5. Results

Size: px
Start display at page:

Download "5. Results"

Transcription

1 A stochastic programming model for asset liability management of a Finnish pension company Λ Petri Hilli, Matti Koivu, Teemu Pennanen Helsinki School of Economics Antero Ranne Mutual Pension Insurance Company Ilmarinen 1. Introduction 2. The optimization model 3. Stochastic factors 4. Numerical solution Λ Full paper available at

2 5. Results

3 Asset Liability Management The problem is to cover uncertain future liabilities of a large Finnish pension company by dynamic investment strategies under complicated constraints. The planning horizon is years. Uncertainties: Investment returns, cash-flows,... Dynamics: Decisions are made sequentially under incomplete information; when choosing the investment portfolio for a year, one should consider different possible realizations of the stochastic factors and the fact that one will update the portfolio also in the future.

4 Stochastic programming At stage t = 0; 1;:::;T, observe the value of a random variable ο t and make a decision x t. The decision x t will be a function of (ο 1 ;:::;ο t ). A realization of the sequences ο = (ο 1 ;:::;ο T ) and x = (x 1 ;:::;x T ) incurs a cost f(x 1 ;:::;x T ;ο 1 ;:::;ο T ): The problem is to minimize x2n E P f[x(ο);ο]; where N denotes the subspace of nonanticipative functions.

5 The optimization model Assets J = fcash, bonds, stocks, property, loansg. Inventory constraints h 0;j = h 0 j + p 0;j s 0;j h t;j = R t;j h t 1;j + p t;j s t;j t = 0;:::;T 1; where h 0 j = initial holdings in asset j, R t;j = return on asset j over period [t 1;t] are parameters, and p t;j = purchases in asset j at time t, s t;j = sales in asset j at time t, h t;j = holdings in asset j in period [t; t + 1] are decision variables.

6 Budget constraints X + c j2j(1 p j )p 0;j + H 1» X (1 c s j)s 0;j + F 0 ; j2j X + c j2j(1 p j )p t;j + fi t H t 1» X (1 c s j)s t;j j2j + X D t;j h t 1;j + F t ; j2j where c p j = transaction costs for buying asset j, c s j = transaction costs for selling asset j, fi t = length of period [t 1;t] in years, D t;j = dividend on asset j over period [t 1;t], F t = cash flows in period [t 1;t] are parameters and H t = yearly bonuses to be paid during [t; t + 1] are decision variables.

7 Portfolio constraints where l j w t» h t;j» u j w t ; w t = X h t;j for t = 0;:::;T 1 j2j is the total wealth and l j, u j are parameters. At the horizon, w T = X T;j + D T;j )h T 1;j + F T fi T H T 1 : j2j(r Transaction constraints p t;j» fi t b p j w t t = 0;:::;T 1; s t;j» fi t b s j w t t = 0;:::;T 1; where b p j, bs j are parameters.

8 Statutory restrictions are described in terms of technical reserves L t = present value" of future pension expenditure, solvency capital C t = w t (1 c G )L t ; solvency border B t = X s X a m j h t;j + b j2j j;k2j ff j;k h t;j h t;k ; where c G, a, b, m and ff are parameters. A company is declared bankrupt if C t» 0. The amount of bonuses is required to satisfy H t» 0:03 maxfc t B t ; 0g:

9 Objective function The Ministry of Social Affairs and Health defines four zones according to which companies' solvency situation is classified: C t =B t 2 [2; 1) : target C t =B t 2 [1; 2) : below target C t =B t 2 [0; 1) : crisis C t =B t 2 ( 1; 0) : bankrupt. We define the shortfall variables: SF t;1 2B t C t t = 1;:::;T 1; SF t;2 B t C t + H t =0:03 t = 1;:::;T 1; SF t;3 C t t = 1;:::;T:

10 For t = 0;:::;T 1, the state of the company will be measured by 3X u(c t ;B t ;H t ;L t ) = C t =L t z=1 fi z SF t;z =L t +u b (H t =L t ); where fi z are parameters and u b is a nondecreasing concave function. At stage T, the utility is measured by u T (C T ;L T ) = C T =L T fi 3 SF T;3 =L T : The objective function in our model is the discounted expected utility 8 9 < E P T X 1 = d : t u(c t ;B t ;H t ;L t ) + d T u T (C T ;L T ) ; ; t=1 where d t is the discount factor for stage t.

11 Problem summary Stochastic parameters: R t;j = return on asset j over period [t 1;t], D t;j = dividend on asset j over period [t 1;t], F t = cash flows from period [t 1;t], L t = technical reserves at time t, Decision variables: h t;j = holdings in asset j from period t to t + 1, p t;j = purchases in asset j at time t, s t;j = sales in asset j at time t, w t = total wealth at time t, H t = transfers to bonus reserve at time t, C t = solvency capital at time t, B t = solvency border at time t, SF t;z = shortfall from zone z at time t.

12 np maximize E P T 1 o t=1 d tu(c t ;B t ;H t ;L t )+d T u T (C T ;L T ) X j2j X j2j (1 + c p j )p 0;j + H 1» (1 + c p j )p t;j + fi t H t 1» h0;j = h 0 j + p 0;j s0;j; h t;j = R t;j h t 1;j + p t;j s t;j ; p t;j ;s t;j 0; w t = X j2j X j2j X j2j (1 c s j )s 0;j + F0; (1 c s j )s t;j + h t;j ; l j w t» h t;j» u j w t ; p t;j» fi t b p j w t; s t;j» fi t b s jw t ; C t = w t (1 c G )L t ; B t a X j2j m j h t;j + b X j2j s X SF t;1 2B t C t ; SF t;2 B t C t + 100=3H t ; SF t;3 C t ; for all t = 1;:::;T 1; j 2 J; w T = X j2j C T = w T (1 c G )L T ; SF T;3 C T ; (h; b; s; w; H;C; B; SF ) 2 N : D t;j h t 1;j + F t ; j;k2j ff j;k h t;j h t;k ; (R T;j + D T;j )h T 1;j + F T fi T H T 1:

13 The stochastic factors We express all the stochastic factors in terms of seven economic variables: sr = short term interest rate, br = long term bond yield, S = stock price index, Div = dividend index, P = property price index, Rent = rental index, W = wage index, whose development will be modelled by an econometric model. The cash-flows F t and technical reserves L t depend on the population forecasts and the wage index W.

14 Return and dividend will be expressed as Asset class Cash Bonds Stocks R t (1 + srt 1 )(1 + sr t ) fi t 1+brt 1 1+br t S t S t 1 P t P t 1 Property Loans 1 DM Asset class D t Cash 1 1 Bonds 2 (br t 1 + br t )fi t 1 Stocks 2 ( Div t 1 S + Div t t 1 S )fi t t 1 Property 2 (Rent t 1 P t 1 + Rent t P t ) 0:03 Loans 1 2 (br t 1 + br t )fi t, 2 fi t where fi t is the length of period t in years and D M denotes the average duration of the company's bond portfolio.

15 The quarterly development of 2 3 ln sr q ln br q ln S q x q = ln Div q ln P 6 q 4 7 ln Rent q 5 ln W q will be described with a Vector Equilibrium Correction (VEqC) model of the form ffix q = k X i=1 A i ffix q i + ff(fi 0 x q 1 μ) + ffl q ; where A i 2 R 7 7, fi 2 R 7 l, μ 2 R l, ff 2 R 7 l, ffix q := x q x q 1 ffi with ffi 2 R 7, and ffl q are independent normally distributed random variables with zero mean and variance matrix ± 2 R 7 7.

16 Writing the VEqC-model in the companion form μx q = μ Aμxq 1 + μc + μffl q ; we find that the vectors μx t in the formulas for R t and D t satisfy μx t = μ A 4fi t μx t 1 + X4fi t i=1 μa 4fi t i μc + e t ; where e t = P 4fi t μ i=1 A 4fit i μffl i is normally distributed with zero mean and the variance matrix μ± 4fit = X4fi t i=1 μa 4fi t i ± ( A μ T ) 4fi t i : 0 0

17 Numerical solution of the optimization model We discretize the model by approximating the distribution of the stochastic factors by a finite distribution in the form of a scenario tree. This results in a finite-dimensional optimization problem which is solved by an interior point solver.

18 INPUT COMPUTER SYSTEM OUTPUT Multiperiod stochastic optimization model Econometric model -Assets - Wage index Solution 1 Scenario generator Solver - Optimal strategy -Statistics -Graphics Data - AMPL -Mosek - Statistics - Graphics -Market data Liability model - Expert information -Cashflows - Technical reserves Data - Initial values - Population forecasts Figure 1: Stochastic optimization system

19 (a) Short rate % (b)bondrate% (c) Stock index (d) Dividend index (e) Property index (f) Rental index 2

20 property stocks bonds short rate loans 3 Initial SP1 SP2 SP3 SP4 SP5 Figure 2: Initial portfolio h 0 and the optimal portfolios corresponding to the parameter values in Table??.

21 (b) H t=l t. (a) C t=l t. 4

22 Sobol MC Figure 4: Convergence of the optimal value Branches per node

23 Fix Mix SP Bankruptcy probability Average C/L

24 (b) Fixed-mix (a) Stochastic programming

A stochastic programming model for asset liability management of a Finnish pension company

A stochastic programming model for asset liability management of a Finnish pension company A stochastic programming model for asset liability management of a Finnish pension company Petri Hilli, Matti Koivu and Teemu Pennanen ([hilli,koivu,pennanen]@hkkk.fi) Department of Management Science,

More information

Optimal construction of a fund of funds

Optimal construction of a fund of funds Optimal construction of a fund of funds Petri Hilli, Matti Koivu and Teemu Pennanen January 28, 29 Introduction We study the problem of diversifying a given initial capital over a finite number of investment

More information

Optimal construction of a fund of funds

Optimal construction of a fund of funds Optimal construction of a fund of funds Petri Hilli Matti Koivu Teemu Pennanen January 23, 21 Abstract We study the problem of diversifying a given initial capital over a finite number of investment funds

More information

Optimum Allocation and Risk Measure in an Asset Liability Management Model for a Pension Fund Via Multistage Stochastic Programming and Bootstrap

Optimum Allocation and Risk Measure in an Asset Liability Management Model for a Pension Fund Via Multistage Stochastic Programming and Bootstrap EngOpt 2008 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 0-05 June 2008. Optimum Allocation and Risk Measure in an Asset Liability Management Model for a Pension Fund

More information

Real Option Analysis of a Technology Portfolio

Real Option Analysis of a Technology Portfolio Real Option Analysis of a Technology Portfolio 13.11.2003 Petri Hilli Maarit Kallio Markku Kallio Helsinki School of Economics The Finnish Forest Research Institute Real Option Analysis of a Technology

More information

Modeling assets and liabilities of a Finnish pension company: a VEqC approach

Modeling assets and liabilities of a Finnish pension company: a VEqC approach Modeling assets and liabilities of a Finnish pension company: a VEqC approach MATTI KOIVU Helsinki School of Economics, Department of Management Science TEEMU PENNANEN Helsinki School of Economics, Department

More information

Homework 3: Asset Pricing

Homework 3: Asset Pricing Homework 3: Asset Pricing Mohammad Hossein Rahmati November 1, 2018 1. Consider an economy with a single representative consumer who maximize E β t u(c t ) 0 < β < 1, u(c t ) = ln(c t + α) t= The sole

More information

Multistage Stochastic Programs

Multistage Stochastic Programs Multistage Stochastic Programs Basic Formulations Multistage Stochastic Linear Program with Recourse: all functions are linear in decision variables Problem of Private Investor Revisited Horizon and Stages

More information

STOCHASTIC PROGRAMMING FOR ASSET ALLOCATION IN PENSION FUNDS

STOCHASTIC PROGRAMMING FOR ASSET ALLOCATION IN PENSION FUNDS STOCHASTIC PROGRAMMING FOR ASSET ALLOCATION IN PENSION FUNDS IEGOR RUDNYTSKYI JOINT WORK WITH JOËL WAGNER > city date

More information

Lecture Notes: November 29, 2012 TIME AND UNCERTAINTY: FUTURES MARKETS

Lecture Notes: November 29, 2012 TIME AND UNCERTAINTY: FUTURES MARKETS Lecture Notes: November 29, 2012 TIME AND UNCERTAINTY: FUTURES MARKETS Gerard says: theory's in the math. The rest is interpretation. (See Debreu quote in textbook, p. 204) make the markets for goods over

More information

Lecture 2 General Equilibrium Models: Finite Period Economies

Lecture 2 General Equilibrium Models: Finite Period Economies Lecture 2 General Equilibrium Models: Finite Period Economies Introduction In macroeconomics, we study the behavior of economy-wide aggregates e.g. GDP, savings, investment, employment and so on - and

More information

Portfolio Investment

Portfolio Investment Portfolio Investment Robert A. Miller Tepper School of Business CMU 45-871 Lecture 5 Miller (Tepper School of Business CMU) Portfolio Investment 45-871 Lecture 5 1 / 22 Simplifying the framework for analysis

More information

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals

Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals Dynamic Risk Management in Electricity Portfolio Optimization via Polyhedral Risk Functionals A. Eichhorn and W. Römisch Humboldt-University Berlin, Department of Mathematics, Germany http://www.math.hu-berlin.de/~romisch

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Effectiveness of CPPI Strategies under Discrete Time Trading

Effectiveness of CPPI Strategies under Discrete Time Trading Effectiveness of CPPI Strategies under Discrete Time Trading S. Balder, M. Brandl 1, Antje Mahayni 2 1 Department of Banking and Finance, University of Bonn 2 Department of Accounting and Finance, Mercator

More information

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods

Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods Lecture 2 Dynamic Equilibrium Models: Three and More (Finite) Periods. Introduction In ECON 50, we discussed the structure of two-period dynamic general equilibrium models, some solution methods, and their

More information

Notes on Macroeconomic Theory. Steve Williamson Dept. of Economics Washington University in St. Louis St. Louis, MO 63130

Notes on Macroeconomic Theory. Steve Williamson Dept. of Economics Washington University in St. Louis St. Louis, MO 63130 Notes on Macroeconomic Theory Steve Williamson Dept. of Economics Washington University in St. Louis St. Louis, MO 63130 September 2006 Chapter 2 Growth With Overlapping Generations This chapter will serve

More information

Energy Systems under Uncertainty: Modeling and Computations

Energy Systems under Uncertainty: Modeling and Computations Energy Systems under Uncertainty: Modeling and Computations W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Systems Analysis 2015, November 11 13, IIASA (Laxenburg,

More information

Carnegie Mellon University Graduate School of Industrial Administration

Carnegie Mellon University Graduate School of Industrial Administration Carnegie Mellon University Graduate School of Industrial Administration Chris Telmer Winter 2005 Final Examination Seminar in Finance 1 (47 720) Due: Thursday 3/3 at 5pm if you don t go to the skating

More information

Exercises on the New-Keynesian Model

Exercises on the New-Keynesian Model Advanced Macroeconomics II Professor Lorenza Rossi/Jordi Gali T.A. Daniël van Schoot, daniel.vanschoot@upf.edu Exercises on the New-Keynesian Model Schedule: 28th of May (seminar 4): Exercises 1, 2 and

More information

Lecture Notes 1

Lecture Notes 1 4.45 Lecture Notes Guido Lorenzoni Fall 2009 A portfolio problem To set the stage, consider a simple nite horizon problem. A risk averse agent can invest in two assets: riskless asset (bond) pays gross

More information

INTERTEMPORAL ASSET ALLOCATION: THEORY

INTERTEMPORAL ASSET ALLOCATION: THEORY INTERTEMPORAL ASSET ALLOCATION: THEORY Multi-Period Model The agent acts as a price-taker in asset markets and then chooses today s consumption and asset shares to maximise lifetime utility. This multi-period

More information

Midterm 1, Financial Economics February 15, 2010

Midterm 1, Financial Economics February 15, 2010 Midterm 1, Financial Economics February 15, 2010 Name: Email: @illinois.edu All questions must be answered on this test form. Question 1: Let S={s1,,s11} be the set of states. Suppose that at t=0 the state

More information

Consumption and Asset Pricing

Consumption and Asset Pricing Consumption and Asset Pricing Yin-Chi Wang The Chinese University of Hong Kong November, 2012 References: Williamson s lecture notes (2006) ch5 and ch 6 Further references: Stochastic dynamic programming:

More information

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later Sensitivity Analysis with Data Tables Time Value of Money: A Special kind of Trade-Off: $100 @ 10% annual interest now =$110 one year later $110 @ 10% annual interest now =$121 one year later $100 @ 10%

More information

Monetary Economics Final Exam

Monetary Economics Final Exam 316-466 Monetary Economics Final Exam 1. Flexible-price monetary economics (90 marks). Consider a stochastic flexibleprice money in the utility function model. Time is discrete and denoted t =0, 1,...

More information

Optimal Security Liquidation Algorithms

Optimal Security Liquidation Algorithms Optimal Security Liquidation Algorithms Sergiy Butenko Department of Industrial Engineering, Texas A&M University, College Station, TX 77843-3131, USA Alexander Golodnikov Glushkov Institute of Cybernetics,

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2009

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2009 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Spring, 2009 Section 1. (Suggested Time: 45 Minutes) For 3 of the following 6 statements,

More information

that internalizes the constraint by solving to remove the y variable. 1. Using the substitution method, determine the utility function U( x)

that internalizes the constraint by solving to remove the y variable. 1. Using the substitution method, determine the utility function U( x) For the next two questions, the consumer s utility U( x, y) 3x y 4xy depends on the consumption of two goods x and y. Assume the consumer selects x and y to maximize utility subject to the budget constraint

More information

Lecture 1: Lucas Model and Asset Pricing

Lecture 1: Lucas Model and Asset Pricing Lecture 1: Lucas Model and Asset Pricing Economics 714, Spring 2018 1 Asset Pricing 1.1 Lucas (1978) Asset Pricing Model We assume that there are a large number of identical agents, modeled as a representative

More information

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance Chapter 8 Markowitz Portfolio Theory 8.1 Expected Returns and Covariance The main question in portfolio theory is the following: Given an initial capital V (0), and opportunities (buy or sell) in N securities

More information

5 th Annual CARISMA Conference MWB, Canada Square, Canary Wharf 2 nd February ialm. M A H Dempster & E A Medova. & Cambridge Systems Associates

5 th Annual CARISMA Conference MWB, Canada Square, Canary Wharf 2 nd February ialm. M A H Dempster & E A Medova. & Cambridge Systems Associates 5 th Annual CARISMA Conference MWB, Canada Square, Canary Wharf 2 nd February 2010 Individual Asset Liability Management ialm M A H Dempster & E A Medova Centre for Financial i Research, University it

More information

Optimal weights for the MSCI North America index. Optimal weights for the MSCI Europe index

Optimal weights for the MSCI North America index. Optimal weights for the MSCI Europe index Portfolio construction with Bayesian GARCH forecasts Wolfgang Polasek and Momtchil Pojarliev Institute of Statistics and Econometrics University of Basel Holbeinstrasse 12 CH-4051 Basel email: Momtchil.Pojarliev@unibas.ch

More information

Financial Economics Field Exam January 2008

Financial Economics Field Exam January 2008 Financial Economics Field Exam January 2008 There are two questions on the exam, representing Asset Pricing (236D = 234A) and Corporate Finance (234C). Please answer both questions to the best of your

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

Course information FN3142 Quantitative finance

Course information FN3142 Quantitative finance Course information 015 16 FN314 Quantitative finance This course is aimed at students interested in obtaining a thorough grounding in market finance and related empirical methods. Prerequisite If taken

More information

Robust Dual Dynamic Programming

Robust Dual Dynamic Programming 1 / 18 Robust Dual Dynamic Programming Angelos Georghiou, Angelos Tsoukalas, Wolfram Wiesemann American University of Beirut Olayan School of Business 31 May 217 2 / 18 Inspired by SDDP Stochastic optimization

More information

Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization

Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization 1 of 6 Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization 1. Which of the following is NOT an element of an optimization formulation? a. Objective function

More information

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption Problem Set 3 Thomas Philippon April 19, 2002 1 Human Wealth, Financial Wealth and Consumption The goal of the question is to derive the formulas on p13 of Topic 2. This is a partial equilibrium analysis

More information

1 Answers to the Sept 08 macro prelim - Long Questions

1 Answers to the Sept 08 macro prelim - Long Questions Answers to the Sept 08 macro prelim - Long Questions. Suppose that a representative consumer receives an endowment of a non-storable consumption good. The endowment evolves exogenously according to ln

More information

Chapter 11: Dynamic Games and First and Second Movers

Chapter 11: Dynamic Games and First and Second Movers Chapter : Dynamic Games and First and Second Movers Learning Objectives Students should learn to:. Extend the reaction function ideas developed in the Cournot duopoly model to a model of sequential behavior

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

SUPPLEMENT TO EQUILIBRIA IN HEALTH EXCHANGES: ADVERSE SELECTION VERSUS RECLASSIFICATION RISK (Econometrica, Vol. 83, No. 4, July 2015, )

SUPPLEMENT TO EQUILIBRIA IN HEALTH EXCHANGES: ADVERSE SELECTION VERSUS RECLASSIFICATION RISK (Econometrica, Vol. 83, No. 4, July 2015, ) Econometrica Supplementary Material SUPPLEMENT TO EQUILIBRIA IN HEALTH EXCHANGES: ADVERSE SELECTION VERSUS RECLASSIFICATION RISK (Econometrica, Vol. 83, No. 4, July 2015, 1261 1313) BY BEN HANDEL, IGAL

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Simplified stage-based modeling of multi-stage stochastic programming problems

Simplified stage-based modeling of multi-stage stochastic programming problems Simplified stage-based modeling of multi-stage stochastic programming problems Ronald Hochreiter Department of Statistics and Decision Support Systems, University of Vienna 11th International Conference

More information

Financial Market Models. Lecture 1. One-period model of financial markets & hedging problems. Imperial College Business School

Financial Market Models. Lecture 1. One-period model of financial markets & hedging problems. Imperial College Business School Financial Market Models Lecture One-period model of financial markets & hedging problems One-period model of financial markets a 4 2a 3 3a 3 a 3 -a 4 2 Aims of section Introduce one-period model with finite

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program August 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

Risk Sensitive Inventory Management with Financial Hedging 1

Risk Sensitive Inventory Management with Financial Hedging 1 Risk Sensitive Inventory Management with Financial Hedging 1 Süleyman Özekici Koç University Department of Industrial Engineering Sar yer, Istanbul Games and Decisions in Reliability and Risk Workshop

More information

Return dynamics of index-linked bond portfolios

Return dynamics of index-linked bond portfolios Return dynamics of index-linked bond portfolios Matti Koivu Teemu Pennanen June 19, 2013 Abstract Bond returns are known to exhibit mean reversion, autocorrelation and other dynamic properties that differentiate

More information

Multi-armed bandit problems

Multi-armed bandit problems Multi-armed bandit problems Stochastic Decision Theory (2WB12) Arnoud den Boer 13 March 2013 Set-up 13 and 14 March: Lectures. 20 and 21 March: Paper presentations (Four groups, 45 min per group). Before

More information

Matti Koivu A STOCHASTIC OPTIMIZATION APPROACH TO FINANCIAL DECISION MAKING

Matti Koivu A STOCHASTIC OPTIMIZATION APPROACH TO FINANCIAL DECISION MAKING Matti Koivu A STOCHASTIC OPTIMIZATION APPROACH TO FINANCIAL DECISION MAKING HELSINKI SCHOOL OF ECONOMICS ACTA UNIVERSITATIS OECONOMICAE HELSINGIENSIS A-234 Matti Koivu A STOCHASTIC OPTIMIZATION APPROACH

More information

Multi-period mean variance asset allocation: Is it bad to win the lottery?

Multi-period mean variance asset allocation: Is it bad to win the lottery? Multi-period mean variance asset allocation: Is it bad to win the lottery? Peter Forsyth 1 D.M. Dang 1 1 Cheriton School of Computer Science University of Waterloo Guangzhou, July 28, 2014 1 / 29 The Basic

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice

Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice Olivier Blanchard April 2005 14.452. Spring 2005. Topic2. 1 Want to start with a model with two ingredients: Shocks, so uncertainty.

More information

Reinforcement Learning and Simulation-Based Search

Reinforcement Learning and Simulation-Based Search Reinforcement Learning and Simulation-Based Search David Silver Outline 1 Reinforcement Learning 2 3 Planning Under Uncertainty Reinforcement Learning Markov Decision Process Definition A Markov Decision

More information

Sovereign Default and the Choice of Maturity

Sovereign Default and the Choice of Maturity Sovereign Default and the Choice of Maturity Juan M. Sanchez Horacio Sapriza Emircan Yurdagul FRB of St. Louis Federal Reserve Board Washington U. St. Louis February 4, 204 Abstract This paper studies

More information

Multistage Stochastic Programming

Multistage Stochastic Programming IE 495 Lecture 21 Multistage Stochastic Programming Prof. Jeff Linderoth April 16, 2003 April 16, 2002 Stochastic Programming Lecture 21 Slide 1 Outline HW Fixes Multistage Stochastic Programming Modeling

More information

Economia Financiera Avanzada

Economia Financiera Avanzada Economia Financiera Avanzada José Fajardo EBAPE- Fundação Getulio Vargas Universidad del Pacífico, Julio 5 21, 2011 José Fajardo Economia Financiera Avanzada Prf. José Fajardo Two-Period Model: State-Preference

More information

Macroeconomics of the Labour Market Problem Set

Macroeconomics of the Labour Market Problem Set Macroeconomics of the Labour Market Problem Set dr Leszek Wincenciak Problem 1 The utility of a consumer is given by U(C, L) =α ln C +(1 α)lnl, wherec is the aggregate consumption, and L is the leisure.

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Preliminary Examination: Macroeconomics Fall, 2009

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Preliminary Examination: Macroeconomics Fall, 2009 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Preliminary Examination: Macroeconomics Fall, 2009 Instructions: Read the questions carefully and make sure to show your work. You

More information

Final exam solutions

Final exam solutions EE365 Stochastic Control / MS&E251 Stochastic Decision Models Profs. S. Lall, S. Boyd June 5 6 or June 6 7, 2013 Final exam solutions This is a 24 hour take-home final. Please turn it in to one of the

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

EE/AA 578 Univ. of Washington, Fall Homework 8

EE/AA 578 Univ. of Washington, Fall Homework 8 EE/AA 578 Univ. of Washington, Fall 2016 Homework 8 1. Multi-label SVM. The basic Support Vector Machine (SVM) described in the lecture (and textbook) is used for classification of data with two labels.

More information

GMM Estimation. 1 Introduction. 2 Consumption-CAPM

GMM Estimation. 1 Introduction. 2 Consumption-CAPM GMM Estimation 1 Introduction Modern macroeconomic models are typically based on the intertemporal optimization and rational expectations. The Generalized Method of Moments (GMM) is an econometric framework

More information

Notes on Syllabus Section VI: TIME AND UNCERTAINTY, FUTURES MARKETS

Notes on Syllabus Section VI: TIME AND UNCERTAINTY, FUTURES MARKETS Economics 200B UCSD; Prof. R. Starr, Ms. Kaitlyn Lewis, Winter 2017; Syllabus Section VI Notes1 Notes on Syllabus Section VI: TIME AND UNCERTAINTY, FUTURES MARKETS Overview: The mathematical abstraction

More information

Department of Economics The Ohio State University Midterm Questions and Answers Econ 8712

Department of Economics The Ohio State University Midterm Questions and Answers Econ 8712 Prof. James Peck Fall 06 Department of Economics The Ohio State University Midterm Questions and Answers Econ 87. (30 points) A decision maker (DM) is a von Neumann-Morgenstern expected utility maximizer.

More information

A Simple Method for Solving Multiperiod Mean-Variance Asset-Liability Management Problem

A Simple Method for Solving Multiperiod Mean-Variance Asset-Liability Management Problem Available online at wwwsciencedirectcom Procedia Engineering 3 () 387 39 Power Electronics and Engineering Application A Simple Method for Solving Multiperiod Mean-Variance Asset-Liability Management Problem

More information

Solutions for Homework #5

Solutions for Homework #5 Econ 50a (second half) Prof: Tony Smith TA: Theodore Papageorgiou Fall 2004 Yale University Dept. of Economics Solutions for Homework #5 Question a) A recursive competitive equilibrium for the neoclassical

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Fall, 2010

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Fall, 2010 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Fall, 2010 Section 1. (Suggested Time: 45 Minutes) For 3 of the following 6 statements, state

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

Contents Critique 26. portfolio optimization 32

Contents Critique 26. portfolio optimization 32 Contents Preface vii 1 Financial problems and numerical methods 3 1.1 MATLAB environment 4 1.1.1 Why MATLAB? 5 1.2 Fixed-income securities: analysis and portfolio immunization 6 1.2.1 Basic valuation of

More information

Optimization Models in Financial Engineering and Modeling Challenges

Optimization Models in Financial Engineering and Modeling Challenges Optimization Models in Financial Engineering and Modeling Challenges John Birge University of Chicago Booth School of Business JRBirge UIUC, 25 Mar 2009 1 Introduction History of financial engineering

More information

Evaluation of proportional portfolio insurance strategies

Evaluation of proportional portfolio insurance strategies Evaluation of proportional portfolio insurance strategies Prof. Dr. Antje Mahayni Department of Accounting and Finance, Mercator School of Management, University of Duisburg Essen 11th Scientific Day of

More information

Risk Measurement in Credit Portfolio Models

Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 1 Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 9 th DGVFM Scientific Day 30 April 2010 2 Quantitative Risk Management Profit

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

risk minimization April 30, 2007

risk minimization April 30, 2007 Optimal pension fund management under multi-period risk minimization S. Kilianová G. Pflug April 30, 2007 Corresponding author: Soňa Kilianová Address: Department of Applied Mathematics and Statistics

More information

Factor Saving Innovation. Michele Boldrin and David K. Levine

Factor Saving Innovation. Michele Boldrin and David K. Levine Factor Saving nnovation Michele Boldrin and David K. Levine 1 ntroduction endogeneity of aggregate technological progress we introduce concave model of innovation with three properties concerning technological

More information

Optimization Models for Quantitative Asset Management 1

Optimization Models for Quantitative Asset Management 1 Optimization Models for Quantitative Asset Management 1 Reha H. Tütüncü Goldman Sachs Asset Management Quantitative Equity Joint work with D. Jeria, GS Fields Industrial Optimization Seminar November 13,

More information

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours

Final Examination December 14, Economics 5010 AF3.0 : Applied Microeconomics. time=2.5 hours YORK UNIVERSITY Faculty of Graduate Studies Final Examination December 14, 2010 Economics 5010 AF3.0 : Applied Microeconomics S. Bucovetsky time=2.5 hours Do any 6 of the following 10 questions. All count

More information

Optimization in Financial Engineering in the Post-Boom Market

Optimization in Financial Engineering in the Post-Boom Market Optimization in Financial Engineering in the Post-Boom Market John R. Birge Northwestern University www.iems.northwestern.edu/~jrbirge SIAM Optimization Toronto May 2002 1 Introduction History of financial

More information

Comparison of Static and Dynamic Asset Allocation Models

Comparison of Static and Dynamic Asset Allocation Models Comparison of Static and Dynamic Asset Allocation Models John R. Birge University of Michigan University of Michigan 1 Outline Basic Models Static Markowitz mean-variance Dynamic stochastic programming

More information

Part A: Answer Question A1 (required) and Question A2 or A3 (choice).

Part A: Answer Question A1 (required) and Question A2 or A3 (choice). Ph.D. Core Exam -- Macroeconomics 13 August 2018 -- 8:00 am to 3:00 pm Part A: Answer Question A1 (required) and Question A2 or A3 (choice). A1 (required): Short-Run Stabilization Policy and Economic Shocks

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011 ECON 60B Problem Set Suggested Solutions Fall 0 September 7, 0 Optimal Consumption with A Linear Utility Function (Optional) Similar to the example in Lecture 3, the household lives for two periods and

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Financial Giffen Goods: Examples and Counterexamples

Financial Giffen Goods: Examples and Counterexamples Financial Giffen Goods: Examples and Counterexamples RolfPoulsen and Kourosh Marjani Rasmussen Abstract In the basic Markowitz and Merton models, a stock s weight in efficient portfolios goes up if its

More information

Managing the maturity structure of government debt $

Managing the maturity structure of government debt $ Journal of Monetary Economics 54 (2007) 1565 1571 www.elsevier.com/locate/jme Managing the maturity structure of government debt $ Yongseok Shin Department of Economics, University of Wisconsin, 1180 Observatory

More information

Consumption, Investment and the Fisher Separation Principle

Consumption, Investment and the Fisher Separation Principle Consumption, Investment and the Fisher Separation Principle Consumption with a Perfect Capital Market Consider a simple two-period world in which a single consumer must decide between consumption c 0 today

More information

Multistage risk-averse asset allocation with transaction costs

Multistage risk-averse asset allocation with transaction costs Multistage risk-averse asset allocation with transaction costs 1 Introduction Václav Kozmík 1 Abstract. This paper deals with asset allocation problems formulated as multistage stochastic programming models.

More information

Support Vector Machines: Training with Stochastic Gradient Descent

Support Vector Machines: Training with Stochastic Gradient Descent Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Support vector machines Training by maximizing margin The SVM

More information

A Model with Costly-State Verification

A Model with Costly-State Verification A Model with Costly-State Verification Jesús Fernández-Villaverde University of Pennsylvania December 19, 2012 Jesús Fernández-Villaverde (PENN) Costly-State December 19, 2012 1 / 47 A Model with Costly-State

More information

Optimization of a Real Estate Portfolio with Contingent Portfolio Programming

Optimization of a Real Estate Portfolio with Contingent Portfolio Programming Mat-2.108 Independent research projects in applied mathematics Optimization of a Real Estate Portfolio with Contingent Portfolio Programming 3 March, 2005 HELSINKI UNIVERSITY OF TECHNOLOGY System Analysis

More information

Scarcity Pricing Market Design Considerations

Scarcity Pricing Market Design Considerations 1 / 49 Scarcity Pricing Market Design Considerations Anthony Papavasiliou, Yves Smeers Center for Operations Research and Econometrics Université catholique de Louvain CORE Energy Day April 16, 2018 Outline

More information

Agricultural and Applied Economics 637 Applied Econometrics II

Agricultural and Applied Economics 637 Applied Econometrics II Agricultural and Applied Economics 637 Applied Econometrics II Assignment I Using Search Algorithms to Determine Optimal Parameter Values in Nonlinear Regression Models (Due: February 3, 2015) (Note: Make

More information

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2016

STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics. Ph. D. Comprehensive Examination: Macroeconomics Spring, 2016 STATE UNIVERSITY OF NEW YORK AT ALBANY Department of Economics Ph. D. Comprehensive Examination: Macroeconomics Spring, 2016 Section 1. Suggested Time: 45 Minutes) For 3 of the following 6 statements,

More information

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b

ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b 316-406 ADVANCED MACROECONOMIC TECHNIQUES NOTE 7b Chris Edmond hcpedmond@unimelb.edu.aui Aiyagari s model Arguably the most popular example of a simple incomplete markets model is due to Rao Aiyagari (1994,

More information