Exponential Growth and Decay

Size: px
Start display at page:

Download "Exponential Growth and Decay"

Transcription

1 Exponential Growth and Decay

2 Identifying Exponential Growth vs Decay A. Exponential Equation: f(x) = Ca x 1. C: COEFFICIENT 2. a: BASE 3. X: EXPONENT B. Exponential Growth 1. When the base is greater than 1, a > 1 2. f(x) is INCREASING C. Exponential Decay 1. When the base is between zero and one, 0 < a < 1 2. f(x) is DECREASING 2

3 Example 1 Determine whether growth or decay. f x 1 5 x represents exponential Exponential Decay 3

4 Example 2 Determine whether growth or decay. f x x represents exponential Exponential Growth 4

5 Example 3 Determine whether growth or decay. f x x represents exponential Exponential Growth 5

6 Graphing Exponentials A. Make a table of values, usually from [ 3, 3] B. Plot the points from the table C. Connect the dots and draw from left to right, a smooth curve and label any asymptotes 6

7 Example 4 Graph f(x) = 2 x x f(x) (2) 3 (2) 2 (2) 1 (2) 0 (2) 1 (2) 2 (2) 3 1/8 1/4 1/

8 Example 4 Graph f(x) = 2 x x f(x) 3 (2) 3 1/8 2 (2) 2 1/4 1 (2) 1 1/2 0 (2) (2) (2) (2) 3 8 8

9 Example 4 Graph f(x) = 2 x (Calculator check) 9

10 Example 5 Graph f x x x f(x) 3 (1/3)(3) 2 1/81 2 (1/3)(3) 2 1/27 1 (1/3)(3) 1 1/9 0 (1/3)(3) 0 1/3 1 (1/3)(3) (1/3)(3) (1/3)(3)

11 Example 6 Graph f x x x f(x) 3 (1/2)(4) 3 1/128 2 (1/2)(4) 2 1 (1/2)(4) 1 1/32 1/ (1/2)(4) 0 (1/2)(4) 1 (1/2)(4) 2 (1/2)(4) 3 ½

12 Example 6 Graph f x 1 2 x x f(x) 3 (1/2) (1/2) (1/2) (1/2) (1/2) 1 1/2 2 (1/2) 2 1/4 3 (1/2) 3 1/8 12

13 Example 6 Graph f x x 1 2 x f(x) 3 (1/2) (1/2) (1/2) (1/2) (1/2) 1 1/2 2 (1/2) 2 1/4 3 (1/2) 3 1/8 13

14 Growth/Decay Factor Equation A. Equation: A = P (1 + r) t 1. P: Initial Principle 2. +: Growth Factor 3. -: Decay Factor 4. r: Interest Rate 5. t: Time it takes to accrue amount A P 1r t 14

15 Example 7 You invest $5,000 in an account that pays 10% interest per year. How much money will your investment be in 3 years? A P 1r A =? Do you know much you are going to make? P = $5,000 $5,000 is deposited r = 0.10 Interest Rate remember it needs to be in decimal form t = 3 Time it takes to accrue amount + Growth t 15

16 Example 7 You invest $5,000 in an account that pays 10% interest per year. How much money will your investment be in 3 years? A P 1r t A (0.10) 3 A $6,655 16

17 Example 8 You buy a car that cost $5,000 and depreciates 10% per year. What is the value of the car after 3 years? A P 1r A =? Do you know much you are going to make? P = $5,000 $5,000 is spent r = 0.10 Interest Rate remember it needs to be in decimal form t = 3 Time it takes to accrue amount Decay Decreasing Value t 17

18 Example 8 You buy a car that cost $5,000 and depreciates 10% per year. What is the value of the car after 3 years? A P 1r t A (0.10) 3 A $3,645 18

19 Example 9 You buy a car that cost $10,000 and depreciates 10% per year. How much money have you lost, compared to the original amount, in 5 years? $4,

20 Example 10 A P 1r t You invest $5000 in an account that pays 6.25% interest per year. How much money will your investment be in 5 years? Exponential Functions 20

21 Example 10 A P 1r t You invest $5000 in an account that pays 6.25% interest per year. How much money will your investment be in 5 years? A =? Do you know much you are going to make? P = $5,000 $5,000 is deposited r = 6.25% Interest Rate remember it needs to be in decimal form t = 5 Time it takes to accrue amount Exponential Functions 21

22 Example 10 A P 1r You invest $5000 in an account that pays 6.25% interest per year. How much money will your investment be in 5 years? Plug into the equation A (0.0625) A A $ round to the nearest hundredths. t Exponential Functions 22

23 Example 11 A P 1r You buy a car that cost $5,000 and depreciates 6.25% per year. How much money will you end up paying in 5 years? t Exponential Functions 23

24 Example 11 A P 1r t You buy a car that cost $5,000 and depreciates 6.25% per year. How much money will you end up paying in 5 years? A =? Do you know much you are going to pay? P = $5,000 $5,000 is borrowed r = 6.25% Interest Rate remember it needs to be in decimal form t = 5 Time it takes to accrue amount Exponential Functions 24

25 Example 11 A P 1r You buy a car that cost $5,000 and depreciates 6.25% per year. How much money will you end up paying in 5 years? A Plug into the equation (0.0625) A Exponential Functions A $ round to the nearest hundredths. t 25

26 Example 12 A P 1r The value of a $3000 computer decreases about 30% each year. Write a function for the computer s value in 4 years. Does the function represent growth or decay? t Exponential Functions 26

27 Example 12 A P 1r The value of a $3000 computer decreases about 30% each year. Write a function for the computer s value in 4 years. Does the function represent growth or decay? A A P 1r t A $ t Exponential Functions 27

28 Time Values Annually is a one-time payment per year Semiannually/Biannually is a payment every six months (2 times a year) Quarterly is a payment every three months (4 times a year) Monthly is a payment every month (12 times a year) Daily is a payment every day (365 times a year) Exponential Functions 28

29 Compound Interest Equation r nt A P 1 n A = Total Amount Earned P = Principal r = Interest Rate n = Compounded Amount t = Time Exponential Functions 29

30 Example 13 A P1 r n nt $5,000 is deposited in an account that pays 6% annual interest compounded quarterly. Find the balance after 25 years if the interest is compounded quarterly. A =? Do we know how much it is when the balance after 25 years? P = $5,000 $5,000 is deposited r = 6% Interest Rate remember it needs to be in decimal form n = 4 Compounded quarterly t = 25 Time it takes to accrue amount Exponential Functions 30

31 Example 13 A P1 r n nt $5,000 is deposited in an account that pays 6% annual interest compounded quarterly. Find the balance after 25 years if the interest is compounded quarterly Exponential Functions 31

32 Example 13 A P1 r n Assume $5,000 is deposited in an account that pays 6% annual interest compounded quarterly. Find the balance after 25 years if the interest is compounded quarterly. nt A Plug into the equation (4)(25) A $ round to the nearest hundredths Exponential Functions 32

33 Example 14 A P1 r n nt How much must you deposit in an account that pays 6.5% interest, compounded quarterly, to have a balance of $5,000 in 15 years? Exponential Functions 33

34 Example 14 r A P1 n How much must you deposit in an account that pays 6.5% interest, compounded quarterly, to have a balance of $5,000 in 15 years? nt P $ round to the nearest hundredths Exponential Functions 34

3.1 Exponential Functions and Their Graphs Date: Exponential Function

3.1 Exponential Functions and Their Graphs Date: Exponential Function 3.1 Exponential Functions and Their Graphs Date: Exponential Function Exponential Function: A function of the form f(x) = b x, where the b is a positive constant other than, and the exponent, x, is a variable.

More information

Section 5.6: HISTORICAL AND EXPONENTIAL DEPRECIATION OBJECTIVES

Section 5.6: HISTORICAL AND EXPONENTIAL DEPRECIATION OBJECTIVES Section 5.6: HISTORICAL AND EXPONENTIAL DEPRECIATION OBJECTIVES Write, interpret, and graph an exponential depreciation equation. Manipulate the exponential depreciation equation in order to determine

More information

7.5 exponential growth and decay 2016 ink.notebook. February 13, Page 69. Page Exponential Growth and Decay. Standards.

7.5 exponential growth and decay 2016 ink.notebook. February 13, Page 69. Page Exponential Growth and Decay. Standards. 7.5 exponential growth and decay 2016 ink.notebook Page 69 Page 70 7.5 Exponential Growth and Decay Lesson Objectives Standards Lesson Notes Page 71 7.5 Exponential Growth and Decay Press the tabs to view

More information

Answers are on next slide. Graphs follow.

Answers are on next slide. Graphs follow. Sec 3.1 Exponential Functions and Their Graphs Exponential Function - the independent variable is in the exponent. Model situations with constant percentage change exponential growth exponential decay

More information

Answers are on next slide. Graphs follow.

Answers are on next slide. Graphs follow. Sec 3.1 Exponential Functions and Their Graphs November 27, 2018 Exponential Function - the independent variable is in the exponent. Model situations with constant percentage change exponential growth

More information

EXPONENTIAL FUNCTIONS GET A GUIDED NOTES SHEET FROM THE BACK!

EXPONENTIAL FUNCTIONS GET A GUIDED NOTES SHEET FROM THE BACK! EXPONENTIAL FUNCTIONS GET A GUIDED NOTES SHEET FROM THE BACK! EXPONENTIAL FUNCTIONS An exponential function is a function with a variable in the exponent. f(x) = a(b) x EXPONENTIAL FUNCTIONS Parent graphs

More information

Unit 7 Exponential Functions. Name: Period:

Unit 7 Exponential Functions. Name: Period: Unit 7 Exponential Functions Name: Period: 1 AIM: YWBAT evaluate and graph exponential functions. Do Now: Your soccer team wants to practice a drill for a certain amount of time each day. Which plan will

More information

A city, Maple Valley s population is growing by 124 people per year. If there were 25,125 people in 2014, what is the population in 2015? 2016?

A city, Maple Valley s population is growing by 124 people per year. If there were 25,125 people in 2014, what is the population in 2015? 2016? Section 6.1: Exponential Functions 1. India is the second most populous country in the world with a population of about 1.25 billion people in 2013. The population is growing at a rate of about 1.2% each

More information

6.1 Exponential Growth and Decay Functions Warm up

6.1 Exponential Growth and Decay Functions Warm up 6.1 Exponential Growth and Decay Functions Warm up Simplify the expression. 1. 2. 3. 4. 5. 6. 7. Your Lester's bill is $14. How much do you owe your server if you tip 15%? 8. Your Lester's bill is $P.

More information

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding.

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding. 4.2 Exponential Functions Exponents and Properties Exponential Functions Exponential Equations Compound Interest The Number e and Continuous Compounding Exponential Models Section 4.3 Logarithmic Functions

More information

Math 122 Calculus for Business Admin. and Social Sciences

Math 122 Calculus for Business Admin. and Social Sciences Math 122 Calculus for Business Admin. and Social Sciences Instructor: Ann Clifton Name: Exam #1 A July 3, 2018 Do not turn this page until told to do so. You will have a total of 1 hour 40 minutes to complete

More information

SA2 Unit 4 Investigating Exponentials in Context Classwork A. Double Your Money. 2. Let x be the number of assignments completed. Complete the table.

SA2 Unit 4 Investigating Exponentials in Context Classwork A. Double Your Money. 2. Let x be the number of assignments completed. Complete the table. Double Your Money Your math teacher believes that doing assignments consistently will improve your understanding and success in mathematics. At the beginning of the year, your parents tried to encourage

More information

11/15/2017. Domain: Range: y-intercept: Asymptote: End behavior: Increasing: Decreasing:

11/15/2017. Domain: Range: y-intercept: Asymptote: End behavior: Increasing: Decreasing: Sketch the graph of f(x) and find the requested information f x = 3 x Domain: Range: y-intercept: Asymptote: End behavior: Increasing: Decreasing: Sketch the graph of f(x) and find the requested information

More information

Exponential Functions with Base e

Exponential Functions with Base e Exponential Functions with Base e Any positive number can be used as the base for an exponential function, but some bases are more useful than others. For instance, in computer science applications, the

More information

7-3 Exponential Review I can apply exponential properties and use them I can model real-world situations using exponential functions Warm-Up 1. Find the next three terms in the sequence 2, 6, 18, 54,,,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assn.1-.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How long will it take for the value of an account to be $890 if $350 is deposited

More information

Math 111: Section 3.1 Exponential Growth and Decay Section 004

Math 111: Section 3.1 Exponential Growth and Decay Section 004 Math 111: Section 3.1 Exponential Growth and Decay Section 004 An example of Exponential Growth If each bactrium splits into two bacteria every hour, then the population doubles every hour. The question

More information

Exponential Modeling. Growth and Decay

Exponential Modeling. Growth and Decay Exponential Modeling Growth and Decay Identify each as growth or Decay What you should Know y Exponential functions 0

More information

4.1 Exponential Functions. Copyright Cengage Learning. All rights reserved.

4.1 Exponential Functions. Copyright Cengage Learning. All rights reserved. 4.1 Exponential Functions Copyright Cengage Learning. All rights reserved. Objectives Exponential Functions Graphs of Exponential Functions Compound Interest 2 Exponential Functions Here, we study a new

More information

Objectives: Students will be able to model word problems with exponential functions and use logs to solve exponential models.

Objectives: Students will be able to model word problems with exponential functions and use logs to solve exponential models. Pre-AP Algebra 2 Unit 9 - Lesson 6 Exponential Modeling Objectives: Students will be able to model word problems with exponential functions and use logs to solve exponential models. Materials: Hw #9-5

More information

Name Class Period. Secondary 1 Honors Unit 4 ~ Exponential Functions

Name Class Period. Secondary 1 Honors Unit 4 ~ Exponential Functions Name Class Period Secondary 1 Honors Unit 4 ~ Exponential Functions Schedule for Unit 4 A-Day B-Day What we re doing Assignment What is due? Nov. 10 Nov. 11 4-1: Graphing Exponential Functions 4-1 Nov.

More information

BLOCK 2 ~ EXPONENTIAL FUNCTIONS

BLOCK 2 ~ EXPONENTIAL FUNCTIONS BLOCK 2 ~ EXPONENTIAL FUNCTIONS TIC-TAC-TOE Looking Backwards Recursion Mix-Up Story Time Use exponential functions to look into the past to answer questions. Write arithmetic and geometric recursive routines.

More information

Writing Exponential Equations Day 2

Writing Exponential Equations Day 2 Writing Exponential Equations Day 2 MGSE9 12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, simple rational,

More information

Compound Interest Revisited - Homework

Compound Interest Revisited - Homework Advanced Algebra Chapter 5C LOGARITHMIC FUNCTIONS Name Period Date Compound Interest Revisited - Homework SET UP AN EQUATION OR AN EXPRESSION FOR EACH PROBLEM. SHOW ALL THE NECESSARY WORK TO SOLVE YOUR

More information

Section 8.3 Compound Interest

Section 8.3 Compound Interest Section 8.3 Compound Interest Objectives 1. Use the compound interest formulas. 2. Calculate present value. 3. Understand and compute effective annual yield. 4/24/2013 Section 8.3 1 Compound interest is

More information

2.4 - Exponential Functions

2.4 - Exponential Functions c Kathryn Bollinger, January 21, 2010 1 2.4 - Exponential Functions General Exponential Functions Def: A general exponential function has the form f(x) = a b x where a is a real number constant with a

More information

Chapter 10: Exponential Functions

Chapter 10: Exponential Functions Chapter 10: Exponential Functions Lesson 1: Introduction to Exponential Functions and Equations Lesson 2: Exponential Graphs Lesson 3: Finding Equations of Exponential Functions Lesson 4: Exponential Growth

More information

1. Geometric sequences can be modeled by exponential functions using the common ratio and the initial term.

1. Geometric sequences can be modeled by exponential functions using the common ratio and the initial term. 1 Geometric sequences can be modeled by exponential functions using the common ratio and the initial term Exponential growth and exponential decay functions can be used to model situations where a quantity

More information

7.1 Characteristics of Exponential Functions.notebook. Chapter 7: Exponential Functions

7.1 Characteristics of Exponential Functions.notebook. Chapter 7: Exponential Functions Chapter 7: Exponential Functions 1 Chapter 7 7.1 Characteristics of Exponential Functions Pages 334 345 Investigating Exponential Functions: 1. Complete the following table using and sketch on the axis

More information

Logarithmic Functions and Simple Interest

Logarithmic Functions and Simple Interest Logarithmic Functions and Simple Interest Finite Math 10 February 2017 Finite Math Logarithmic Functions and Simple Interest 10 February 2017 1 / 9 Now You Try It! Section 2.6 - Logarithmic Functions Example

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 2b 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 10 pages (including this cover page) and 9 problems. Check to see if any

More information

March 08, LP10 apps.notebook. Warm Up. Solve for x: GRAB A PACKET FROM THE BACK!!

March 08, LP10 apps.notebook. Warm Up. Solve for x: GRAB A PACKET FROM THE BACK!! Warm Up Solve for x: GRAB A PACKET FROM THE BACK!! 1 Examples: Change of Base 1) Solve for x to the nearest hundredth: 2) If a $100 investment receives 5% interest each year, after how many years will

More information

Chap3a Introduction to Exponential Functions. Y = 2x + 4 Linear Increasing Slope = 2 y-intercept = (0,4) f(x) = 3(2) x

Chap3a Introduction to Exponential Functions. Y = 2x + 4 Linear Increasing Slope = 2 y-intercept = (0,4) f(x) = 3(2) x Name Date HW Packet Lesson 3 Introduction to Exponential Functions HW Problem 1 In this problem, we look at the characteristics of Linear and Exponential Functions. Complete the table below. Function If

More information

a n a m = an m a nm = a nm

a n a m = an m a nm = a nm Exponential Functions The greatest shortcoming of the human race is our inability to understand the exponential function. - Albert A. Bartlett The function f(x) = 2 x, where the power is a variable x,

More information

CHAPTER 8. Personal Finance. Copyright 2015, 2011, 2007 Pearson Education, Inc. Section 8.4, Slide 1

CHAPTER 8. Personal Finance. Copyright 2015, 2011, 2007 Pearson Education, Inc. Section 8.4, Slide 1 CHAPTER 8 Personal Finance Copyright 2015, 2011, 2007 Pearson Education, Inc. Section 8.4, Slide 1 8.4 Compound Interest Copyright 2015, 2011, 2007 Pearson Education, Inc. Section 8.4, Slide 2 Objectives

More information

Daily Outcomes: I can evaluate, analyze, and graph exponential functions. Why might plotting the data on a graph be helpful in analyzing the data?

Daily Outcomes: I can evaluate, analyze, and graph exponential functions. Why might plotting the data on a graph be helpful in analyzing the data? 3 1 Exponential Functions Daily Outcomes: I can evaluate, analyze, and graph exponential functions Would the increase in water usage mirror the increase in population? Explain. Why might plotting the data

More information

Instructor: Elhoussine Ghardi Course: calcmanagementspring2018

Instructor: Elhoussine Ghardi Course: calcmanagementspring2018 Student: Date: Instructor: Elhoussine Ghardi Course: calcmanagementspring018 Assignment: HW3spring018 1. Differentiate the following function. f (x) = f(x) = 7 4x + 9 e x. f(x) = 6 ln x + 5x 7 3. Differentiate

More information

= ab is the parent function, growth if ; decay if.

= ab is the parent function, growth if ; decay if. Applications of Exponential Growth and Decay Name Exponential functions: y x = ab is the parent function, growth if ; decay if. On the graph of the function, the a represents the y-intercept. This is often

More information

BACKGROUND KNOWLEDGE for Teachers and Students

BACKGROUND KNOWLEDGE for Teachers and Students Pathway: Agribusiness Lesson: ABR B4 1: The Time Value of Money Common Core State Standards for Mathematics: 9-12.F-LE.1, 3 Domain: Linear, Quadratic, and Exponential Models F-LE Cluster: Construct and

More information

PAP Algebra 2. Unit 7A. Exponentials Name Period

PAP Algebra 2. Unit 7A. Exponentials Name Period PAP Algebra 2 Unit 7A Exponentials Name Period 1 2 Pre-AP Algebra After Test HW Intro to Exponential Functions Introduction to Exponential Growth & Decay Who gets paid more? Median Income of Men and Women

More information

Name. Unit 4B: Exponential Functions

Name. Unit 4B: Exponential Functions Name Unit 4B: Exponential Functions Math 1B Spring 2017 Table of Contents STANDARD 6-LINEAR vs EXPONENTIAL FUNCTIONS... 3 PRACTICE/CLOSURE... 4 STANDARD 7-CREATING EXPLICIT EQUATIONS... 10 COMPOUND INTEREST

More information

S14 Exponential Growth and Decay (Graphing Calculator or App Needed)

S14 Exponential Growth and Decay (Graphing Calculator or App Needed) 1010 Homework Name S14 Exponential Growth and Decay (Graphing Calculator or App Needed) 1. Without graphing, classify each of the following as increasing or decreasing and find f (0). a. f (x) = 1.5(0.75)

More information

Math 122 Calculus for Business Admin. and Social Sciences

Math 122 Calculus for Business Admin. and Social Sciences Math 122 Calculus for Business Admin. and Social Sciences nstructor: Ann Clifton Name: SoLs Exam #1 A July 3, 2018 Do not turn this page until told to do so. You will have a total of 1 hour 40 minutes

More information

Practice Final Exam Fall a) Write the equations for the revenue, cost, and profit functions. Let x be the number of batteries.

Practice Final Exam Fall a) Write the equations for the revenue, cost, and profit functions. Let x be the number of batteries. Practice Final Exam Fall 2017 1) A manufacturer sells car batteries for $150 each. The company s fixed costs are $45,000 per month, and marginal costs are $55 per battery. a) Write the equations for the

More information

Exponents Unit Notebook v2.notebook. November 09, Exponents. Table Of Contents. Section 1: Zero and Integer Exponents Objective: Nov 1-10:06 AM

Exponents Unit Notebook v2.notebook. November 09, Exponents. Table Of Contents. Section 1: Zero and Integer Exponents Objective: Nov 1-10:06 AM Exponents Nov 1-10:06 AM Table Of Contents Section 1: Zero and Integer Exponents Section 2: Section 3: Multiplication Properties of Exponents Section 4: Division Properties of Exponents Section 5: Geometric

More information

Algebra II Quiz: Lessons 7.1 through 7.4 Review

Algebra II Quiz: Lessons 7.1 through 7.4 Review Class: Date: Algebra II Quiz: Lessons 7.1 through 7.4 Review Graph: 1. f( x) = 4 x 1 2. Graph the function: f( x) = 3 x 2 a. b. 3 c. d. 3. Find the y-intercept of the equation. y = 3 7 x a. 4 b. 21 c.

More information

Simple Interest Formula

Simple Interest Formula Accelerated Precalculus 5.7 (Financial Models) 5.8 (Exponential Growth and Decay) Notes Interest is money paid for the use of money. The total amount borrowed (whether by an individual from a bank in the

More information

9.6 Notes Part I Exponential Growth and Decay

9.6 Notes Part I Exponential Growth and Decay 9.6 Notes Part I Exponential Growth and Decay I. Exponential Growth y C(1 r) t Time Final Amount Initial Amount Rate of Change Ex 1: The original value of a painting is $9000 and the value increases by

More information

Functions - Compound Interest

Functions - Compound Interest 10.6 Functions - Compound Interest Objective: Calculate final account balances using the formulas for compound and continuous interest. An application of exponential functions is compound interest. When

More information

QUADRATIC. Parent Graph: How to Tell it's a Quadratic: Helpful Hints for Calculator Usage: Domain of Parent Graph:, Range of Parent Graph: 0,

QUADRATIC. Parent Graph: How to Tell it's a Quadratic: Helpful Hints for Calculator Usage: Domain of Parent Graph:, Range of Parent Graph: 0, Parent Graph: How to Tell it's a Quadratic: If the equation's largest exponent is 2 If the graph is a parabola ("U"-Shaped) Opening up or down. QUADRATIC f x = x 2 Domain of Parent Graph:, Range of Parent

More information

Hydrology 4410 Class 29. In Class Notes & Exercises Mar 27, 2013

Hydrology 4410 Class 29. In Class Notes & Exercises Mar 27, 2013 Hydrology 4410 Class 29 In Class Notes & Exercises Mar 27, 2013 Log Normal Distribution We will not work an example in class. The procedure is exactly the same as in the normal distribution, but first

More information

Final Exam Review. 1. Simplify each of the following. Express each answer with positive exponents.

Final Exam Review. 1. Simplify each of the following. Express each answer with positive exponents. 1 1. Simplify each of the following. Express each answer with positive exponents. a a) 4 b 1x xy b) 1 x y 1. Evaluate without the use of a calculator. Express answers as integers or rational numbers. a)

More information

EXPONENTIAL MODELS If quantity Q is known to increase/decrease by a fixed percentage p, in decimal form, then Q can be modeled by

EXPONENTIAL MODELS If quantity Q is known to increase/decrease by a fixed percentage p, in decimal form, then Q can be modeled by Name: Date: LESSON 4-7 MINDFUL MANIPULATION OF PERCENTS COMMON CORE ALGEBRA II Percents and phenomena that grow at a constant percent rate can be challenging, to say the least. This is due to the fact

More information

Lesson Exponential Models & Logarithms

Lesson Exponential Models & Logarithms SACWAY STUDENT HANDOUT SACWAY BRAINSTORMING ALGEBRA & STATISTICS STUDENT NAME DATE INTRODUCTION Compound Interest When you invest money in a fixed- rate interest earning account, you receive interest at

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Spring 2017 Exam2 2017-03-08 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may

More information

Lesson 5: Modeling with Linear vs. Exponential Regents Prep

Lesson 5: Modeling with Linear vs. Exponential Regents Prep Name: Period: Date: : Modeling with Linear vs. Exponential Regents Prep 1. Rachel and Marc were given the information shown below about the bacteria growing in a Petri dish in their biology class. Rachel

More information

Name: Algebra & 9.4 Midterm Review Sheet January 2019

Name: Algebra & 9.4 Midterm Review Sheet January 2019 Name: Algebra 1 9.3 & 9.4 Midterm Review Sheet January 2019 The Midterm format will include 35 Part I multiple choice questions that will be worth 1 point each, 10 Part II short answer questions that will

More information

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Applications of Exponential Functions Group Activity 7 Business Project Week #10 Applications of Exponential Functions Group Activity 7 Business Project Week #10 In the last activity we looked at exponential functions. This week we will look at exponential functions as related to interest

More information

Exponential Functions 3 Modeling

Exponential Functions 3 Modeling Exponential Functions 3 Modeling Standards: N Q.2, A SSE.3c, F IF.8b, F LE.2, F LE.5 A CED.1: Create equations and inequalities in one variable and use them to solve problems. Include equations arising

More information

f ( x) a, where a 0 and a 1. (Variable is in the exponent. Base is a positive number other than 1.)

f ( x) a, where a 0 and a 1. (Variable is in the exponent. Base is a positive number other than 1.) MA 590 Notes, Lesson 9 Tetbook (calculus part) Section.4 Eponential Functions In an eponential function, the variable is in the eponent and the base is a positive constant (other than the number ). Eponential

More information

MA 109 College Algebra EXAM 3 - REVIEW

MA 109 College Algebra EXAM 3 - REVIEW MA 9 College Algebra EXAM - REVIEW Name: Sec.:. In the picture below, the graph of = f(x) is the solid graph, and the graph of = g(x) is the dashed graph. Find a formula for g(x). 9 7 - -9 - -7 - - - -

More information

Links to Maryland High School Mathematics Core Learning Goals

Links to Maryland High School Mathematics Core Learning Goals Title: Exploring Exponential Growth and Decay Functions Brief Overview: In this unit, students will use and apply exponential functions of growth and decay in realworld situations. Students will collect

More information

Lesson 16: Saving for a Rainy Day

Lesson 16: Saving for a Rainy Day Opening Exercise Mr. Scherer wanted to show his students a visual display of simple and compound interest using Skittles TM. 1. Two scenes of his video (at https://www.youtube.com/watch?v=dqp9l4f3zyc)

More information

Writing Exponential Equations Day 2

Writing Exponential Equations Day 2 Writing Exponential Equations Day 2 MGSE9 12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, simple rational,

More information

Lesson 4 - The Power of Exponential Growth and Decay

Lesson 4 - The Power of Exponential Growth and Decay - The Power of Exponential Growth and Decay Learning Targets: I can recognize situations in which a quantity grows or decays by a constant percent rate. I can write an exponential function to model a real

More information

A.CED.A.1: Exponential Growth

A.CED.A.1: Exponential Growth Regents Exam Questions A.CED.A.1: Exponential Growth www.jmap.org Name: A.CED.A.1: Exponential Growth 1 In the equation y = 0.5(1.21) x, y represents the number of snowboarders in millions and x represents

More information

CHAPTER 6. Exponential Functions

CHAPTER 6. Exponential Functions CHAPTER 6 Eponential Functions 6.1 EXPLORING THE CHARACTERISTICS OF EXPONENTIAL FUNCTIONS Chapter 6 EXPONENTIAL FUNCTIONS An eponential function is a function that has an in the eponent. Standard form:

More information

Student Loans. Student Worksheet

Student Loans. Student Worksheet Student Loans Student Worksheet Name: Part I: If help from parents, scholarships, grants and work study do not cover the full cost of a student s education, many students get to loans to pay for school.

More information

December 7 th December 11 th. Unit 4: Introduction to Functions

December 7 th December 11 th. Unit 4: Introduction to Functions Algebra I December 7 th December 11 th Unit 4: Introduction to Functions Jump Start Solve each inequality below. x + 2 (x 2) x + 5 2(x 3) + 2 1 Exponential Growth Example 1 Two equipment rental companies

More information

Go for the Curve! Comparing Linear and Exponential Functions. Lesson 5.1 Assignment

Go for the Curve! Comparing Linear and Exponential Functions. Lesson 5.1 Assignment Lesson.1 Assignment Name Date Go for the Curve! Comparing Linear and Exponential Functions 1. Chanise just received a $200 bonus check from her employer. She is going to put it into an account that will

More information

Name Period. Linear Correlation

Name Period. Linear Correlation Linear Regression Models Directions: Use the information below to solve the problems in this packet. Packets are due at the end of the period and students who do not finish will be required to come in

More information

Computing interest and composition of functions:

Computing interest and composition of functions: Computing interest and composition of functions: In this week, we are creating a simple and compound interest calculator in EXCEL. These two calculators will be used to solve interest questions in week

More information

Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.5. THE NUMBER e

Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.5. THE NUMBER e Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.5 THE NUMBER e Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally The Natural Number

More information

Finance Notes AMORTIZED LOANS

Finance Notes AMORTIZED LOANS Amortized Loans Page 1 of 10 AMORTIZED LOANS Objectives: After completing this section, you should be able to do the following: Calculate the monthly payment for a simple interest amortized loan. Calculate

More information

Algebra 2 Unit 11 Practice Test Name:

Algebra 2 Unit 11 Practice Test Name: Algebra 2 Unit 11 Practice Test Name: 1. A study of the annual population of the red-winged blackbird in Ft. Mill, South Carolina, shows the population,, can be represented by the function, where the t

More information

Stats for Exam 1. Letter Score Range Frequency A 90 to B 80 to 89 3 C 70 to 79 4 D 60 to 69 4 F 59 and below 8

Stats for Exam 1. Letter Score Range Frequency A 90 to B 80 to 89 3 C 70 to 79 4 D 60 to 69 4 F 59 and below 8 Stats for Exam 1 Letter Score Range Frequency A 90 to 100 14 B 80 to 89 3 C 70 to 79 4 D 60 to 69 4 F 59 and below 8 High Score 100 two of them 75th percentile 94 Median 81 25th percentile 60 Low Score

More information

MA Lesson 27 Section 4.1

MA Lesson 27 Section 4.1 MA 15200 Lesson 27 Section 4.1 We have discussed powers where the eponents are integers or rational numbers. There also eists powers such as 2. You can approimate powers on your calculator using the power

More information

Chapter 7: Exponential and Logarithmic Functions

Chapter 7: Exponential and Logarithmic Functions Chapter 7: Exponential and Logarithmic Functions Lesson 7.1: Exploring the Characteristics of Exponential Functions, page 439 1. a) No, linear b) Yes c) No, quadratic d) No, cubic e) Yes f) No, quadratic

More information

UNIT 11 STUDY GUIDE. Key Features of the graph of

UNIT 11 STUDY GUIDE. Key Features of the graph of UNIT 11 STUDY GUIDE Key Features of the graph of Exponential functions in the form The graphs all cross the y-axis at (0, 1) The x-axis is an asymptote. Equation of the asymptote is y=0 Domain: Range:

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Fall 017 Exam 017-10-18 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may use

More information

Complete the table below to determine the car s value after each of the next five years. Round each value to the nearest cent.

Complete the table below to determine the car s value after each of the next five years. Round each value to the nearest cent. Student Outcomes Students describe and analyze exponential decay models; they recognize that in a formula that models exponential decay, the growth factor is less than 1; or, equivalently, when is greater

More information

Math Review Chapter 1

Math Review Chapter 1 Math 60 - Review Chapter Name ) A mortgage on a house is $90,000, the interest rate is 8 %, and the loan period is 5 years. What is the monthly payment? ) Joan wants to start an annuity that will have

More information

Lesson 1: How Your Money Changes Appreciation & Depreciation

Lesson 1: How Your Money Changes Appreciation & Depreciation : How Your Money Changes Appreciation & Depreciation Learning Target I can solve Appreciation and Depreciation word problems I can calculate simple and compound interests In your own words write answer

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

Logarithmic and Exponential Functions

Logarithmic and Exponential Functions Asymptotes and Intercepts Logarithmic and exponential functions have asymptotes and intercepts. Consider the functions f(x) = log ax and f(x) = lnx. Both have an x-intercept at (1, 0) and a vertical asymptote

More information

6-6 Simple and Compound Interest

6-6 Simple and Compound Interest Find the simple interest. Round to the nearest cent, if necessary. 1. $1350 at 6% for 7 years $567 2. $240 at 8% for 9 months $14.40 3. $725 at 3.25% for 5 years $117.81 4. $3750 at 5.75% for 42 months

More information

My Notes CONNECT TO HISTORY

My Notes CONNECT TO HISTORY SUGGESTED LEARNING STRATEGIES: Shared Reading, Summarize/Paraphrase/Retell, Create Representations, Look for a Pattern, Quickwrite, Note Taking Suppose your neighbor, Margaret Anderson, has just won the

More information

PRINTABLE VERSION. Practice Final Exam

PRINTABLE VERSION. Practice Final Exam Page 1 of 25 PRINTABLE VERSION Practice Final Exam Question 1 The following table of values gives a company's annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to

More information

MA Notes, Lesson 19 Textbook (calculus part) Section 2.4 Exponential Functions

MA Notes, Lesson 19 Textbook (calculus part) Section 2.4 Exponential Functions MA 590 Notes, Lesson 9 Tetbook (calculus part) Section.4 Eponential Functions In an eponential function, the variable is in the eponent and the base is a positive constant (other than the number ). Eponential

More information

6-6 Simple and Compound Interest

6-6 Simple and Compound Interest Find the simple interest. Round to the nearest cent, if necessary. 1. $1350 at 6% for 7 years The simple interest is $567. 2. $240 at 8% for 9 months 9 months is equivalent to of a year. The simple interest

More information

Learning Plan 3 Chapter 3

Learning Plan 3 Chapter 3 Learning Plan 3 Chapter 3 Questions 1 and 2 (page 82) To convert a decimal into a percent, you must move the decimal point two places to the right. 0.72 = 72% 5.46 = 546% 3.0842 = 308.42% Question 3 Write

More information

Assignment 3.3, 3.4, 3.5. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment 3.3, 3.4, 3.5. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assignment 3.3, 3.4, 3.5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use Descartes' Rule of Signs to determine the possible number of positive

More information

Simplifying and Graphing Rational Functions

Simplifying and Graphing Rational Functions Algebra 2/Trig Unit 5 Notes Packet Name: Period: # Simplifying and Graphing Rational Functions 1. Pg 543 #11-19 odd and Pg 550 #11-19 odd 2. Pg 543 #12-18 even and Pg 550 #12-18 even 3. Worksheet 4. Worksheet

More information

Growth and decay. VCEcoverage Area of study. Units 3 & 4 Business related mathematics

Growth and decay. VCEcoverage Area of study. Units 3 & 4 Business related mathematics Growth and decay VCEcoverage Area of study Units 3 & Business related mathematics In this cha chapter A Growth and decay functions B Compound interest formula C Finding time in compound interest using

More information

Further Mathematics 2016 Core: RECURSION AND FINANCIAL MODELLING Chapter 6 Interest and depreciation

Further Mathematics 2016 Core: RECURSION AND FINANCIAL MODELLING Chapter 6 Interest and depreciation Further Mathematics 2016 Core: RECURSION AND FINANCIAL MODELLING Chapter 6 Interest and depreciation Key knowledge the use of first- order linear recurrence relations to model flat rate and unit cost and

More information

Algebra I EOC 10-Day STAAR Review. Hedgehog Learning

Algebra I EOC 10-Day STAAR Review. Hedgehog Learning Algebra I EOC 10-Day STAAR Review Hedgehog Learning Day 1 Day 2 STAAR Reporting Category Number and Algebraic Methods Readiness Standards 60% - 65% of STAAR A.10(E) - factor, if possible, trinomials with

More information

Investigate. Name Per Algebra IB Unit 9 - Exponential Growth Investigation. Ratio of Values of Consecutive Decades. Decades Since

Investigate. Name Per Algebra IB Unit 9 - Exponential Growth Investigation. Ratio of Values of Consecutive Decades. Decades Since Name Per Algebra IB Unit 9 - Exponential Growth Investigation Investigate Real life situation 1) The National Association Realtors estimates that, on average, the price of a house doubles every ten years

More information

MLC at Boise State Logarithms Activity 6 Week #8

MLC at Boise State Logarithms Activity 6 Week #8 Logarithms Activity 6 Week #8 In this week s activity, you will continue to look at the relationship between logarithmic functions, exponential functions and rates of return. Today you will use investing

More information

Why? Exponential Growth The equation for the number of blogs is in the form 1 y = a(1 + r ) t. This is the general equation for exponential growth.

Why? Exponential Growth The equation for the number of blogs is in the form 1 y = a(1 + r ) t. This is the general equation for exponential growth. Then You analyzed exponential functions. (Lesson 9-6) Now Growth and Decay 1Solve problems involving exponential growth. 2Solve problems involving exponential decay. Why? The number of Weblogs or blogs

More information

CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES

CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES DISCRETE RANDOM VARIABLE: Variable can take on only certain specified values. There are gaps between possible data values. Values may be counting numbers or

More information