Option Pricing With Dividends

Size: px
Start display at page:

Download "Option Pricing With Dividends"

Transcription

1 Option Pricing With Dividends Betuel Canhanga. Carolyne Ogutu. Analytical Finance I Seminar Report October, 13

2 Contents 1 Introduction Solution One: Include Any Dividends After Expiration 3.1 Expiry before the dividend Examples Expiry After Dividends Case Examples Case Examples Treat All Dividends as Proportional Expiry before dividend Examples Expiry After Dividend

3 Chapter 1 Introduction Chash dividends issued by stocks have a big impact on their option prices. This is because the underlying stock price is expected to drop by the said dividend on the ex-dividend date. Options are valued taking into account the projected dividends receivable in the coming weeks and months up to the option expiration date.

4 Chapter Solution One: Include Any Dividends After Expiration.1 Expiry before the dividend Let S(t) = D e rt + (S D )e (r.5σ )t+σw(t) t < T 1 < t d (.1) τ = T t σ(w (T ) W (t)) = σ T tz At maturity, the stock price is given by S(T ) = D t e rτ + (S t D t )e (r.5σ )τ+σ τz (.) The payoff for a call option is Max(S T K, ). Therefore to calculate the call price we need to solve the following expression e rτ E Q [Max(S T K, ) F t ] (.3) Putting the expression for S T in. into.3 we have (without the discounting factor) E Q [ Max(D t e rτ + (S t D t )e (r.5σ )τ+σ τz K, ) F t ] Note: From here on, we assume the expect ion is in risk-neutral world and is with respect to the filtration at time t Recall that the payoff is always equal to zero when S T K and this further implies that the expectation will also be zero. With this result we have that D t e rτ + (S t D t )e (r.5σ )τ+σ τz < K (S t D t )e (r.5σ )τ+σ τz < K D t e rτ e (r.5σ )τ+σ τz < K Dterτ (S t D t) (.4) 3

5 Taking ln on both sides, we have (r.5σ )τ + σ τz < ln( K Dterτ (S t D t) ) σ τz < ln( K Dterτ (S t D t) ) (r.5σ )τ Z < ln( K D rτ te (S t D t ) ) (r.5σ )τ σ τ From the last expression, we let Z < and considering expectations for the positive part of the payoff, we have E [Max(S T K, )] = E [ Z I Z> d ] = = Solving the first integral we have that (D t e rτ + (S t D t )e (r.5σ )τ+σ τz K)φ(z)dz (D t e rτ K)φ(z)dz + (S t D t )e (r.5σ )τ+σ τz φ(z)dz (D t e rτ K) φ(z)dz But φ(z) is the standard normal distribution and we know by symmetry of the distribution φ(z)dz = P {Z > } = P {Z < d } = Φ(d ) This implies (D t e rτ K) φ(z)dz = (D t e rτ K)Φ(d ) (.5) Solving the second integral: Let y = z σ τ, therefore σ τ (S t D t )e rτ (S t D t )e (r.5σ )τ+σ τ(y+σ τ) 1 e (y+σ τ) dy σ τ e.5σ τ+σ τ(y+σ τ) 1 e (y+σ τ) dy Solving the exponents inside the integral, many terms will cancel out and thus we have (S t D t )e rτ σ τ 1 e y dy This results in (S t D t )e rτ Φ(d 1) d 1 = d + σ τ (.6) 4

6 Therefore, the expectation becomes E [Max(S T K, )] = (S t D t )e rτ + (D t e rτ K)Φ(d ) (.7) But the call price is given by (.3). Therefore replacing (.7) into (.3) we have the call price as C = (S t D t )Φ(d 1) + (D t Ke rτ )Φ(d ) (.8) Where d = ln( St Dt K D te rτ ) + (r.5σ )τ σ τ d 1 = d + σ τ.1.1 Examples 1. Consider a case where the stock price is 1, dividend is, strike price is 1, maturity time is six months, risk-free interest rate is 1%, volatility is 4%. Implementing equation (.8), the European call price is given by [1] Considering the same example but pricing in the binomial model. The European call option price is given by c( depth + 1, depth 1) c(1, depth) Figure.1: Binomial Lattice for stocks with dividend payment after expiry of the option 5

7 . Expiry After Dividends..1 Case 1 S(t) = D e rt + (S D )e (r.5σ )t+σw(t) The solution is the same as solution (.8) but the times have changed in the implementation. (.9).3 Examples 1. Consider a case where the stock price is 1, dividend is, strike price is 1, maturity time is six months, risk-free interest rate is 1%, volatility is 4%. Implementing equation (.8), the dividend is paid 3 months before maturity and thus European call price is given by [1] The binomial equivalent to the above example is given by c( depth + 1, depth 1) c(1, depth) Figure.: Binomial Lattice for stocks with dividend payment before expiry of the option.3.1 Case (S D )e (r.5σ )t+σw(t) (.1) 6

8 S(T ) = (S t D t )e (r.5σ )(T t)+σ(w(t ) w(t)) Let τ = T t σ(w (T ) W (t)) = σ T tz At maturity, the stock price is given by S(T ) = (S t D t )e (r.5σ )τ+σ τz (.11) The payoff for a call option is Max(S T K, ). Therefore to calculate the call price we need to solve the following expression e rτ E Q [Max(S T K, ) F t ] (.1) Putting the expression for S T in (.11) into (.1) we have (without the discounting factor) E Q [ Max((S t D t )e (r.5σ )τ+σ τz K, ) F t ] Note: From here on, we assume the expection is in risk-neutral world and is with respect to the filtration at time t Recall that the payoff is always equal to zero when S T K and this further implies that the expectation will also be zero. With this result we have that Taking ln on both sides, we have (S t D t )e (r.5σ )τ+σ τz < K (S t D t )e (r.5σ )τ+σ τz < K e (r.5σ )τ+σ τz < K (S t D t) (r.5σ )τ + σ τz < ln( K (S t D t) ) σ τz < ln( K (S t D t) ) (r.5σ )τ Z < ln( K (S t D t ) ) (r.5σ )τ σ τ From the last expression, we let Z < and considering expectations for the positive part of the payoff, we have E [Max(S T K, )] = E [ Z I Z> d ] = ((S t D t )e (r.5σ )τ+σ τz K)φ(z)dz = (S t D t )e (r.5σ )τ+σ τz φ(z)dz Kφ(z)dz 7

9 Solving the second integral we have that K φ(z)dz (.13) But φ(z) is the standard normal distribution and we know by symmetry of the distribution φ(z)dz = P {Z > } = P {Z < d } = Φ(d ) This implies K φ(z)dz = KΦ(d ) (.14) Solving the first integral: Let y = z σ τ, therefore σ τ (S t D t )e rτ (S t D t )e (r.5σ )τ+σ τ(y+σ τ) 1 e (y+σ τ) dy (.15) σ τ e.5σ τ+σ τ(y+σ τ) 1 e (y+σ τ) dy Solving the exponents inside the integral, many terms will cancel out and thus we have This results in Therefore, the expectation becomes (S t D t )e rτ σ τ 1 e y dy (S t D t )e rτ Φ(d 1) d 1 = d + σ τ (.16) E [Max(S T K, )] = (S t D t )e rτ + KΦ(d ) (.17) But the call price is given by (.1). Therefore replacing (.17) into (.1) we have the call price as C = (S t D t )Φ(d 1) + Ke rτ Φ(d ) (.18) Where d = ln( St Dt K ) + (r.5σ )τ σ τ d 1 = d + σ τ.3. Examples 1. Consider a case where the stock price is 1, dividend is, strike price is 1, maturity time is six months, risk-free interest rate is 1%, volatility is 4%. Implementing equation (.18), the European call price is given by [1] The equivalent binomial option price is given by 8

10 4.85 c( depth + 1, depth 1) c(1, depth) Figure.3: Binomial option price for option with dividend before inception 9

11 Chapter 3 Treat All Dividends as Proportional 3.1 Expiry before dividend Let S e (r.5σ )t+σw(t) S(T ) = S t e (r.5σ )(T t)+σ(w(t ) w(t)) (3.1) τ = T t σ(w (T ) W (t)) = σ T tz At maturity, the stock price is given by S(T ) = S t e (r.5σ )τ+σ τz (3.) The payoff for a call option is Max(S T K, ). Therefore to calculate the call price we need to solve the following expression e rτ E Q [Max(S T K, ) F t ] (3.3) Putting the expression for S T in (3.) into (3.3) we have (without the discounting factor) E Q [ Max(S t e (r.5σ )τ+σ τz K, ) F t ] Note: From here on, we assume the expect ion is in risk-neutral world and is with respect to the filtration at time t Recall that the payoff is always equal to zero when S T K and this further implies that the expectation will also be zero. With this result we have that S t e (r.5σ )τ+σ τz < K S t e (r.5σ )τ+σ τz < K (3.4) e (r.5σ )τ+σ τz < K S t 1

12 Taking ln on both sides, we have Solving the second integral we have that (r.5σ )τ + σ τz < ln( K S t ) σ τ Z < ln( K S t ) (r.5σ )τ Z < ln( K S t ) (r.5σ )τ σ τ K φ(z)dz (3.5) But φ(z) is the standard normal distribution and we know by symmetry of the distribution φ(z)dz = P {Z > } = P {Z < d } = Φ(d ) This implies K φ(z)dz = KΦ(d ) (3.6) Solving the first integral: Let y = z σ τ, therefore σ τ S t e rτ S t e (r.5σ )τ+σ τ(y+σ τ) 1 e (y+σ τ) dy (3.7) σ τ e.5σ τ+σ τ(y+σ τ) 1 e (y+σ τ) dy Solving the exponents inside the integral, many terms will cancel out and thus we have S t e rτ σ τ 1 e y dy This results in S t e rτ Φ(d 1) d 1 = d + σ τ (3.8) Therefore, the expectation becomes E [Max(S T K, )] = S t e rτ + KΦ(d ) (3.9) But the call price is given by (3.3). Therefore replacing (3.9) into (3.3) we have the call price as C = S t Φ(d 1) + Ke rτ Φ(d ) (3.1) Where d = ln( St K ) + (r.5σ )τ σ τ d 1 = d + σ τ 11

13 3. Examples 1. Consider a case where the stock price is 1, dividend is, strike price is 1, maturity time is six months, risk-free interest rate is 1%, volatility is 4%. [1] The binomial option for the above example is given by 76.7 c( depth + 1, depth 1) c(1, depth) Figure 3.1: Binomial option price for option with proportional dividend 3.3 Expiry After Dividend (S D )e (r.5σ )t+σw(t) The solution to the expression (3.11) is the same as the one given in equation (.18) (3.11) 1

14 Bibliography [1] Hull, John C. Options, Futures and Other Derivatives [] Cox, J.C; S.A Ross; and M. Rubenstein Option Pricing: A Simplified Approach The Journal of Financial Economics 7 (1979) [3] Black, F. and M. Scholes The Pricing of Options and Corporate Liabilities The Journal of Political Economy 8 (1973) 13

Lecture 16: Delta Hedging

Lecture 16: Delta Hedging Lecture 16: Delta Hedging We are now going to look at the construction of binomial trees as a first technique for pricing options in an approximative way. These techniques were first proposed in: J.C.

More information

Solving the Black-Scholes Equation

Solving the Black-Scholes Equation Solving the Black-Scholes Equation An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Initial Value Problem for the European Call rf = F t + rsf S + 1 2 σ2 S 2 F SS for (S,

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK MSC FINANCIAL ENGINEERING PRICING I, AUTUMN 2010-2011 LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK In this section we look at some easy extensions of the Black

More information

Investment Guarantees Chapter 7. Investment Guarantees Chapter 7: Option Pricing Theory. Key Exam Topics in This Lesson.

Investment Guarantees Chapter 7. Investment Guarantees Chapter 7: Option Pricing Theory. Key Exam Topics in This Lesson. Investment Guarantees Chapter 7 Investment Guarantees Chapter 7: Option Pricing Theory Mary Hardy (2003) Video By: J. Eddie Smith, IV, FSA, MAAA Investment Guarantees Chapter 7 1 / 15 Key Exam Topics in

More information

Pricing Options with Binomial Trees

Pricing Options with Binomial Trees Pricing Options with Binomial Trees MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will learn: a simple discrete framework for pricing options, how to calculate risk-neutral

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p 57) #4.1, 4., 4.3 Week (pp 58-6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15-19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9-31) #.,.6,.9 Week 4 (pp 36-37)

More information

Black-Scholes-Merton Model

Black-Scholes-Merton Model Black-Scholes-Merton Model Weerachart Kilenthong University of the Thai Chamber of Commerce c Kilenthong 2017 Weerachart Kilenthong University of the Thai Chamber Black-Scholes-Merton of Commerce Model

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Interest Rate Future Options and Valuation

Interest Rate Future Options and Valuation Interest Rate Future Options and Valuation Dmitry Popov FinPricing http://www.finpricing.com Summary Interest Rate Future Option Definition Advantages of Trading Interest Rate Future Options Valuation

More information

Advanced Numerical Methods

Advanced Numerical Methods Advanced Numerical Methods Solution to Homework One Course instructor: Prof. Y.K. Kwok. When the asset pays continuous dividend yield at the rate q the expected rate of return of the asset is r q under

More information

Lecture 18. More on option pricing. Lecture 18 1 / 21

Lecture 18. More on option pricing. Lecture 18 1 / 21 Lecture 18 More on option pricing Lecture 18 1 / 21 Introduction In this lecture we will see more applications of option pricing theory. Lecture 18 2 / 21 Greeks (1) The price f of a derivative depends

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 Fundamentals of Futures and Options Markets, 8th Ed, Ch 12, Copyright John C. Hull 2013 1 A Simple Binomial Model A stock price is currently $20. In three months

More information

Hull, Options, Futures, and Other Derivatives, 9 th Edition

Hull, Options, Futures, and Other Derivatives, 9 th Edition P1.T4. Valuation & Risk Models Hull, Options, Futures, and Other Derivatives, 9 th Edition Bionic Turtle FRM Study Notes By David Harper, CFA FRM CIPM and Deepa Sounder www.bionicturtle.com Hull, Chapter

More information

Equity Option Valuation Practical Guide

Equity Option Valuation Practical Guide Valuation Practical Guide John Smith FinPricing Equity Option Introduction The Use of Equity Options Equity Option Payoffs Valuation Practical Guide A Real World Example Summary Equity Option Introduction

More information

Solving the Black-Scholes Equation

Solving the Black-Scholes Equation Solving the Black-Scholes Equation An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Initial Value Problem for the European Call The main objective of this lesson is solving

More information

Barrier options. In options only come into being if S t reaches B for some 0 t T, at which point they become an ordinary option.

Barrier options. In options only come into being if S t reaches B for some 0 t T, at which point they become an ordinary option. Barrier options A typical barrier option contract changes if the asset hits a specified level, the barrier. Barrier options are therefore path-dependent. Out options expire worthless if S t reaches the

More information

Chapter 17. Options and Corporate Finance. Key Concepts and Skills

Chapter 17. Options and Corporate Finance. Key Concepts and Skills Chapter 17 Options and Corporate Finance Prof. Durham Key Concepts and Skills Understand option terminology Be able to determine option payoffs and profits Understand the major determinants of option prices

More information

Notes for Lecture 5 (February 28)

Notes for Lecture 5 (February 28) Midterm 7:40 9:00 on March 14 Ground rules: Closed book. You should bring a calculator. You may bring one 8 1/2 x 11 sheet of paper with whatever you want written on the two sides. Suggested study questions

More information

Pricing Financial Derivatives Using Stochastic Calculus. A Thesis Presented to The Honors Tutorial College, Ohio University

Pricing Financial Derivatives Using Stochastic Calculus. A Thesis Presented to The Honors Tutorial College, Ohio University Pricing Financial Derivatives Using Stochastic Calculus A Thesis Presented to The Honors Tutorial College, Ohio University In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

European and American Option Pricing; Black-Scholes and Binomial Models

European and American Option Pricing; Black-Scholes and Binomial Models Misha William Brooks Registration number 6173675 European and American Option Pricing; Black-Scholes and Binomial Models Supervised by Dr Christopher Greenman University of East Anglia Faculty of Science

More information

Black-Scholes Option Pricing

Black-Scholes Option Pricing Black-Scholes Option Pricing The pricing kernel furnishes an alternate derivation of the Black-Scholes formula for the price of a call option. Arbitrage is again the foundation for the theory. 1 Risk-Free

More information

Advanced Corporate Finance. 5. Options (a refresher)

Advanced Corporate Finance. 5. Options (a refresher) Advanced Corporate Finance 5. Options (a refresher) Objectives of the session 1. Define options (calls and puts) 2. Analyze terminal payoff 3. Define basic strategies 4. Binomial option pricing model 5.

More information

Greek Maxima 1 by Michael B. Miller

Greek Maxima 1 by Michael B. Miller Greek Maxima by Michael B. Miller When managing the risk of options it is often useful to know how sensitivities will change over time and with the price of the underlying. For example, many people know

More information

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS PRICING EMMS014S7 Tuesday, May 31 2011, 10:00am-13.15pm

More information

The Binomial Approach

The Binomial Approach W E B E X T E N S I O N 6A The Binomial Approach See the Web 6A worksheet in IFM10 Ch06 Tool Kit.xls for all calculations. The example in the chapter illustrated the binomial approach. This extension explains

More information

Currency Option or FX Option Introduction and Pricing Guide

Currency Option or FX Option Introduction and Pricing Guide or FX Option Introduction and Pricing Guide Michael Taylor FinPricing A currency option or FX option is a contract that gives the buyer the right, but not the obligation, to buy or sell a certain currency

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13 Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 1 The Black-Scholes-Merton Random Walk Assumption l Consider a stock whose price is S l In a short period of time of length t the return

More information

Help Session 2. David Sovich. Washington University in St. Louis

Help Session 2. David Sovich. Washington University in St. Louis Help Session 2 David Sovich Washington University in St. Louis TODAY S AGENDA 1. Refresh the concept of no arbitrage and how to bound option prices using just the principle of no arbitrage 2. Work on applying

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas James R. Garven Current Version: November 15, 2017 Abstract This paper provides an alternative derivation of

More information

The Black-Scholes Equation

The Black-Scholes Equation The Black-Scholes Equation MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will: derive the Black-Scholes partial differential equation using Itô s Lemma and no-arbitrage

More information

Extensions to the Black Scholes Model

Extensions to the Black Scholes Model Lecture 16 Extensions to the Black Scholes Model 16.1 Dividends Dividend is a sum of money paid regularly (typically annually) by a company to its shareholders out of its profits (or reserves). In this

More information

The British Russian Option

The British Russian Option The British Russian Option Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 25th June 2010 (6th World Congress of the BFS, Toronto)

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M339D/M389D Introduction to Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam II - Solutions Instructor: Milica Čudina Notes: This is a closed book and

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE

NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE Trends in Mathematics - New Series Information Center for Mathematical Sciences Volume 13, Number 1, 011, pages 1 5 NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE YONGHOON

More information

Aspects of Financial Mathematics:

Aspects of Financial Mathematics: Aspects of Financial Mathematics: Options, Derivatives, Arbitrage, and the Black-Scholes Pricing Formula J. Robert Buchanan Millersville University of Pennsylvania email: Bob.Buchanan@millersville.edu

More information

Lecture 15: Exotic Options: Barriers

Lecture 15: Exotic Options: Barriers Lecture 15: Exotic Options: Barriers Dr. Hanqing Jin Mathematical Institute University of Oxford Lecture 15: Exotic Options: Barriers p. 1/10 Barrier features For any options with payoff ξ at exercise

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

Financial Risk Management

Financial Risk Management Risk-neutrality in derivatives pricing University of Oulu - Department of Finance Spring 2018 Portfolio of two assets Value at time t = 0 Expected return Value at time t = 1 Asset A Asset B 10.00 30.00

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

Two Types of Options

Two Types of Options FIN 673 Binomial Option Pricing Professor Robert B.H. Hauswald Kogod School of Business, AU Two Types of Options An option gives the holder the right, but not the obligation, to buy or sell a given quantity

More information

University of California, Los Angeles Department of Statistics. Final exam 07 June 2013

University of California, Los Angeles Department of Statistics. Final exam 07 June 2013 University of California, Los Angeles Department of Statistics Statistics C183/C283 Instructor: Nicolas Christou Final exam 07 June 2013 Name: Problem 1 (20 points) a. Suppose the variable X follows the

More information

Lattice Option Pricing Beyond Black Scholes Model

Lattice Option Pricing Beyond Black Scholes Model Lattice Option Pricing Beyond Black Scholes Model Carolyne Ogutu 2 School of Mathematics, University of Nairobi, Box 30197-00100, Nairobi, Kenya (E-mail: cogutu@uonbi.ac.ke) April 26, 2017 ISPMAM workshop

More information

Pricing Options on Dividend paying stocks, FOREX, Futures, Consumption Commodities

Pricing Options on Dividend paying stocks, FOREX, Futures, Consumption Commodities Pricing Options on Dividend paying stocks, FOREX, Futures, Consumption Commodities The Black-Scoles Model The Binomial Model and Pricing American Options Pricing European Options on dividend paying stocks

More information

non linear Payoffs Markus K. Brunnermeier

non linear Payoffs Markus K. Brunnermeier Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends.

last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends. 224 10 Arbitrage and SDEs last problem outlines how the Black Scholes PDE (and its derivation) may be modified to account for the payment of stock dividends. 10.1 (Calculation of Delta First and Finest

More information

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly). 1 EG, Ch. 22; Options I. Overview. A. Definitions. 1. Option - contract in entitling holder to buy/sell a certain asset at or before a certain time at a specified price. Gives holder the right, but not

More information

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Definitions and Terminology Definition An option is the right, but not the obligation, to buy or sell a security such

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II - Solutions This problem set is aimed at making up the lost

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model.

Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model. Replication strategies of derivatives under proportional transaction costs - An extension to the Boyle and Vorst model Henrik Brunlid September 16, 2005 Abstract When we introduce transaction costs

More information

Path Dependent British Options

Path Dependent British Options Path Dependent British Options Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 18th August 2009 (PDE & Mathematical Finance

More information

Review of Derivatives I. Matti Suominen, Aalto

Review of Derivatives I. Matti Suominen, Aalto Review of Derivatives I Matti Suominen, Aalto 25 SOME STATISTICS: World Financial Markets (trillion USD) 2 15 1 5 Securitized loans Corporate bonds Financial institutions' bonds Public debt Equity market

More information

Equity Warrant Difinitin and Pricing Guide

Equity Warrant Difinitin and Pricing Guide Difinitin and Pricing Guide John Smith FinPricing Summary Equity Warrant Introduction The Use of Equity Warrants Equity Warrant Payoffs Valuation Valuation Model Assumption A Real World Example Equity

More information

Bose Vandermark (Lehman) Method

Bose Vandermark (Lehman) Method Bose Vandermark (Lehman) Method Patrik Konat Ferid Destovic Abdukayum Sulaymanov October 21, 2013 Division of Applied Mathematics School of Education, Culture and Communication Mälardalen University Box

More information

BINOMIAL OPTION PRICING AND BLACK-SCHOLES

BINOMIAL OPTION PRICING AND BLACK-SCHOLES BINOMIAL OPTION PRICING AND BLACK-CHOLE JOHN THICKTUN 1. Introduction This paper aims to investigate the assumptions under which the binomial option pricing model converges to the Blac-choles formula.

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

SOA Exam MFE Solutions: May 2007

SOA Exam MFE Solutions: May 2007 Exam MFE May 007 SOA Exam MFE Solutions: May 007 Solution 1 B Chapter 1, Put-Call Parity Let each dividend amount be D. The first dividend occurs at the end of months, and the second dividend occurs at

More information

Bond Future Option Valuation Guide

Bond Future Option Valuation Guide Valuation Guide David Lee FinPricing http://www.finpricing.com Summary Bond Future Option Introduction The Use of Bond Future Options Valuation European Style Valuation American Style Practical Guide A

More information

Employee Reload Options: Pricing, Hedging, and Optimal Exercise

Employee Reload Options: Pricing, Hedging, and Optimal Exercise Employee Reload Options: Pricing, Hedging, and Optimal Exercise Philip H. Dybvig Washington University in Saint Louis Mark Loewenstein Boston University for a presentation at Cambridge, March, 2003 Abstract

More information

Probability in Options Pricing

Probability in Options Pricing Probability in Options Pricing Mark Cohen and Luke Skon Kenyon College cohenmj@kenyon.edu December 14, 2012 Mark Cohen and Luke Skon (Kenyon college) Probability Presentation December 14, 2012 1 / 16 What

More information

Term Structure Lattice Models

Term Structure Lattice Models IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh Term Structure Lattice Models These lecture notes introduce fixed income derivative securities and the modeling philosophy used to

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

In chapter 5, we approximated the Black-Scholes model

In chapter 5, we approximated the Black-Scholes model Chapter 7 The Black-Scholes Equation In chapter 5, we approximated the Black-Scholes model ds t /S t = µ dt + σ dx t 7.1) with a suitable Binomial model and were able to derive a pricing formula for option

More information

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press CHAPTER 10 OPTION PRICING - II Options Pricing II Intrinsic Value and Time Value Boundary Conditions for Option Pricing Arbitrage Based Relationship for Option Pricing Put Call Parity 2 Binomial Option

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 and Lecture Quantitative Finance Spring Term 2015 Prof. Dr. Erich Walter Farkas Lecture 06: March 26, 2015 1 / 47 Remember and Previous chapters: introduction to the theory of options put-call parity fundamentals

More information

Course MFE/3F Practice Exam 2 Solutions

Course MFE/3F Practice Exam 2 Solutions Course MFE/3F Practice Exam Solutions The chapter references below refer to the chapters of the ActuarialBrew.com Study Manual. Solution 1 A Chapter 16, Black-Scholes Equation The expressions for the value

More information

AN IMPROVED BINOMIAL METHOD FOR PRICING ASIAN OPTIONS

AN IMPROVED BINOMIAL METHOD FOR PRICING ASIAN OPTIONS Commun. Korean Math. Soc. 28 (2013), No. 2, pp. 397 406 http://dx.doi.org/10.4134/ckms.2013.28.2.397 AN IMPROVED BINOMIAL METHOD FOR PRICING ASIAN OPTIONS Kyoung-Sook Moon and Hongjoong Kim Abstract. We

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Weeks of November 18 & 5 th, 13 he Black-Scholes-Merton Model for Options plus Applications 11.1 Where we are Last Week: Modeling the Stochastic Process for

More information

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given:

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (i) The current price of the stock is $60. (ii) The call option currently sells for $0.15 more

More information

In this lecture we will solve the final-value problem derived in the previous lecture 4, V (1) + rs = rv (t < T )

In this lecture we will solve the final-value problem derived in the previous lecture 4, V (1) + rs = rv (t < T ) MSC FINANCIAL ENGINEERING PRICING I, AUTUMN 2010-2011 LECTURE 5: THE BLACK AND SCHOLES FORMULA AND ITS GREEKS RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK In this lecture we will solve the final-value problem

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 1 A Simple Binomial Model l A stock price is currently $20 l In three months it will be either $22 or $18 Stock Price = $22 Stock price = $20 Stock Price = $18

More information

Option pricing models

Option pricing models Option pricing models Objective Learn to estimate the market value of option contracts. Outline The Binomial Model The Black-Scholes pricing model The Binomial Model A very simple to use and understand

More information

American options and early exercise

American options and early exercise Chapter 3 American options and early exercise American options are contracts that may be exercised early, prior to expiry. These options are contrasted with European options for which exercise is only

More information

Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a

Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a variable depend only on the present, and not the history

More information

15 American. Option Pricing. Answers to Questions and Problems

15 American. Option Pricing. Answers to Questions and Problems 15 American Option Pricing Answers to Questions and Problems 1. Explain why American and European calls on a nondividend stock always have the same value. An American option is just like a European option,

More information

Derivatives Options on Bonds and Interest Rates. Professor André Farber Solvay Business School Université Libre de Bruxelles

Derivatives Options on Bonds and Interest Rates. Professor André Farber Solvay Business School Université Libre de Bruxelles Derivatives Options on Bonds and Interest Rates Professor André Farber Solvay Business School Université Libre de Bruxelles Caps Floors Swaption Options on IR futures Options on Government bond futures

More information

Richardson Extrapolation Techniques for the Pricing of American-style Options

Richardson Extrapolation Techniques for the Pricing of American-style Options Richardson Extrapolation Techniques for the Pricing of American-style Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of American-style Options In this paper we re-examine

More information

Homework Set 6 Solutions

Homework Set 6 Solutions MATH 667-010 Introduction to Mathematical Finance Prof. D. A. Edwards Due: Apr. 11, 018 P Homework Set 6 Solutions K z K + z S 1. The payoff diagram shown is for a strangle. Denote its option value by

More information

Price sensitivity to the exponent in the CEV model

Price sensitivity to the exponent in the CEV model U.U.D.M. Project Report 2012:5 Price sensitivity to the exponent in the CEV model Ning Wang Examensarbete i matematik, 30 hp Handledare och examinator: Johan Tysk Maj 2012 Department of Mathematics Uppsala

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

American Equity Option Valuation Practical Guide

American Equity Option Valuation Practical Guide Valuation Practical Guide John Smith FinPricing Summary American Equity Option Introduction The Use of American Equity Options Valuation Practical Guide A Real World Example American Option Introduction

More information

Derivative Instruments

Derivative Instruments Derivative Instruments Paris Dauphine University - Master I.E.F. (272) Autumn 2016 Jérôme MATHIS jerome.mathis@dauphine.fr (object: IEF272) http://jerome.mathis.free.fr/ief272 Slides on book: John C. Hull,

More information

25. Interest rates models. MA6622, Ernesto Mordecki, CityU, HK, References for this Lecture:

25. Interest rates models. MA6622, Ernesto Mordecki, CityU, HK, References for this Lecture: 25. Interest rates models MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: John C. Hull, Options, Futures & other Derivatives (Fourth Edition), Prentice Hall (2000) 1 Plan of Lecture

More information

1 Interest Based Instruments

1 Interest Based Instruments 1 Interest Based Instruments e.g., Bonds, forward rate agreements (FRA), and swaps. Note that the higher the credit risk, the higher the interest rate. Zero Rates: n year zero rate (or simply n-year zero)

More information

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1.

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1. THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** Abstract The change of numeraire gives very important computational

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples.

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples. for for January 25, 2016 1 / 26 Outline for 1 2 3 4 2 / 26 Put Option for A put option is the right to sell an asset at an established price at a certain time. The established price is the strike price,

More information

VALUING THE OPTION TO PURCHASE AN ASSET AT A PROPORTIONAL DISCOUNT. Abstract. I. Introduction

VALUING THE OPTION TO PURCHASE AN ASSET AT A PROPORTIONAL DISCOUNT. Abstract. I. Introduction The Journal of Financial Research Vol. XXV, No. 1 Pages 99 109 Spring 2002 VALUING THE OPTION TO PURCHASE AN ASSET AT A PROPORTIONAL DISCOUNT Anthony Yanxiang Gu State University of New York at Geneseo

More information