Risk-averse Reinforcement Learning for Algorithmic Trading

Size: px
Start display at page:

Download "Risk-averse Reinforcement Learning for Algorithmic Trading"

Transcription

1 Risk-averse Reinforcement Learning for Algorithmic Trading Yun Shen 1 Ruihong Huang 2,3 Chang Yan 2 Klaus Obermayer 1 1 TECHNISCHE UNIVERSITÄT BERLIN 2 HUMBOLDT-UNIVERSITÄT ZU BERLIN 3 LOBSTER TEAM IEEE CIFEr, London March 28, 214

2 Introduction Transaction cost: TC = X(P d P ) + x j P j x j P +(X x j )(P n P ) + visible }{{}}{{} invest. related trading related visible: commission fees, taxes, etc. Task: to liquid a huge inventory over a short time horizon. Data: high-frequency (millisecond) limit orders in NASDAQ Method: reinforcement learning (RL) + risk control Kissell & Glantz, Opt. Trading Strategies, 23; Nevmyvaka et al., ICML, 26 Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Introduction 3/18

3 Risk Uncertain future prices, volumes, etc. Example: 21 flash crash Standard RL is risk-neutral does not take risk into consideration perform badly when outlier events happen Variance as a risk measure: non-gaussian noise is computationally infeasible Gaussian noise is not always the case need new measures of risk and new algorithms Nevmyvaka et al., ICML, 26; Almgren & Chriss, J. of Risk, 21 On May 6, 21, the prices of many U.S.-based equity products experienced an extraordinarily rapid decline and recovery. That afternoon, major equity indices in both the futures and securities markets, each already down over 4% from their prior-day close, suddenly plummeted a further 5-6% in a matter of minutes before rebounding almost as quickly. CFTC & SEC Report Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Introduction 4/18

4 Markov decision processes Objective: x j P j x j P +(X x j )(P n P ) max π J(π, s) :=E[S T S 1 = s,π] [ T ] =E R(S t, A t) S 1 = s,π t=1 reward function R : S A Ω R policy π = [π 1,π 2,...,π T ],π t : S A key assumption: Markov P(S t+1 F t) = P(S t+1 S t, A t) [ [ ]] J(π, s) = E π 1 S 1 =s R(S 1, A 1 )+E π 2 S R(S 2 2, A 2 )+...+E π T S [R(S T T, A T )]... Adding risk: max π E π [S T ] λv π [S T ] λ controls the risk sensitivity. example of V: standard deviation it is difficult 3 to solve the problem except the case with Gaussian noise see, e.g., Puterman, 1994; Almgren & Chriss, 2; Mannor & Tsitsiklis, 21. Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Model 6/18

5 Evaluation function/risk measure E π 1 S 1 =s [ [ R(S 1, A 1 )+E π 2 S 2 R(S 2, A 2)+...+E π T S T [R(S T, A T )]... ]] [ [ ]] U π 1 S 1 =s R(S 1, A 1 )+U π 2 S 2 R(S 2, A 2)+...+U π T S T [R(S T, A T )]... U( s, a) is a risk measure for all (s, a) monotonicity translation invariance concavity/coherency Utility-based shortfall 2 : U s,a(x) = sup{m R E s,a[u(x m)] } u: a concave, continuous and strictly increasing function satisfying u() =. concave u risk averse. Shen et al., SIAM J. on Cont. & Opt., 213; Artzner et al., Math. Finance, 1999; Föllmer & Schied, Finance & Stoch., 22; Föllmer & Schied, 24. Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Model 7/18

6 Utility-based shortfall U s,a(x) = sup{m R E s,a[u(x m)] } we consider { 1 u(x) = λ [(x+1)λ 1] x x x < λ (, 1) controls the degree of risk-averseness. λ = 1: U s,a( ) = E s,a( ). Example: {(r 1, p),(r 2, 1 p)} (r 1 > r 2) subjective probability: w(p) = U(p) r 2 r 1 r 2 (prospect theory) u(x) x w(p) p Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Model 8/18

7 Risk-averse reinforcement learning at tth time point, repeat a at state s N times {R i, s i} i=1,2,...,n. iterative update: π (N) t Q (i+1) t (s, a) = Q (i) t (s, a)+ 1 i u (R i + max a ) Q t+1 (s i, a) Q (i) t (s, a) (s) = arg max a A Q (N) (s, a) πt, the optimal policy, as N t (*) Shen et al., Neu. Comp., 214; Dunkel & Weber, Math. Oper. Re., 21. initialize Q T+1 (s, a) = for all s S, a A; for t = T to 1 do initialize Q t(s, a) = for all s S, a A; for each state s S and a A do for n = 1 to N do execute action a at s to obtain sampled reward R and successive state s ; update Q t(s, a) according to (*); end for end for end for needs no knowledge of transition model P(S t+1 S t, A t) data driven; online alg.: adapts to new data easily; parallel computing is possible; risk control by u, specifically, λ. Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Model 9/18

8 Problem Setting Task: sell V shares of AMZN in NASDAQ within H min. Data Provided by LOBSTER with two price levels, i.e., only two best asks and bids. Training Test Test period contains the flash crash on Performance evaluation: mid-quote at time average execution price cost = 1 4 mid-quote at time Risk Standard deviation of costs 95%-quantile cost 95% Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Experiment 11/18

9 MDP formulation time resolution total time horizon H = 1min. Limit orders are submitted to the market at t = n H, n =, 1,...,T 1. T states V = the target volume, I = the number of inventory units. state i = v I/V. market variables: spread, vol. misbalance, signed vol. etc. actions: a = submit a sell order at price ask a (unit: US cent) with all remaining shares. rewards: the cash inflow resulted from a (partial) execution of the limit order placed at ask a ) 2) Price 3) 4) cf. Nevmyvaka et al., ICML, 26. Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Experiment 12/18

10 Results I: Tuning of λ 6 average trading cost 3 standard deviation 4 2 risk neutral V=2k,T=5 V=2k,T= λ 95% qunatile cost risk neutral λ cost at flash crash risk neutral 2 risk neutral λ λ Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Experiment 13/18

11 Results II: Flash Crash Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Experiment 14/18

12 Results II: Flash Crash 4 35 RN no spread RN spread RA no spread RA spread V1k T5 I5 V1k T1 I1 V2k T5 I5 V2k T1 I1 Trading costs on the flash crash spot. Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Experiment 15/18

13 Results III: Overall Performance average trading cost RN no spread RN spread RA no spread RA spread V1k T5 I5 V1k T1 I1 V2k T5 I5 V2k T1 I1 standard deviation RN no spread RN spread RA no spread RA spread V1k T5 I5 V1k T1 I1 V2k T5 I5 V2k T1 I1 95% quantile cost RN no spread RN spread RA no spread RA spread V1k T5 I5 V1k T1 I1 V2k T5 I5 V2k T1 I1 Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Experiment 16/18

14 Conclusion and outlook Conclusion: our novel risk-averse RL significantly reduces the trading cost at the spot of flash crash remarkably lowers down risk in the whole test period at the price of a slight increase of average trading cost Outlook market impact expand state space: test with various market variables. expand action space with volume number. other u-functions, even risk-seeking type?! Thank you for your patience! Yun Shen (TU Berlin) Risk-averse RL for Algo Trading Conclusion and Outlook 18/18

ONLINE LEARNING IN LIMIT ORDER BOOK TRADE EXECUTION

ONLINE LEARNING IN LIMIT ORDER BOOK TRADE EXECUTION ONLINE LEARNING IN LIMIT ORDER BOOK TRADE EXECUTION Nima Akbarzadeh, Cem Tekin Bilkent University Electrical and Electronics Engineering Department Ankara, Turkey Mihaela van der Schaar Oxford Man Institute

More information

Optimal liquidation with market parameter shift: a forward approach

Optimal liquidation with market parameter shift: a forward approach Optimal liquidation with market parameter shift: a forward approach (with S. Nadtochiy and T. Zariphopoulou) Haoran Wang Ph.D. candidate University of Texas at Austin ICERM June, 2017 Problem Setup and

More information

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1 Making Decisions CS 3793 Artificial Intelligence Making Decisions 1 Planning under uncertainty should address: The world is nondeterministic. Actions are not certain to succeed. Many events are outside

More information

Optimal Portfolio Liquidation with Dynamic Coherent Risk

Optimal Portfolio Liquidation with Dynamic Coherent Risk Optimal Portfolio Liquidation with Dynamic Coherent Risk Andrey Selivanov 1 Mikhail Urusov 2 1 Moscow State University and Gazprom Export 2 Ulm University Analysis, Stochastics, and Applications. A Conference

More information

Forecasting prices from level-i quotes in the presence of hidden liquidity

Forecasting prices from level-i quotes in the presence of hidden liquidity Forecasting prices from level-i quotes in the presence of hidden liquidity S. Stoikov, M. Avellaneda and J. Reed December 5, 2011 Background Automated or computerized trading Accounts for 70% of equity

More information

Risk-Averse Anticipation for Dynamic Vehicle Routing

Risk-Averse Anticipation for Dynamic Vehicle Routing Risk-Averse Anticipation for Dynamic Vehicle Routing Marlin W. Ulmer 1 and Stefan Voß 2 1 Technische Universität Braunschweig, Mühlenpfordtstr. 23, 38106 Braunschweig, Germany, m.ulmer@tu-braunschweig.de

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Dynamic programming Christos Dimitrakakis Intelligent Autonomous Systems, IvI, University of Amsterdam, The Netherlands March 18, 2008 Introduction Some examples Dynamic programming

More information

References. H. Föllmer, A. Schied, Stochastic Finance (3rd Ed.) de Gruyter 2011 (chapters 4 and 11)

References. H. Föllmer, A. Schied, Stochastic Finance (3rd Ed.) de Gruyter 2011 (chapters 4 and 11) General references on risk measures P. Embrechts, R. Frey, A. McNeil, Quantitative Risk Management, (2nd Ed.) Princeton University Press, 2015 H. Föllmer, A. Schied, Stochastic Finance (3rd Ed.) de Gruyter

More information

Decision Theory: Value Iteration

Decision Theory: Value Iteration Decision Theory: Value Iteration CPSC 322 Decision Theory 4 Textbook 9.5 Decision Theory: Value Iteration CPSC 322 Decision Theory 4, Slide 1 Lecture Overview 1 Recap 2 Policies 3 Value Iteration Decision

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

Intro to Reinforcement Learning. Part 3: Core Theory

Intro to Reinforcement Learning. Part 3: Core Theory Intro to Reinforcement Learning Part 3: Core Theory Interactive Example: You are the algorithm! Finite Markov decision processes (finite MDPs) dynamics p p p Experience: S 0 A 0 R 1 S 1 A 1 R 2 S 2 A 2

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

Markov Decision Processes. Lirong Xia

Markov Decision Processes. Lirong Xia Markov Decision Processes Lirong Xia Today ØMarkov decision processes search with uncertain moves and infinite space ØComputing optimal policy value iteration policy iteration 2 Grid World Ø The agent

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDPs 2/16/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Announcements

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Optimal Trading Strategy With Optimal Horizon

Optimal Trading Strategy With Optimal Horizon Optimal Trading Strategy With Optimal Horizon Financial Math Festival Florida State University March 1, 2008 Edward Qian PanAgora Asset Management Trading An Integral Part of Investment Process Return

More information

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals A. Eichhorn and W. Römisch Humboldt-University Berlin, Department of Mathematics, Germany http://www.math.hu-berlin.de/~romisch

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 247 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action A will have possible outcome states Result

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Markov Decision Processes (MDP)! Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore 1 Outline

More information

COS402- Artificial Intelligence Fall Lecture 17: MDP: Value Iteration and Policy Iteration

COS402- Artificial Intelligence Fall Lecture 17: MDP: Value Iteration and Policy Iteration COS402- Artificial Intelligence Fall 2015 Lecture 17: MDP: Value Iteration and Policy Iteration Outline The Bellman equation and Bellman update Contraction Value iteration Policy iteration The Bellman

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the reward function Must (learn to) act so as to maximize expected rewards Grid World The agent

More information

Scenario-Based Value-at-Risk Optimization

Scenario-Based Value-at-Risk Optimization Scenario-Based Value-at-Risk Optimization Oleksandr Romanko Quantitative Research Group, Algorithmics Incorporated, an IBM Company Joint work with Helmut Mausser Fields Industrial Optimization Seminar

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non Deterministic Search Example: Grid World A maze like problem The agent lives in

More information

Reinforcement Learning and Simulation-Based Search

Reinforcement Learning and Simulation-Based Search Reinforcement Learning and Simulation-Based Search David Silver Outline 1 Reinforcement Learning 2 3 Planning Under Uncertainty Reinforcement Learning Markov Decision Process Definition A Markov Decision

More information

CPS 270: Artificial Intelligence Markov decision processes, POMDPs

CPS 270: Artificial Intelligence  Markov decision processes, POMDPs CPS 270: Artificial Intelligence http://www.cs.duke.edu/courses/fall08/cps270/ Markov decision processes, POMDPs Instructor: Vincent Conitzer Warmup: a Markov process with rewards We derive some reward

More information

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2 COMP417 Introduction to Robotics and Intelligent Systems Reinforcement Learning - 2 Speaker: Sandeep Manjanna Acklowledgement: These slides use material from Pieter Abbeel s, Dan Klein s and John Schulman

More information

Markov Decision Process

Markov Decision Process Markov Decision Process Human-aware Robotics 2018/02/13 Chapter 17.3 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/mdp-ii.pdf

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Lecture 18: Markov Decision Processes Yiling Chen and David Parkes Lesson Plan Markov decision processes Policies and Value functions Solving: average reward,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning MDP March May, 2013 MDP MDP: S, A, P, R, γ, µ State can be partially observable: Partially Observable MDPs () Actions can be temporally extended: Semi MDPs (SMDPs) and Hierarchical

More information

Report for technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional do Sistema Elétrico Risk Averse Approach

Report for technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional do Sistema Elétrico Risk Averse Approach Report for technical cooperation between Georgia Institute of Technology and ONS - Operador Nacional do Sistema Elétrico Risk Averse Approach Alexander Shapiro and Wajdi Tekaya School of Industrial and

More information

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions Optimality and Approximation Finite MDP: {S, A, R, p, γ}

More information

MDPs and Value Iteration 2/20/17

MDPs and Value Iteration 2/20/17 MDPs and Value Iteration 2/20/17 Recall: State Space Search Problems A set of discrete states A distinguished start state A set of actions available to the agent in each state An action function that,

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Temporal Abstraction in RL

Temporal Abstraction in RL Temporal Abstraction in RL How can an agent represent stochastic, closed-loop, temporally-extended courses of action? How can it act, learn, and plan using such representations? HAMs (Parr & Russell 1998;

More information

Lecture 12: MDP1. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 12: MDP1. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 12: MDP1 Victor R. Lesser CMPSCI 683 Fall 2010 Biased Random GSAT - WalkSat Notice no random restart 2 Today s lecture Search where there is Uncertainty in Operator Outcome --Sequential Decision

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 253 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action a will have possible outcome states Result(a)

More information

Making Complex Decisions

Making Complex Decisions Ch. 17 p.1/29 Making Complex Decisions Chapter 17 Ch. 17 p.2/29 Outline Sequential decision problems Value iteration algorithm Policy iteration algorithm Ch. 17 p.3/29 A simple environment 3 +1 p=0.8 2

More information

Risk-Averse Decision Making and Control

Risk-Averse Decision Making and Control Marek Petrik University of New Hampshire Mohammad Ghavamzadeh Adobe Research February 4, 2017 Introduction to Risk Averse Modeling Outline Introduction to Risk Averse Modeling (Average) Value at Risk Coherent

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Markov Decision Models Manfred Huber 2015 1 Markov Decision Process Models Markov models represent the behavior of a random process, including its internal state and the externally

More information

arxiv: v2 [q-fin.tr] 29 Oct 2017

arxiv: v2 [q-fin.tr] 29 Oct 2017 Instantaneous order impact and high-frequency strategy optimization in limit order books arxiv:1707.01167v2 [q-fin.tr] 29 Oct 2017 Federico Gonzalez and Mark Schervish, Department of Statistics, Carnegie

More information

ESTIMATION OF UTILITY FUNCTIONS: MARKET VS. REPRESENTATIVE AGENT THEORY

ESTIMATION OF UTILITY FUNCTIONS: MARKET VS. REPRESENTATIVE AGENT THEORY ESTIMATION OF UTILITY FUNCTIONS: MARKET VS. REPRESENTATIVE AGENT THEORY Kai Detlefsen Wolfgang K. Härdle Rouslan A. Moro, Deutsches Institut für Wirtschaftsforschung (DIW) Center for Applied Statistics

More information

17 MAKING COMPLEX DECISIONS

17 MAKING COMPLEX DECISIONS 267 17 MAKING COMPLEX DECISIONS The agent s utility now depends on a sequence of decisions In the following 4 3grid environment the agent makes a decision to move (U, R, D, L) at each time step When the

More information

TDT4171 Artificial Intelligence Methods

TDT4171 Artificial Intelligence Methods TDT47 Artificial Intelligence Methods Lecture 7 Making Complex Decisions Norwegian University of Science and Technology Helge Langseth IT-VEST 0 helgel@idi.ntnu.no TDT47 Artificial Intelligence Methods

More information

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018 Lecture 2: Making Good Sequences of Decisions Given a Model of World CS234: RL Emma Brunskill Winter 218 Human in the loop exoskeleton work from Steve Collins lab Class Structure Last Time: Introduction

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline C 188: Artificial Intelligence Markov Decision Processes (MDPs) Pieter Abbeel UC Berkeley ome slides adapted from Dan Klein 1 Outline Markov Decision Processes (MDPs) Formalism Value iteration In essence

More information

Optimal routing and placement of orders in limit order markets

Optimal routing and placement of orders in limit order markets Optimal routing and placement of orders in limit order markets Rama CONT Arseniy KUKANOV Imperial College London Columbia University New York CFEM-GARP Joint Event and Seminar 05/01/13, New York Choices,

More information

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig]

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig] Basic Framework [This lecture adapted from Sutton & Barto and Russell & Norvig] About this class Markov Decision Processes The Bellman Equation Dynamic Programming for finding value functions and optimal

More information

Risk measures: Yet another search of a holy grail

Risk measures: Yet another search of a holy grail Risk measures: Yet another search of a holy grail Dirk Tasche Financial Services Authority 1 dirk.tasche@gmx.net Mathematics of Financial Risk Management Isaac Newton Institute for Mathematical Sciences

More information

EE365: Markov Decision Processes

EE365: Markov Decision Processes EE365: Markov Decision Processes Markov decision processes Markov decision problem Examples 1 Markov decision processes 2 Markov decision processes add input (or action or control) to Markov chain with

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

Price Impact and Optimal Execution Strategy

Price Impact and Optimal Execution Strategy OXFORD MAN INSTITUE, UNIVERSITY OF OXFORD SUMMER RESEARCH PROJECT Price Impact and Optimal Execution Strategy Bingqing Liu Supervised by Stephen Roberts and Dieter Hendricks Abstract Price impact refers

More information

Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks

Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks Hussein Abouzeid Department of Electrical Computer and Systems Engineering Rensselaer Polytechnic Institute abouzeid@ecse.rpi.edu

More information

Overview: Representation Techniques

Overview: Representation Techniques 1 Overview: Representation Techniques Week 6 Representations for classical planning problems deterministic environment; complete information Week 7 Logic programs for problem representations including

More information

Markov Decision Processes II

Markov Decision Processes II Markov Decision Processes II Daisuke Oyama Topics in Economic Theory December 17, 2014 Review Finite state space S, finite action space A. The value of a policy σ A S : v σ = β t Q t σr σ, t=0 which satisfies

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Energy Storage Arbitrage in Real-Time Markets via Reinforcement Learning

Energy Storage Arbitrage in Real-Time Markets via Reinforcement Learning Energy Storage Arbitrage in Real-Time Markets via Reinforcement Learning Hao Wang, Baosen Zhang Department of Electrical Engineering, University of Washington, Seattle, WA 9895 Email: {hwang6,zhangbao}@uw.edu

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

On the Lower Arbitrage Bound of American Contingent Claims

On the Lower Arbitrage Bound of American Contingent Claims On the Lower Arbitrage Bound of American Contingent Claims Beatrice Acciaio Gregor Svindland December 2011 Abstract We prove that in a discrete-time market model the lower arbitrage bound of an American

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Ryan P. Adams COS 324 Elements of Machine Learning Princeton University We now turn to a new aspect of machine learning, in which agents take actions and become active in their

More information

Long-Term Values in MDPs, Corecursively

Long-Term Values in MDPs, Corecursively Long-Term Values in MDPs, Corecursively Applied Category Theory, 15-16 March 2018, NIST Helle Hvid Hansen Delft University of Technology Helle Hvid Hansen (TU Delft) MDPs, Corecursively NIST, 15/Mar/2018

More information

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Outline Sequential Decision Processes Markov chains Highlight Markov property Discounted rewards Value iteration Markov

More information

arxiv: v1 [math.pr] 6 Apr 2015

arxiv: v1 [math.pr] 6 Apr 2015 Analysis of the Optimal Resource Allocation for a Tandem Queueing System arxiv:1504.01248v1 [math.pr] 6 Apr 2015 Liu Zaiming, Chen Gang, Wu Jinbiao School of Mathematics and Statistics, Central South University,

More information

Sequential Coalition Formation for Uncertain Environments

Sequential Coalition Formation for Uncertain Environments Sequential Coalition Formation for Uncertain Environments Hosam Hanna Computer Sciences Department GREYC - University of Caen 14032 Caen - France hanna@info.unicaen.fr Abstract In several applications,

More information

Portfolio Management and Optimal Execution via Convex Optimization

Portfolio Management and Optimal Execution via Convex Optimization Portfolio Management and Optimal Execution via Convex Optimization Enzo Busseti Stanford University April 9th, 2018 Problems portfolio management choose trades with optimization minimize risk, maximize

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

Temporal Abstraction in RL. Outline. Example. Markov Decision Processes (MDPs) ! Options

Temporal Abstraction in RL. Outline. Example. Markov Decision Processes (MDPs) ! Options Temporal Abstraction in RL Outline How can an agent represent stochastic, closed-loop, temporally-extended courses of action? How can it act, learn, and plan using such representations?! HAMs (Parr & Russell

More information

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week

Logistics. CS 473: Artificial Intelligence. Markov Decision Processes. PS 2 due today Midterm in one week CS 473: Artificial Intelligence Markov Decision Processes Dan Weld University of Washington [Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

Optimal Incentive Contract with Costly and Flexible Monitoring

Optimal Incentive Contract with Costly and Flexible Monitoring Optimal Incentive Contract with Costly and Flexible Monitoring Anqi Li 1 Ming Yang 2 1 Department of Economics, Washington University in St. Louis 2 Fuqua School of Business, Duke University January 2016

More information

Optimal Portfolio Liquidation and Macro Hedging

Optimal Portfolio Liquidation and Macro Hedging Bloomberg Quant Seminar, October 15, 2015 Optimal Portfolio Liquidation and Macro Hedging Marco Avellaneda Courant Institute, YU Joint work with Yilun Dong and Benjamin Valkai Liquidity Risk Measures Liquidity

More information

NBER WORKING PAPER SERIES HIGH FREQUENCY TRADERS: TAKING ADVANTAGE OF SPEED. Yacine Aït-Sahalia Mehmet Saglam

NBER WORKING PAPER SERIES HIGH FREQUENCY TRADERS: TAKING ADVANTAGE OF SPEED. Yacine Aït-Sahalia Mehmet Saglam NBER WORKING PAPER SERIES HIGH FREQUENCY TRADERS: TAKING ADVANTAGE OF SPEED Yacine Aït-Sahalia Mehmet Saglam Working Paper 19531 http://www.nber.org/papers/w19531 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050

More information

Prudence, risk measures and the Optimized Certainty Equivalent: a note

Prudence, risk measures and the Optimized Certainty Equivalent: a note Working Paper Series Department of Economics University of Verona Prudence, risk measures and the Optimized Certainty Equivalent: a note Louis Raymond Eeckhoudt, Elisa Pagani, Emanuela Rosazza Gianin WP

More information

Uncertain Covariance Models

Uncertain Covariance Models Uncertain Covariance Models RISK FORECASTS THAT KNOW HOW ACCURATE THEY ARE AND WHERE AU G 1 8, 2 0 1 5 Q WA FA F E W B O S TO N A N I S H R. S H A H, C FA A N I S H R S @ I N V E S T M E N TG R A D E M

More information

Valuation of Hong Kong REIT Based on Risk Sensitive Value Measure Method

Valuation of Hong Kong REIT Based on Risk Sensitive Value Measure Method International Journal of Real Options and Strategy 4 (2016) 1 33 Theoretical Paper Valuation of Hong Kong REIT Based on Risk Sensitive Value Measure Method Lan Ban Tetsuya Misawa Yoshio Miyahara Graduate

More information

Lecture 5: Iterative Combinatorial Auctions

Lecture 5: Iterative Combinatorial Auctions COMS 6998-3: Algorithmic Game Theory October 6, 2008 Lecture 5: Iterative Combinatorial Auctions Lecturer: Sébastien Lahaie Scribe: Sébastien Lahaie In this lecture we examine a procedure that generalizes

More information

Complex Decisions. Sequential Decision Making

Complex Decisions. Sequential Decision Making Sequential Decision Making Outline Sequential decision problems Value iteration Policy iteration POMDPs (basic concepts) Slides partially based on the Book "Reinforcement Learning: an introduction" by

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Stochastic domains Image: Berkeley CS188 course notes (downloaded Summer

More information

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model

Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Algorithmic Trading using Reinforcement Learning augmented with Hidden Markov Model Simerjot Kaur (sk3391) Stanford University Abstract This work presents a novel algorithmic trading system based on reinforcement

More information

arxiv: v1 [math.oc] 25 Mar 2015

arxiv: v1 [math.oc] 25 Mar 2015 A Time Consistent Formulation of Risk Constrained Stochastic Optimal Control Yin-Lam Chow, Marco Pavone arxiv:153.7461v1 [math.oc 25 Mar 215 Abstract Time-consistency is an essential requirement in risk

More information

Pricing and ordering decisions of risk-averse newsvendors: Expectile-based value at risk (E-VaR) approach

Pricing and ordering decisions of risk-averse newsvendors: Expectile-based value at risk (E-VaR) approach NTMSCI 6, No. 2, 102-109 (2018) 102 New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2018.275 Pricing and ordering decisions of risk-averse newsvendors: Expectile-based value at risk

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 9: MDPs 9/22/2011 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 2 Grid World The agent lives in

More information

Risk-Sensitive Querying for Adapting Web Service Compositions

Risk-Sensitive Querying for Adapting Web Service Compositions Risk-Sensitive Querying for Adapting Web Service Compositions John Harney and Prashant Doshi LSDIS Lab, Dept. of Computer Science, University of Georgia, Athens, GA 30602 {jfh,pdoshi}@cs.uga.edu Abstract.

More information

FIN11. Trading and Market Microstructure. Autumn 2017

FIN11. Trading and Market Microstructure. Autumn 2017 FIN11 Trading and Market Microstructure Autumn 2017 Lecturer: Klaus R. Schenk-Hoppé Session 7 Dealers Themes Dealers What & Why Market making Profits & Risks Wake-up video: Wall Street in 1920s http://www.youtube.com/watch?

More information

MDPs: Bellman Equations, Value Iteration

MDPs: Bellman Equations, Value Iteration MDPs: Bellman Equations, Value Iteration Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) Adapted from slides kindly shared by Stuart Russell Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 1 Appreciations

More information

Supplementary Material: Strategies for exploration in the domain of losses

Supplementary Material: Strategies for exploration in the domain of losses 1 Supplementary Material: Strategies for exploration in the domain of losses Paul M. Krueger 1,, Robert C. Wilson 2,, and Jonathan D. Cohen 3,4 1 Department of Psychology, University of California, Berkeley

More information

Algorithmic and High-Frequency Trading

Algorithmic and High-Frequency Trading LOBSTER June 2 nd 2016 Algorithmic and High-Frequency Trading Julia Schmidt Overview Introduction Market Making Grossman-Miller Market Making Model Trading Costs Measuring Liquidity Market Making using

More information

Introduction to Reinforcement Learning. MAL Seminar

Introduction to Reinforcement Learning. MAL Seminar Introduction to Reinforcement Learning MAL Seminar 2014-2015 RL Background Learning by interacting with the environment Reward good behavior, punish bad behavior Trial & Error Combines ideas from psychology

More information

CS 461: Machine Learning Lecture 8

CS 461: Machine Learning Lecture 8 CS 461: Machine Learning Lecture 8 Dr. Kiri Wagstaff kiri.wagstaff@calstatela.edu 2/23/08 CS 461, Winter 2008 1 Plan for Today Review Clustering Reinforcement Learning How different from supervised, unsupervised?

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

Reinforcement learning and Markov Decision Processes (MDPs) (B) Avrim Blum

Reinforcement learning and Markov Decision Processes (MDPs) (B) Avrim Blum Reinforcement learning and Markov Decision Processes (MDPs) 15-859(B) Avrim Blum RL and MDPs General scenario: We are an agent in some state. Have observations, perform actions, get rewards. (See lights,

More information

Payment mechanisms and risk-aversion in electricity markets with uncertain supply

Payment mechanisms and risk-aversion in electricity markets with uncertain supply Payment mechanisms and risk-aversion in electricity markets with uncertain supply Ryan Cory-Wright Joint work with Golbon Zakeri (thanks to Andy Philpott) ISMP, Bordeaux, July 2018. ORC, Massachusetts

More information

Markov Decision Processes: Making Decision in the Presence of Uncertainty. (some of) R&N R&N

Markov Decision Processes: Making Decision in the Presence of Uncertainty. (some of) R&N R&N Markov Decision Processes: Making Decision in the Presence of Uncertainty (some of) R&N 16.1-16.6 R&N 17.1-17.4 Different Aspects of Machine Learning Supervised learning Classification - concept learning

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Markov Decision Processes II Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC

More information

The Problem of Temporal Abstraction

The Problem of Temporal Abstraction The Problem of Temporal Abstraction How do we connect the high level to the low-level? " the human level to the physical level? " the decide level to the action level? MDPs are great, search is great,

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non-Deterministic Search 1 Example: Grid World A maze-like problem The agent lives

More information

Dynamic Programming and Reinforcement Learning

Dynamic Programming and Reinforcement Learning Dynamic Programming and Reinforcement Learning Daniel Russo Columbia Business School Decision Risk and Operations Division Fall, 2017 Daniel Russo (Columbia) Fall 2017 1 / 34 Supervised Machine Learning

More information

NASDAQ GEMX INET SYSTEM SETTINGS

NASDAQ GEMX INET SYSTEM SETTINGS NASDAQ GEMX INET SYSTEM SETTINGS 1. Hours of Operation 6:00 a.m. ET System begins accepting orders. 9:30 a.m. ET System begins disseminating imbalance and price information for the opening auction. 9:30

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information