic Volatilities with Delay and Jumps Modeling and Pricing of Variance Swaps for Local Stochastic Volatilities with Delay and Jumps Anatoliy Swishchuk Department of Mathematics and Statistics University of Calgary Calgary, AB, Canada QMF 2009

More information

A Consistent Pricing Model for Index Options and Volatility Derivatives

A Consistent Pricing Model for Index Options and Volatility Derivatives A Consistent Pricing Model for Index Options and Volatility Derivatives 6th World Congress of the Bachelier Society Thomas Kokholm Finance Research Group Department of Business Studies Aarhus School of

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

Counterparty Credit Risk Simulation

Counterparty Credit Risk Simulation Counterparty Credit Risk Simulation Alex Yang FinPricing http://www.finpricing.com Summary Counterparty Credit Risk Definition Counterparty Credit Risk Measures Monte Carlo Simulation Interest Rate Curve

More information

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL FABIO MERCURIO BANCA IMI, MILAN http://www.fabiomercurio.it 1 Stylized facts Traders use the Black-Scholes formula to price plain-vanilla options. An

More information

Developments in Volatility Derivatives Pricing

Developments in Volatility Derivatives Pricing Developments in Volatility Derivatives Pricing Jim Gatheral Global Derivatives 2007 Paris, May 23, 2007 Motivation We would like to be able to price consistently at least 1 options on SPX 2 options on

More information

Semi-Markov model for market microstructure and HFT

Semi-Markov model for market microstructure and HFT Semi-Markov model for market microstructure and HFT LPMA, University Paris Diderot EXQIM 6th General AMaMeF and Banach Center Conference 10-15 June 2013 Joint work with Huyên PHAM LPMA, University Paris

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

Two-dimensional COS method

Two-dimensional COS method Two-dimensional COS method Marjon Ruijter Winterschool Lunteren 22 January 2013 1/29 Introduction PhD student since October 2010 Prof.dr.ir. C.W. Oosterlee). CWI national research center for mathematics

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

Option Pricing Modeling Overview

Option Pricing Modeling Overview Option Pricing Modeling Overview Liuren Wu Zicklin School of Business, Baruch College Options Markets Liuren Wu (Baruch) Stochastic time changes Options Markets 1 / 11 What is the purpose of building a

More information

Polynomial processes in stochastic portofolio theory

Polynomial processes in stochastic portofolio theory Polynomial processes in stochastic portofolio theory Christa Cuchiero University of Vienna 9 th Bachelier World Congress July 15, 2016 Christa Cuchiero (University of Vienna) Polynomial processes in SPT

More information

Calculating Implied Volatility

Calculating Implied Volatility Statistical Laboratory University of Cambridge University of Cambridge Mathematics and Big Data Showcase 20 April 2016 How much is an option worth? A call option is the right, but not the obligation, to

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Stochastic Volatility and Jump Modeling in Finance

Stochastic Volatility and Jump Modeling in Finance Stochastic Volatility and Jump Modeling in Finance HPCFinance 1st kick-off meeting Elisa Nicolato Aarhus University Department of Economics and Business January 21, 2013 Elisa Nicolato (Aarhus University

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

say. With x the critical value at which it is optimal to invest, (iii) and (iv) give V (x ) = x I, V (x ) = 1.

say. With x the critical value at which it is optimal to invest, (iii) and (iv) give V (x ) = x I, V (x ) = 1. m3f22l3.tex Lecture 3. 6.2.206 Real options (continued). For (i): this comes from the generator of the diffusion GBM(r, σ) (cf. the SDE for GBM(r, σ), and Black-Scholes PDE, VI.2); for details, see [DP

More information

One-Factor Models { 1 Key features of one-factor (equilibrium) models: { All bond prices are a function of a single state variable, the short rate. {

One-Factor Models { 1 Key features of one-factor (equilibrium) models: { All bond prices are a function of a single state variable, the short rate. { Fixed Income Analysis Term-Structure Models in Continuous Time Multi-factor equilibrium models (general theory) The Brennan and Schwartz model Exponential-ane models Jesper Lund April 14, 1998 1 Outline

More information

Generalized Affine Transform Formulae and Exact Simulation of the WMSV Model

Generalized Affine Transform Formulae and Exact Simulation of the WMSV Model On of Affine Processes on S + d Generalized Affine and Exact Simulation of the WMSV Model Department of Mathematical Science, KAIST, Republic of Korea 2012 SIAM Financial Math and Engineering joint work

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Are stylized facts irrelevant in option-pricing?

Are stylized facts irrelevant in option-pricing? Are stylized facts irrelevant in option-pricing? Kyiv, June 19-23, 2006 Tommi Sottinen, University of Helsinki Based on a joint work No-arbitrage pricing beyond semimartingales with C. Bender, Weierstrass

More information

Financial Mathematics and Supercomputing

Financial Mathematics and Supercomputing GPU acceleration in early-exercise option valuation Álvaro Leitao and Cornelis W. Oosterlee Financial Mathematics and Supercomputing A Coruña - September 26, 2018 Á. Leitao & Kees Oosterlee SGBM on GPU

More information

Carnets d ordres pilotés par des processus de Hawkes

Carnets d ordres pilotés par des processus de Hawkes Carnets d ordres pilotés par des processus de Hawkes workshop sur les Mathématiques des marchés financiers en haute fréquence Frédéric Abergel Chaire de finance quantitative fiquant.mas.ecp.fr/limit-order-books

More information

Stochastic Volatility Modeling

Stochastic Volatility Modeling Stochastic Volatility Modeling Jean-Pierre Fouque University of California Santa Barbara 28 Daiwa Lecture Series July 29 - August 1, 28 Kyoto University, Kyoto 1 References: Derivatives in Financial Markets

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions 11/4/ / 24

Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions 11/4/ / 24 Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions Liuren Wu, Baruch College and Graduate Center Joint work with Peter Carr, New York University and Morgan Stanley CUNY Macroeconomics

More information

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena Dipartimento di Economia Politica Università di Siena 2 March 2010 / Scuola Normale Superiore What is? The definition of volatility may vary wildly around the idea of the standard deviation of price movements

More information

Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing Fitting SPX Forecasting. Rough volatility

Implied volatility Stochastic volatility Realized volatility The RFSV model Pricing Fitting SPX Forecasting. Rough volatility Rough volatility Jim Gatheral (joint work with Christian Bayer, Peter Friz, Thibault Jaisson, Andrew Lesniewski, and Mathieu Rosenbaum) Cornell Financial Engineering Seminar, New York, Wednesday December

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

Conditional Density Method in the Computation of the Delta with Application to Power Market

Conditional Density Method in the Computation of the Delta with Application to Power Market Conditional Density Method in the Computation of the Delta with Application to Power Market Asma Khedher Centre of Mathematics for Applications Department of Mathematics University of Oslo A joint work

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

Asset-based Estimates for Default Probabilities for Commercial Banks

Asset-based Estimates for Default Probabilities for Commercial Banks Asset-based Estimates for Default Probabilities for Commercial Banks Statistical Laboratory, University of Cambridge September 2005 Outline Structural Models Structural Models Model Inputs and Outputs

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

Pricing Variance Swaps on Time-Changed Lévy Processes

Pricing Variance Swaps on Time-Changed Lévy Processes Pricing Variance Swaps on Time-Changed Lévy Processes ICBI Global Derivatives Volatility and Correlation Summit April 27, 2009 Peter Carr Bloomberg/ NYU Courant pcarr4@bloomberg.com Joint with Roger Lee

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Girsanov s Theorem. Bernardo D Auria web: July 5, 2017 ICMAT / UC3M

Girsanov s Theorem. Bernardo D Auria   web:   July 5, 2017 ICMAT / UC3M Girsanov s Theorem Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M Girsanov s Theorem Decomposition of P-Martingales as Q-semi-martingales Theorem

More information

Likelihood Estimation of Jump-Diffusions

Likelihood Estimation of Jump-Diffusions Likelihood Estimation of Jump-Diffusions Extensions from Diffusions to Jump-Diffusions, Implementation with Automatic Differentiation, and Applications Berent Ånund Strømnes Lunde DEPARTMENT OF MATHEMATICS

More information

Dependence Structure and Extreme Comovements in International Equity and Bond Markets

Dependence Structure and Extreme Comovements in International Equity and Bond Markets Dependence Structure and Extreme Comovements in International Equity and Bond Markets René Garcia Edhec Business School, Université de Montréal, CIRANO and CIREQ Georges Tsafack Suffolk University Measuring

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Modeling the Implied Volatility Surface. Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003

Modeling the Implied Volatility Surface. Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003 Modeling the Implied Volatility Surface Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003 This presentation represents only the personal opinions of the author and not those

More information

Interest Rate Volatility

Interest Rate Volatility Interest Rate Volatility III. Working with SABR Andrew Lesniewski Baruch College and Posnania Inc First Baruch Volatility Workshop New York June 16-18, 2015 Outline Arbitrage free SABR 1 Arbitrage free

More information

Credit Risk using Time Changed Brownian Motions

Credit Risk using Time Changed Brownian Motions Credit Risk using Time Changed Brownian Motions Tom Hurd Mathematics and Statistics McMaster University Joint work with Alexey Kuznetsov (New Brunswick) and Zhuowei Zhou (Mac) 2nd Princeton Credit Conference

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Haindorf, 7 Februar 2008 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Haindorf, 7 Februar

More information

A Brief Introduction to Stochastic Volatility Modeling

A Brief Introduction to Stochastic Volatility Modeling A Brief Introduction to Stochastic Volatility Modeling Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction When using the Black-Scholes-Merton model to

More information

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models Matthew Dixon and Tao Wu 1 Illinois Institute of Technology May 19th 2017 1 https://papers.ssrn.com/sol3/papers.cfm?abstract

More information

Modelling Credit Spread Behaviour. FIRST Credit, Insurance and Risk. Angelo Arvanitis, Jon Gregory, Jean-Paul Laurent

Modelling Credit Spread Behaviour. FIRST Credit, Insurance and Risk. Angelo Arvanitis, Jon Gregory, Jean-Paul Laurent Modelling Credit Spread Behaviour Insurance and Angelo Arvanitis, Jon Gregory, Jean-Paul Laurent ICBI Counterparty & Default Forum 29 September 1999, Paris Overview Part I Need for Credit Models Part II

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Normal Inverse Gaussian (NIG) Process

Normal Inverse Gaussian (NIG) Process With Applications in Mathematical Finance The Mathematical and Computational Finance Laboratory - Lunch at the Lab March 26, 2009 1 Limitations of Gaussian Driven Processes Background and Definition IG

More information

Short-Time Asymptotic Methods in Financial Mathematics

Short-Time Asymptotic Methods in Financial Mathematics Short-Time Asymptotic Methods in Financial Mathematics José E. Figueroa-López Department of Mathematics Washington University in St. Louis Probability and Mathematical Finance Seminar Department of Mathematical

More information