Genetics and/of basket options

Size: px
Start display at page:

Download "Genetics and/of basket options"

Transcription

1 Genetics and/of basket options Wolfgang Karl Härdle Elena Silyakova Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin

2 Motivation 1-1 Basket derivatives Let us consider a basket of N assets with value at time t defined by B(t) = N i=1 a is i (t). Then payoffs of some basket options: Basket call: {B(T ) K B } [ + ] + Rainbow (best-of-n): max {S i(t )} K B 1 i N Atlas (Mountain range): + N N 1 2 S j (T ) N (N 1 + N 2 ) S j (0) K B j=1+n 1 where S i (t) - price of the i-th basket constituent at time t, a i - quantity of the i-th asset, K B - exercise price (strike) of a basket option, T - time of the option s expiry, N 1,N 2 - number of best and worst performing stocks.

3 Motivation 1-2 Research questions 1. Which pricing model is suitable for multiasset options? 2. How to estimate dependence (correlation) between assets in the basket? 3. How to estimate correlations in large dimensional baskets?

4 Outline 1. Motivation 2. Basket dynamics in the Black-Scholes framework 3. Estimating correlation matrix Historical (time series) correlation Implied correlation 4. From equicorrelation to block correlation 5. Conclusion

5 Basket dynamics in the Black-Scholes framework 2-1 Price dynamics of basket constituents The price dynamic of the i-th stock in a basket is given by: ds i (t) S i (t) = (r q i)dt + σ i dw i (t) (1) ρ ij dt = dw i (t)dw j (t) (2) where r - interest rate, q i - dividend yield of a stock i, σ i - constant volatility of the i-th stock, ρ ij - constant correlation between the i-th and the j-th stock, W - Brownian motion.

6 Basket dynamics in the Black-Scholes framework 2-2 Dynamics of the basket s value The dynamics of the basket s value is then given by: db(t) N B(t) = (r q i=1 B)dt + w is i (t)σ i dw i (t) N i=1 w = (3) is i (t) = (r q B )dt + dz(t) where q B is the dividend yield of the basket and the relative weight w i of the i-th constituent varies over time and is given by: w i = a i S i (t) N l=1 a ls l (t) (4)

7 Basket dynamics in the Black-Scholes framework 2-3 Dynamics of correlated basket constituents Let ρ 11 ρ 1N Σ =..... ρ N1 ρ NN the correlation matrix of a basket. By Cholesky decomposition Σ = MM we obtain M = (m i,j ) 1 i N,1 j N, a lower triangular matrix, a square root of Σ. The process for every individual asset S i is then defined by: ds i (t) S i (t) = (r q)dt + σ i N m i,l dw l (t) (5) l=1

8 Basket dynamics in the Black-Scholes framework 2-4 Finally applying Itô s lemma we obtain the closed-form expression for simulation of the i-th stock process on a time interval t = [t 1, t 2 ]: S i (t 2 ) = S i (t 1 ) exp { (r d σ2 i 2 ) t + σ i } N m i,l tgl l=1 (6) where g l N(0, 1), i.i.d.

9 Estimating correlation matrix: historical (time series) correlation 3-1 Historical correlation X i (t) = log S i (t) log S i (t 1), log returns: T k=0 ρ ij = λk {X i (t k) X i (t)}{x j (t k) X j (t)} T k=0 λk {X i (t k) X i (t)} 2 T k=0 λk {X j (t k) X j (t)} 2 to obtain the historical correlation matrix 1 ρ 12 ρ 1N ρ 12 1 ρ 2N ρ 1N ρ N2 1 Here X i (t) the arithmetic mean of the i-th log return calculated at time t, λ - decay parameter (RiskMetrics: λ = 0.94).

10 Estimating correlation matrix: historical (time series) correlation 3-2 Equicorrelation matrix Basket variance σ 2 Basket = N i=1 w 2 i σ 2 i + 2 N N i=1 j=i+1 w i w j σ i σ j ρ ij (7) 1 ρ 12 ρ 1N 1 ρ ρ ρ 21 1 ρ 2N replace with ρ 1 ρ......, ρ N1 ρ N2 1 ρ ρ 1 then ρ = σ2 Basket N i=1 w i 2σ2 i 2 N N i=1 j=i+1 w (8) iw j σ i σ j is the average basket correlation. Nice property: for {1/(N 1)} < ρ < 1 - positive definite (see Mardia et al, 1979).

11 Estimating correlation matrix: implied correlation 4-1 Implied correlation Using (8) map the implied volatility surfaces of a basket σ Basket (κ, τ) and N constituents σ i (κ, τ) to ρ(τ, κ) the average implied correlation surface of a basket: ρ(κ, τ) = σ2 Basket (κ, τ) N i=1 w i 2 σ i 2 (κ, τ) 2 N N i=1 j=i+1 w iw j σ i (κ, τ) σ j (κ, τ) (9)

12 Estimating correlation matrix: implied correlation 4-2 Dynamic modeling of correlation surfaces Every t we observe (X t,j, Y t,j ), 1 j J t, 1 t T where Y t,j - implied correlation X t,j - two-dimensional vector of κ and τ T - number of observed time periods (days) J t - number of observations at day t

13 Estimating correlation matrix: implied correlation 4-3 Dynamic modeling of correlation surfaces Including explanatory variables X t,j influencing the factor loadings m l,j rewrite (10) Y t,j = L Z t,l m l (X t,j ) + ε t,j = Zt m(x t,j ) + ε t,j (10) l=1 where Z t = (Z t1,..., Z tl ) - unobservable L-dimensional process m - L-tuple (m 1,..., m L ) of unknown real-valued functions X t,j,..., X T,JT and ε t,j,..., ε T,JT are independent ε t,j are i.i.d. with zero mean and finite second moment In such setting the modelling of Y t can be simplified to modelling of Z t = (Z t,1,..., Z t,l ), which is more feasible for L << J.

14 Estimating correlation matrix: implied correlation 4-4 Dynamic modeling of correlation surfaces Y t,j = L K Z t,l l=1 k=1 a l,k ψ k (X t,j ) + ε t,j = Z t AΨ t + ε t (11) where A - L K coefficient matrix Ψ t = {ψ 1 (X t ),..., ψ R (X t )} - space basis, in Park et al. (2009) a tensor product of one dimensional B-spline basis.

15 Estimating correlation matrix: implied correlation 4-5 Choice of space basis Estimate basis functions in a FPCA framework, motivated by Hall et. al (2006): Find eigenfunctions corresponding to the K largest eigenvalues of the smoothed operator ψ(u, v) = φ(u, v) µ(u) µ(v)

16 Estimating correlation matrix: implied correlation 4-6 Choice of space basis 1. estimate µ(u)(µ(v)): T J {Y tj a t=1 j=1 2 ( ) b c (u c Xtj)} c 2 Xtj u K c=1 2. estimate φ(u, v): T 2 2 {Y tj Y tk a 0 b1(u c c Xtj) c b2(v c c Xtk c )}2 t=1 1 j k J t c=1 c=1 ( ) ( ) Xtj u Xtj v K K h φ 3. compute ψ(u, v) = φ(u, v) µ(u) µ(v) and take K eigenfunctions corresponding to the largest eigenvalues h φ h µ

17 Estimating correlation matrix: implied correlation 4-7 Basis functions 1st eigenfunction 2nd eigenfunction time to maturity moneyness time to maturity moneyness Figure 1: Eigenfunctions as basis functions estimated on 10x10 grid

18 Estimating correlation matrix: implied correlation 4-8 Estimated time series of factors Ẑt1, Ẑt2 Z

19 From equicorrelation to block correlation 5-1 From equicorrelation to block correlation Group assets in the basket into k blocks, then 1 ρ 1 ρ 1 ρ 1 1 ρ ρ k+1 ρ 1 ρ ρ k ρ k ρ k 1 ρ k ρ k ρ k ρ k 1

20 From equicorrelation to block correlation 5-2 Correlation matrix for 2 groups of assets (3 blocks) 1 ρ 1 ρ 1 ρ 1 1 ρ ρ 1 ρ 1 1 ρ 3 ρ 3 1 ρ 2 ρ 2 ρ 2 1 ρ ρ 2 ρ 2 1

21 From equicorrelation to block correlation 5-3 Block implied correlation, 3 blocks +2 σ 2 Basket (K, τ) = N M M i=1 j=i+1 N M i=1 M N M j=i+1 N i=1 j=m+1 i=1 w 2 i σ 2 i (K, τ)+ w i w j σ i (K, τ)σ j (K, τ)ρ 1 (K, τ)+ w i w j σ i (K, τ)σ j (K, τ)ρ 2 (K, τ)+ w i w j σ i (K, τ)σ j (K, τ)ρ 3 (K, τ) where M - number of assets in the 1-st block.

22 From equicorrelation to block correlation 5-4 Challenges Moving to high-dimensional portfolios (N ) with block structure of covariance matrix: need well-conditioned estimate of covariance matrix (Ledoit and Wolf (2003), Bickel and Levina (2008)) need to define the grouping procedure and way of finding the optimal block size (Hautsch, Kyj and Oomen (2009)) Improving correlation surface modeling: need to expand the time effect in a series model Z t as a sum of basis functions ( Song Härdle and Ritov (2010))

23 Genetics and/of basket options Wolfgang Karl Härdle Elena Silyakova Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin

24 Bibliography 6-1 Bibliography Alexander, C. Market Models, A Guide to Financial Data Analysis John Wiley & Sons (2001) Bai, Z.D. Methodologies in Spectral Analysis of Large Dimensional Random Matrices, A Review Statistica Sinica, (1999) Efron, B. Bootstrap Methods: Another Look at the Jackknife Annals of Statistics, (1979)

25 Bibliography 6-2 Bibliography Fengler, M. R., Pilz K.F. and P. Schwendner Basket Volatility and Correlation Volatility As An Asset Class, Risk Publications (2007) Fengler, M. R. and P. Schwendner Quoting multiasset equity options in the presence of errors from estimating correlations Journal of Derivatives, (2004) Hall, P., Müller, H. G. and Wang J. Properties of principal component methods for functional and longitudinal data analysis Ann. Statist., 34(3): , (2006)

26 Bibliography 6-3 Bibliography Laloux, L., et al. Random Matrix Theory and Financial Correlations International Journal of Theoretical and Applied Finance, (2000) Ledoit, O., and M. Wolf Improved Estimation of the Covariance Matrix of Stock Returns with an Application to Portfolio Selection Journal of Empirical Finance 105, (2003) Mardia, K. V., Kent, J. T. and Bibby, J. M. Multivariate Analysis Academic Press,Duluth, London, (1979) Plerou, V., et al. Genetics Random and/ofmatrix basket options Approach - COMPSTAT to Cross 2010 Correlations in Financial Data

Volatility Investing with Variance Swaps

Volatility Investing with Variance Swaps Volatility Investing with Variance Swaps Wolfgang Karl Härdle Elena Silyakova Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Centre for Applied Statistics and Economics School of Business and Economics

More information

Estimating Pricing Kernel via Series Methods

Estimating Pricing Kernel via Series Methods Estimating Pricing Kernel via Series Methods Maria Grith Wolfgang Karl Härdle Melanie Schienle Ladislaus von Bortkiewicz Chair of Statistics Chair of Econometrics C.A.S.E. Center for Applied Statistics

More information

Qua de causa copulae me placent?

Qua de causa copulae me placent? Barbara Choroś Wolfgang Härdle Institut für Statistik and Ökonometrie CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin Motivation - Dependence Matters! The normal world

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Skew Hedging. Szymon Borak Matthias R. Fengler Wolfgang K. Härdle. CASE-Center for Applied Statistics and Economics Humboldt-Universität zu Berlin

Skew Hedging. Szymon Borak Matthias R. Fengler Wolfgang K. Härdle. CASE-Center for Applied Statistics and Economics Humboldt-Universität zu Berlin Szymon Borak Matthias R. Fengler Wolfgang K. Härdle CASE-Center for Applied Statistics and Economics Humboldt-Universität zu Berlin 6 4 2.22 Motivation 1-1 Barrier options Knock-out options are financial

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

CDO Surfaces Dynamics

CDO Surfaces Dynamics D Surfaces Dynamics Barbara Choroś-Tomczyk Wolfgang Karl Härdle stap khrin Ladislaus von Bortkiewicz Chair of Statistics C..S.E. - Center for pplied Statistics and Economics Humboldt-Universität zu Berlin

More information

Spatial Risk Premium on Weather and Hedging Weather Exposure in Electricity

Spatial Risk Premium on Weather and Hedging Weather Exposure in Electricity and Hedging Weather Exposure in Electricity Wolfgang Karl Härdle Maria Osipenko Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Centre for Applied Statistics and Economics School of Business and

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Adaptive Interest Rate Modelling

Adaptive Interest Rate Modelling Modelling Mengmeng Guo Wolfgang Karl Härdle Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

More information

Chapter 14. The Multi-Underlying Black-Scholes Model and Correlation

Chapter 14. The Multi-Underlying Black-Scholes Model and Correlation Chapter 4 The Multi-Underlying Black-Scholes Model and Correlation So far we have discussed single asset options, the payoff function depended only on one underlying. Now we want to allow multiple underlyings.

More information

Computational Efficiency and Accuracy in the Valuation of Basket Options. Pengguo Wang 1

Computational Efficiency and Accuracy in the Valuation of Basket Options. Pengguo Wang 1 Computational Efficiency and Accuracy in the Valuation of Basket Options Pengguo Wang 1 Abstract The complexity involved in the pricing of American style basket options requires careful consideration of

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Dynamic Relative Valuation

Dynamic Relative Valuation Dynamic Relative Valuation Liuren Wu, Baruch College Joint work with Peter Carr from Morgan Stanley October 15, 2013 Liuren Wu (Baruch) Dynamic Relative Valuation 10/15/2013 1 / 20 The standard approach

More information

Implementing the HJM model by Monte Carlo Simulation

Implementing the HJM model by Monte Carlo Simulation Implementing the HJM model by Monte Carlo Simulation A CQF Project - 2010 June Cohort Bob Flagg Email: bob@calcworks.net January 14, 2011 Abstract We discuss an implementation of the Heath-Jarrow-Morton

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Haindorf, 7 Februar 2008 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Haindorf, 7 Februar

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science Multi-Asset Options A Numerical Study Master s thesis in Engineering Mathematics and Computational Science VILHELM NIKLASSON FRIDA TIVEDAL Department of Mathematical Sciences Chalmers University of Technology

More information

Time Dependent Relative Risk Aversion

Time Dependent Relative Risk Aversion SFB 649 Discussion Paper 2006-020 Time Dependent Relative Risk Aversion Enzo Giacomini* Michael Handel** Wolfgang K. Härdle* * C.A.S.E. Center for Applied Statistics and Economics, Humboldt-Universität

More information

Theoretical Problems in Credit Portfolio Modeling 2

Theoretical Problems in Credit Portfolio Modeling 2 Theoretical Problems in Credit Portfolio Modeling 2 David X. Li Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiaotong University(SJTU) November 3, 2017 Presented at the University of South California

More information

Toward a coherent Monte Carlo simulation of CVA

Toward a coherent Monte Carlo simulation of CVA Toward a coherent Monte Carlo simulation of CVA Lokman Abbas-Turki (Joint work with A. I. Bouselmi & M. A. Mikou) TU Berlin January 9, 2013 Lokman (TU Berlin) Advances in Mathematical Finance 1 / 16 Plan

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

European call option with inflation-linked strike

European call option with inflation-linked strike Mathematical Statistics Stockholm University European call option with inflation-linked strike Ola Hammarlid Research Report 2010:2 ISSN 1650-0377 Postal address: Mathematical Statistics Dept. of Mathematics

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

A Hybrid Commodity and Interest Rate Market Model

A Hybrid Commodity and Interest Rate Market Model A Hybrid Commodity and Interest Rate Market Model University of Technology, Sydney June 1 Literature A Hybrid Market Model Recall: The basic LIBOR Market Model The cross currency LIBOR Market Model LIBOR

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

On VIX Futures in the rough Bergomi model

On VIX Futures in the rough Bergomi model On VIX Futures in the rough Bergomi model Oberwolfach Research Institute for Mathematics, February 28, 2017 joint work with Antoine Jacquier and Claude Martini Contents VIX future dynamics under rbergomi

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

ESTIMATION OF UTILITY FUNCTIONS: MARKET VS. REPRESENTATIVE AGENT THEORY

ESTIMATION OF UTILITY FUNCTIONS: MARKET VS. REPRESENTATIVE AGENT THEORY ESTIMATION OF UTILITY FUNCTIONS: MARKET VS. REPRESENTATIVE AGENT THEORY Kai Detlefsen Wolfgang K. Härdle Rouslan A. Moro, Deutsches Institut für Wirtschaftsforschung (DIW) Center for Applied Statistics

More information

Statistica Sinica Preprint No: SS R2

Statistica Sinica Preprint No: SS R2 0 Statistica Sinica Preprint No: SS-2016-0434R2 Title Multi-asset empirical martingale price estimators derivatives Manuscript ID SS-2016-0434R2 URL http://www.stat.sinica.edu.tw/statistica/ DOI 10.5705/ss.202016.0434

More information

Parametric Inference and Dynamic State Recovery from Option Panels. Nicola Fusari

Parametric Inference and Dynamic State Recovery from Option Panels. Nicola Fusari Parametric Inference and Dynamic State Recovery from Option Panels Nicola Fusari Joint work with Torben G. Andersen and Viktor Todorov July 2012 Motivation Under realistic assumptions derivatives are nonredundant

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2017, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Describe

More information

Market Risk Analysis Volume I

Market Risk Analysis Volume I Market Risk Analysis Volume I Quantitative Methods in Finance Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume I xiii xvi xvii xix xxiii

More information

HEDGING RAINBOW OPTIONS IN DISCRETE TIME

HEDGING RAINBOW OPTIONS IN DISCRETE TIME Journal of the Chinese Statistical Association Vol. 50, (2012) 1 20 HEDGING RAINBOW OPTIONS IN DISCRETE TIME Shih-Feng Huang and Jia-Fang Yu Department of Applied Mathematics, National University of Kaohsiung

More information

Interest Rate Curves Calibration with Monte-Carlo Simulatio

Interest Rate Curves Calibration with Monte-Carlo Simulatio Interest Rate Curves Calibration with Monte-Carlo Simulation 24 june 2008 Participants A. Baena (UCM) Y. Borhani (Univ. of Oxford) E. Leoncini (Univ. of Florence) R. Minguez (UCM) J.M. Nkhaso (UCM) A.

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Fall 2017 Computer Exercise 2 Simulation This lab deals with pricing

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6 Lecture 3 Sergei Fedotov 091 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 091 010 1 / 6 Lecture 3 1 Distribution for lns(t) Solution to Stochastic Differential Equation

More information

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives Weierstrass Institute for Applied Analysis and Stochastics LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives John Schoenmakers 9th Summer School in Mathematical Finance

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK. JEL Codes: C51, C61, C63, and G13

RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK. JEL Codes: C51, C61, C63, and G13 RISK-NEUTRAL VALUATION AND STATE SPACE FRAMEWORK JEL Codes: C51, C61, C63, and G13 Dr. Ramaprasad Bhar School of Banking and Finance The University of New South Wales Sydney 2052, AUSTRALIA Fax. +61 2

More information

CDO Surfaces Dynamics

CDO Surfaces Dynamics D Surfaces Dynamics Barbara Choroś-Tomczyk Wolfgang Karl Härdle stap khrin Ladislaus von Bortkiewicz Chair of Statistics C..S.E. - Center for pplied Statistics and Economics Humboldt-Universität zu Berlin

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2009, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (42 pts) Answer briefly the following questions. 1. Questions

More information

Interest rate models and Solvency II

Interest rate models and Solvency II www.nr.no Outline Desired properties of interest rate models in a Solvency II setting. A review of three well-known interest rate models A real example from a Norwegian insurance company 2 Interest rate

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Polynomial processes in stochastic portofolio theory

Polynomial processes in stochastic portofolio theory Polynomial processes in stochastic portofolio theory Christa Cuchiero University of Vienna 9 th Bachelier World Congress July 15, 2016 Christa Cuchiero (University of Vienna) Polynomial processes in SPT

More information

Leveraged ETF options implied volatility paradox: a statistical study

Leveraged ETF options implied volatility paradox: a statistical study SFB 649 Discussion Paper 216-4 Leveraged ETF options implied volatility paradox: a statistical study Wolfgang Karl Härdle* Sergey Nasekin* Zhiwu Hong*² * Humboldt-Universität zu Berlin, Germany *² Xiamen

More information

MOUNTAIN RANGE OPTIONS

MOUNTAIN RANGE OPTIONS MOUNTAIN RANGE OPTIONS Paolo Pirruccio Copyright Arkus Financial Services - 2014 Mountain Range options Page 1 Mountain Range options Introduction Originally marketed by Société Générale in 1998. Traded

More information

Implied Volatility String Dynamics

Implied Volatility String Dynamics Szymon Borak Matthias R. Fengler Wolfgang K. Härdle Enno Mammen CASE-Center for Applied Statistics and Economics Humboldt-Universität zu Berlin and Universität Mannheim aims and generic challenges 1-1

More information

Basic Concepts and Examples in Finance

Basic Concepts and Examples in Finance Basic Concepts and Examples in Finance Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M The Financial Market The Financial Market We assume there are

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction

Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction Xiaoqun Wang,2, and Ian H. Sloan 2,3 Department of Mathematical Sciences, Tsinghua University, Beijing

More information

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen Parametric Inference and Dynamic State Recovery from Option Panels Torben G. Andersen Joint work with Nicola Fusari and Viktor Todorov The Third International Conference High-Frequency Data Analysis in

More information

ROM Simulation with Exact Means, Covariances, and Multivariate Skewness

ROM Simulation with Exact Means, Covariances, and Multivariate Skewness ROM Simulation with Exact Means, Covariances, and Multivariate Skewness Michael Hanke 1 Spiridon Penev 2 Wolfgang Schief 2 Alex Weissensteiner 3 1 Institute for Finance, University of Liechtenstein 2 School

More information

Simulating more interesting stochastic processes

Simulating more interesting stochastic processes Chapter 7 Simulating more interesting stochastic processes 7. Generating correlated random variables The lectures contained a lot of motivation and pictures. We'll boil everything down to pure algebra

More information

Multiname and Multiscale Default Modeling

Multiname and Multiscale Default Modeling Multiname and Multiscale Default Modeling Jean-Pierre Fouque University of California Santa Barbara Joint work with R. Sircar (Princeton) and K. Sølna (UC Irvine) Special Semester on Stochastics with Emphasis

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Consider

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Modern Methods of Option Pricing

Modern Methods of Option Pricing Modern Methods of Option Pricing Denis Belomestny Weierstraß Institute Berlin Motzen, 14 June 2007 Denis Belomestny (WIAS) Modern Methods of Option Pricing Motzen, 14 June 2007 1 / 30 Overview 1 Introduction

More information

Copulas? What copulas? R. Chicheportiche & J.P. Bouchaud, CFM

Copulas? What copulas? R. Chicheportiche & J.P. Bouchaud, CFM Copulas? What copulas? R. Chicheportiche & J.P. Bouchaud, CFM Multivariate linear correlations Standard tool in risk management/portfolio optimisation: the covariance matrix R ij = r i r j Find the portfolio

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (30 pts) Answer briefly the following questions. 1. Suppose that

More information

Lattice (Binomial Trees) Version 1.2

Lattice (Binomial Trees) Version 1.2 Lattice (Binomial Trees) Version 1. 1 Introduction This plug-in implements different binomial trees approximations for pricing contingent claims and allows Fairmat to use some of the most popular binomial

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

The ruin probabilities of a multidimensional perturbed risk model

The ruin probabilities of a multidimensional perturbed risk model MATHEMATICAL COMMUNICATIONS 231 Math. Commun. 18(2013, 231 239 The ruin probabilities of a multidimensional perturbed risk model Tatjana Slijepčević-Manger 1, 1 Faculty of Civil Engineering, University

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Other Miscellaneous Topics and Applications of Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Decomposition of life insurance liabilities into risk factors theory and application to annuity conversion options

Decomposition of life insurance liabilities into risk factors theory and application to annuity conversion options Decomposition of life insurance liabilities into risk factors theory and application to annuity conversion options Joint work with Daniel Bauer, Marcus C. Christiansen, Alexander Kling Katja Schilling

More information

Asian Option Pricing: Monte Carlo Control Variate. A discrete arithmetic Asian call option has the payoff. S T i N N + 1

Asian Option Pricing: Monte Carlo Control Variate. A discrete arithmetic Asian call option has the payoff. S T i N N + 1 Asian Option Pricing: Monte Carlo Control Variate A discrete arithmetic Asian call option has the payoff ( 1 N N + 1 i=0 S T i N K ) + A discrete geometric Asian call option has the payoff [ N i=0 S T

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Monte Carlo Methods in Finance Peter Jackel JOHN WILEY & SONS, LTD Preface Acknowledgements Mathematical Notation xi xiii xv 1 Introduction 1 2 The Mathematics Behind Monte Carlo Methods 5 2.1 A Few Basic

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

THE MARTINGALE METHOD DEMYSTIFIED

THE MARTINGALE METHOD DEMYSTIFIED THE MARTINGALE METHOD DEMYSTIFIED SIMON ELLERSGAARD NIELSEN Abstract. We consider the nitty gritty of the martingale approach to option pricing. These notes are largely based upon Björk s Arbitrage Theory

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

Asymptotic methods in risk management. Advances in Financial Mathematics

Asymptotic methods in risk management. Advances in Financial Mathematics Asymptotic methods in risk management Peter Tankov Based on joint work with A. Gulisashvili Advances in Financial Mathematics Paris, January 7 10, 2014 Peter Tankov (Université Paris Diderot) Asymptotic

More information

Quasi-Monte Carlo for Finance

Quasi-Monte Carlo for Finance Quasi-Monte Carlo for Finance Peter Kritzer Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Linz, Austria NCTS, Taipei, November 2016 Peter Kritzer

More information

Skewness and Kurtosis Trades

Skewness and Kurtosis Trades This is page 1 Printer: Opaque this Skewness and Kurtosis Trades Oliver J. Blaskowitz 1 Wolfgang K. Härdle 1 Peter Schmidt 2 1 Center for Applied Statistics and Economics (CASE), Humboldt Universität zu

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

Supplementary online material to Information tradeoffs in dynamic financial markets

Supplementary online material to Information tradeoffs in dynamic financial markets Supplementary online material to Information tradeoffs in dynamic financial markets Efstathios Avdis University of Alberta, Canada 1. The value of information in continuous time In this document I address

More information

Optimal robust bounds for variance options and asymptotically extreme models

Optimal robust bounds for variance options and asymptotically extreme models Optimal robust bounds for variance options and asymptotically extreme models Alexander Cox 1 Jiajie Wang 2 1 University of Bath 2 Università di Roma La Sapienza Advances in Financial Mathematics, 9th January,

More information

MODELING INVESTMENT RETURNS WITH A MULTIVARIATE ORNSTEIN-UHLENBECK PROCESS

MODELING INVESTMENT RETURNS WITH A MULTIVARIATE ORNSTEIN-UHLENBECK PROCESS MODELING INVESTMENT RETURNS WITH A MULTIVARIATE ORNSTEIN-UHLENBECK PROCESS by Zhong Wan B.Econ., Nankai University, 27 a Project submitted in partial fulfillment of the requirements for the degree of Master

More information

Credit Risk : Firm Value Model

Credit Risk : Firm Value Model Credit Risk : Firm Value Model Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe and Karlsruhe Institute of Technology (KIT) Prof. Dr. Svetlozar Rachev

More information