Experimental Mathematics with Python and Sage

Size: px
Start display at page:

Download "Experimental Mathematics with Python and Sage"

Transcription

1

2 Experimental Mathematics with Python and Sage Amritanshu Prasad Chennaipy 27 February 2016

3 Binomial Coefficients ( ) n = n C k = number of distinct ways to choose k out of n objects k

4 Binomial Coefficients ( ) n = n C k = number of distinct ways to choose k out of n objects k ( ) n = k n! k!(n k)!.

5 How many binomial coefficients are odd? ( ) n = k n! k!(n k)!.

6 How many binomial coefficients are odd? ( ) n = k n! k!(n k)!. Question For how many numbers 0 k n is ( n k) odd?

7 How many binomial coefficients are odd? ( ) n = k n! k!(n k)!. Question For how many numbers 0 k n is ( n k) odd? sage : [ len ([ k for k in range ( n +1) if binomial (n, k )%2 ==1]) for n in range (20)] [1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8]

8 How many binomial coefficients are odd? ( ) n = k n! k!(n k)!. Question For how many numbers 0 k n is ( n k) odd? sage : [ len ([ k for k in range ( n +1) if binomial (n, k )%2 ==1]) for n in range (20)] [1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8] Write numbers in binary and count number of 1 s

9 How many binomial coefficients are odd? ( ) n = k n! k!(n k)!. Question For how many numbers 0 k n is ( n k) odd? sage : [ len ([ k for k in range ( n +1) if binomial (n, k )%2 ==1]) for n in range (20)] [1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8] Write numbers in binary and count number of 1 s 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011,... 0, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 3,...

10 How many binomial coefficients are odd? ( ) n = k n! k!(n k)!. Question For how many numbers 0 k n is ( n k) odd? sage : [ len ([ k for k in range ( n +1) if binomial (n, k )%2 ==1]) for n in range (20)] [1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8] Write numbers in binary and count number of 1 s 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011,... 0, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 3,... Let ν(n) denote the number of 1 s in binary expansion of n.

11 How many binomial coefficients are odd? ( ) n = k n! k!(n k)!. Question For how many numbers 0 k n is ( n k) odd? sage : [ len ([ k for k in range ( n +1) if binomial (n, k )%2 ==1]) for n in range (20)] [1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8] Write numbers in binary and count number of 1 s 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011,... 0, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 3,... Let ν(n) denote the number of 1 s in binary expansion of n. Conjecture No. of odd binomial coefficients of the form ( n k) for fixed n is 2 ν(n).

12 Binomial coefficients in Pascal s triangle (Meru Prastaara)

13 ( nk ) = number of paths from the apex to the kth position in the nth row.

14 Binomial coefficients in Pascal s triangle (Meru Prastaara)

15 Binomial coefficients in Pascal s triangle (Meru Prastaara)

16 Binomial coefficients in Pascal s triangle (Meru Prastaara)

17 Binomial coefficients in Pascal s triangle (Meru Prastaara)

18 Recurrence Relation If 2 k n < 2 k+1, a n = 2a n 2 k.

19 a 42 = 2 a 10 = 2 2 a 2 =

20 a 42 = 2 a 10 = 2 2 a 2 = In terms of binary expansions: 42 = = = 10

21 a 42 = 2 a 10 = 2 2 a 2 = In terms of binary expansions: 42 = = = 10 Total number of times you double is the number of times 1 appears in the binary expansion.

22 Integer Partition 5 = 5 = = = = = =

23 Integer Partition 5 = 5 = = = = = = p(5) = 7 sage : [ number_of_partitions ( n) for n in range (19)] [1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385]

24 Big Open Problem in Mathematics Find an exact closed formula for p(n)

25 Hardy and Ramanujan p(n) 1 4n 3 exp(π 2n/3) as n.

26 sage : number_of_partitions (100000) is based on the Hardy-Ramanujan-Rademacher formula:

27 Young s lattice

28 The f -statistic of a partition f λ = Number of paths from the apex to λ in Young s lattice

29 How often in f λ odd? sage : [ len ([ la for la in Partitions ( n) if la. dimension ()%2 == 1]) for n in range (19)] [1, 1, 2, 2, 4, 4, 8, 8, 8, 8, 16, 16, 32, 32, 64, 64, 16, 16, 32]

30 How often in f λ odd? sage : [ len ([ la for la in Partitions ( n) if la. dimension ()%2 == 1]) for n in range (19)] [1, 1, 2, 2, 4, 4, 8, 8, 8, 8, 16, 16, 32, 32, 64, 64, 16, 16, 32] Powers of 2 again!

31 Odd Partitions in Young s lattice form a binary tree

32 If the binary expansion of n has 1 s in the places k 1, k 2,..., k r, number of partitions of n for which f λ is odd is: c n = s k 1+k 2 + +k r Example n = 42 = = c 42 = = 2 8 = 256.

33

34 Why mathematicians use Sage Easy to program (uses python) Free Developed by research mathematicians - caters to their needs Open source Can also be used to learn and teach calculus, linear algebra, etc.

35

MAC Learning Objectives. Learning Objectives (Cont.)

MAC Learning Objectives. Learning Objectives (Cont.) MAC 1140 Module 12 Introduction to Sequences, Counting, The Binomial Theorem, and Mathematical Induction Learning Objectives Upon completing this module, you should be able to 1. represent sequences. 2.

More information

Sequences, Series, and Probability Part I

Sequences, Series, and Probability Part I Name Chapter 8 Sequences, Series, and Probability Part I Section 8.1 Sequences and Series Objective: In this lesson you learned how to use sequence, factorial, and summation notation to write the terms

More information

Chapter 8 Sequences, Series, and the Binomial Theorem

Chapter 8 Sequences, Series, and the Binomial Theorem Chapter 8 Sequences, Series, and the Binomial Theorem Section 1 Section 2 Section 3 Section 4 Sequences and Series Arithmetic Sequences and Partial Sums Geometric Sequences and Series The Binomial Theorem

More information

Week 3: Binomials Coefficients. 26 & 28 September MA204/MA284 : Discrete Mathematics. Niall Madden (and Emil Sköldberg)

Week 3: Binomials Coefficients. 26 & 28 September MA204/MA284 : Discrete Mathematics. Niall Madden (and Emil Sköldberg) (1/22) qz0z0z0z LNZ0Z0Z0 0mkZ0Z0Z Z0Z0Z0Z0 0Z0Z0Z0Z Z0Z0Z0Z0 0Z0Z0Z0Z Z0Z0Z0Z0 pz0z0z0z OpO0Z0Z0 0ZKZ0Z0Z Z0Z0Z0Z0 0Z0Z0Z0Z Z0Z0Z0Z0 0Z0Z0Z0Z Z0Z0Z0Z0 MA204/MA284 : Discrete Mathematics Week 3: Binomials

More information

The Binomial Theorem. Step 1 Expand the binomials in column 1 on a CAS and record the results in column 2 of a table like the one below.

The Binomial Theorem. Step 1 Expand the binomials in column 1 on a CAS and record the results in column 2 of a table like the one below. Lesson 13-6 Lesson 13-6 The Binomial Theorem Vocabulary binomial coeffi cients BIG IDEA The nth row of Pascal s Triangle contains the coeffi cients of the terms of (a + b) n. You have seen patterns involving

More information

The Binomial Theorem and Consequences

The Binomial Theorem and Consequences The Binomial Theorem and Consequences Juris Steprāns York University November 17, 2011 Fermat s Theorem Pierre de Fermat claimed the following theorem in 1640, but the first published proof (by Leonhard

More information

3.1 Properties of Binomial Coefficients

3.1 Properties of Binomial Coefficients 3 Properties of Binomial Coefficients 31 Properties of Binomial Coefficients Here is the famous recursive formula for binomial coefficients Lemma 31 For 1 < n, 1 1 ( n 1 ) This equation can be proven by

More information

Asymptotic Notation. Instructor: Laszlo Babai June 14, 2002

Asymptotic Notation. Instructor: Laszlo Babai June 14, 2002 Asymptotic Notation Instructor: Laszlo Babai June 14, 2002 1 Preliminaries Notation: exp(x) = e x. Throughout this course we shall use the following shorthand in quantifier notation. ( a) is read as for

More information

Chapter 15 - The Binomial Formula PART

Chapter 15 - The Binomial Formula PART Chapter 15 - The Binomial Formula PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 15 - The Binomial Formula 1 / 19 Pascal s Triangle In this chapter we explore

More information

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2)

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2) Exponents Problem: Show that 5. Solution: Remember, using our rules of exponents, 5 5, 5. Problems to Do: 1. Simplify each to a single fraction or number: (a) ( 1 ) 5 ( ) 5. And, since (b) + 9 + 1 5 /

More information

Probability Distribution Unit Review

Probability Distribution Unit Review Probability Distribution Unit Review Topics: Pascal's Triangle and Binomial Theorem Probability Distributions and Histograms Expected Values, Fair Games of chance Binomial Distributions Hypergeometric

More information

Lecture 2. Multinomial coefficients and more counting problems

Lecture 2. Multinomial coefficients and more counting problems 18.440: Lecture 2 Multinomial coefficients and more counting problems Scott Sheffield MIT 1 Outline Multinomial coefficients Integer partitions More problems 2 Outline Multinomial coefficients Integer

More information

Binomial Coefficient

Binomial Coefficient Binomial Coefficient This short text is a set of notes about the binomial coefficients, which link together algebra, combinatorics, sets, binary numbers and probability. The Product Rule Suppose you are

More information

EXERCISES ACTIVITY 6.7

EXERCISES ACTIVITY 6.7 762 CHAPTER 6 PROBABILITY MODELS EXERCISES ACTIVITY 6.7 1. Compute each of the following: 100! a. 5! I). 98! c. 9P 9 ~~ d. np 9 g- 8Q e. 10^4 6^4 " 285^1 f-, 2 c 5 ' sq ' sq 2. How many different ways

More information

The Binomial Theorem 5.4

The Binomial Theorem 5.4 54 The Binomial Theorem Recall that a binomial is a polynomial with just two terms, so it has the form a + b Expanding (a + b) n becomes very laborious as n increases This section introduces a method for

More information

5.9: The Binomial Theorem

5.9: The Binomial Theorem 5.9: The Binomial Theorem Pascal s Triangle 1. Show that zz = 1 + ii is a solution to the fourth degree polynomial equation zz 4 zz 3 + 3zz 2 4zz + 6 = 0. 2. Show that zz = 1 ii is a solution to the fourth

More information

Probability Distributions: Discrete

Probability Distributions: Discrete Probability Distributions: Discrete INFO-2301: Quantitative Reasoning 2 Michael Paul and Jordan Boyd-Graber FEBRUARY 19, 2017 INFO-2301: Quantitative Reasoning 2 Paul and Boyd-Graber Probability Distributions:

More information

ANALYSIS OF THE BINOMIAL METHOD

ANALYSIS OF THE BINOMIAL METHOD ANALYSIS OF THE BINOMIAL METHOD School of Mathematics 2013 OUTLINE 1 CONVERGENCE AND ERRORS OUTLINE 1 CONVERGENCE AND ERRORS 2 EXOTIC OPTIONS American Options Computational Effort OUTLINE 1 CONVERGENCE

More information

Computational Finance Binomial Trees Analysis

Computational Finance Binomial Trees Analysis Computational Finance Binomial Trees Analysis School of Mathematics 2018 Review - Binomial Trees Developed a multistep binomial lattice which will approximate the value of a European option Extended the

More information

Remarks. Remarks. In this section we will learn how to compute the coefficients when we expand a binomial raised to a power.

Remarks. Remarks. In this section we will learn how to compute the coefficients when we expand a binomial raised to a power. The Binomial i Theorem In this section we will learn how to compute the coefficients when we expand a binomial raised to a power. ( a+ b) n We will learn how to do this using the Binomial Theorem which

More information

NOTES ON FIBONACCI TREES AND THEIR OPTIMALITY* YASUICHI HORIBE INTRODUCTION 1. FIBONACCI TREES

NOTES ON FIBONACCI TREES AND THEIR OPTIMALITY* YASUICHI HORIBE INTRODUCTION 1. FIBONACCI TREES 0#0# NOTES ON FIBONACCI TREES AND THEIR OPTIMALITY* YASUICHI HORIBE Shizuoka University, Hamamatsu, 432, Japan (Submitted February 1982) INTRODUCTION Continuing a previous paper [3], some new observations

More information

30. 2 x5 + 3 x; quintic binomial 31. a. V = 10pr 2. b. V = 3pr 3

30. 2 x5 + 3 x; quintic binomial 31. a. V = 10pr 2. b. V = 3pr 3 Answers for Lesson 6- Answers for Lesson 6-. 0x + 5; linear binomial. -x + 5; linear binomial. m + 7m - ; quadratic trinomial 4. x 4 - x + x; quartic trinomial 5. p - p; quadratic binomial 6. a + 5a +

More information

CSE 21 Winter 2016 Homework 6 Due: Wednesday, May 11, 2016 at 11:59pm. Instructions

CSE 21 Winter 2016 Homework 6 Due: Wednesday, May 11, 2016 at 11:59pm. Instructions CSE 1 Winter 016 Homework 6 Due: Wednesday, May 11, 016 at 11:59pm Instructions Homework should be done in groups of one to three people. You are free to change group members at any time throughout the

More information

10 5 The Binomial Theorem

10 5 The Binomial Theorem 10 5 The Binomial Theorem Daily Outcomes: I can use Pascal's triangle to write binomial expansions I can use the Binomial Theorem to write and find the coefficients of specified terms in binomial expansions

More information

Investigating First Returns: The Effect of Multicolored Vectors

Investigating First Returns: The Effect of Multicolored Vectors Investigating First Returns: The Effect of Multicolored Vectors arxiv:1811.02707v1 [math.co] 7 Nov 2018 Shakuan Frankson and Myka Terry Mathematics Department SPIRAL Program at Morgan State University,

More information

6.1 Binomial Theorem

6.1 Binomial Theorem Unit 6 Probability AFM Valentine 6.1 Binomial Theorem Objective: I will be able to read and evaluate binomial coefficients. I will be able to expand binomials using binomial theorem. Vocabulary Binomial

More information

Class Notes: On the Theme of Calculators Are Not Needed

Class Notes: On the Theme of Calculators Are Not Needed Class Notes: On the Theme of Calculators Are Not Needed Public Economics (ECO336) November 03 Preamble This year (and in future), the policy in this course is: No Calculators. This is for two constructive

More information

1. (a) Expand (1 + 2x 2 ) in ascending powers of x up to and including the term in x 3. (3)

1. (a) Expand (1 + 2x 2 ) in ascending powers of x up to and including the term in x 3. (3) Binomial - Core 4 Revision (a) Epand ( ) powers of up to and including the term in State the range of values of for which the full epansion is valid () (Total 4 marks) (a) Epress as the sum of two partial

More information

9/16/ (1) Review of Factoring trinomials. (2) Develop the graphic significance of factors/roots. Math 2 Honors - Santowski

9/16/ (1) Review of Factoring trinomials. (2) Develop the graphic significance of factors/roots. Math 2 Honors - Santowski (1) Review of Factoring trinomials (2) Develop the graphic significance of factors/roots (3) Solving Eqn (algebra/graphic connection) 1 2 To expand means to write a product of expressions as a sum or difference

More information

TWO-PERIODIC TERNARY RECURRENCES AND THEIR BINET-FORMULA 1. INTRODUCTION

TWO-PERIODIC TERNARY RECURRENCES AND THEIR BINET-FORMULA 1. INTRODUCTION TWO-PERIODIC TERNARY RECURRENCES AND THEIR BINET-FORMULA M. ALP, N. IRMAK and L. SZALAY Abstract. The properties of k-periodic binary recurrences have been discussed by several authors. In this paper,

More information

10-6 Study Guide and Intervention

10-6 Study Guide and Intervention 10-6 Study Guide and Intervention Pascal s Triangle Pascal s triangle is the pattern of coefficients of powers of binomials displayed in triangular form. Each row begins and ends with 1 and each coefficient

More information

Unit 9 Day 4. Agenda Questions from Counting (last class)? Recall Combinations and Factorial Notation!! 2. Simplify: Recall (a + b) n

Unit 9 Day 4. Agenda Questions from Counting (last class)? Recall Combinations and Factorial Notation!! 2. Simplify: Recall (a + b) n Unit 9 Day 4 Agenda Questions from Counting (last class)? Recall Combinations and Factorial Notation 1. Simplify:!! 2. Simplify: 2 Recall (a + b) n Sec 12.6 un9act4: Binomial Experiment pdf version template

More information

Ex 1) Suppose a license plate can have any three letters followed by any four digits.

Ex 1) Suppose a license plate can have any three letters followed by any four digits. AFM Notes, Unit 1 Probability Name 1-1 FPC and Permutations Date Period ------------------------------------------------------------------------------------------------------- The Fundamental Principle

More information

BINOMIAL TRANSFORMS OF QUADRAPELL SEQUENCES AND QUADRAPELL MATRIX SEQUENCES

BINOMIAL TRANSFORMS OF QUADRAPELL SEQUENCES AND QUADRAPELL MATRIX SEQUENCES Journal of Science and Arts Year 17, No. 1(38), pp. 69-80, 2017 ORIGINAL PAPER BINOMIAL TRANSFORMS OF QUADRAPELL SEQUENCES AND QUADRAPELL MATRIX SEQUENCES CAN KIZILATEŞ 1, NAIM TUGLU 2, BAYRAM ÇEKİM 2

More information

6.3 The Binomial Theorem

6.3 The Binomial Theorem COMMON CORE L L R R L R Locker LESSON 6.3 The Binomial Theorem Name Class Date 6.3 The Binomial Theorem Common Core Math Standards The student is expected to: COMMON CORE A-APR.C.5 (+) Know and apply the

More information

COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants

COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants Due Wednesday March 12, 2014. CS 20 students should bring a hard copy to class. CSCI

More information

CIVL Discrete Distributions

CIVL Discrete Distributions CIVL 3103 Discrete Distributions Learning Objectives Define discrete distributions, and identify common distributions applicable to engineering problems. Identify the appropriate distribution (i.e. binomial,

More information

Quadrant marked mesh patterns in 123-avoiding permutations

Quadrant marked mesh patterns in 123-avoiding permutations Quadrant marked mesh patterns in 23-avoiding permutations Dun Qiu Department of Mathematics University of California, San Diego La Jolla, CA 92093-02. USA duqiu@math.ucsd.edu Jeffrey Remmel Department

More information

Binomial Probability

Binomial Probability Binomial Probability Features of a Binomial Experiment 1. There are a fixed number of trials. We denote this number by the letter n. Features of a Binomial Experiment 2. The n trials are independent and

More information

Advanced Numerical Methods

Advanced Numerical Methods Advanced Numerical Methods Solution to Homework One Course instructor: Prof. Y.K. Kwok. When the asset pays continuous dividend yield at the rate q the expected rate of return of the asset is r q under

More information

arxiv: v1 [math.co] 31 Mar 2009

arxiv: v1 [math.co] 31 Mar 2009 A BIJECTION BETWEEN WELL-LABELLED POSITIVE PATHS AND MATCHINGS OLIVIER BERNARDI, BERTRAND DUPLANTIER, AND PHILIPPE NADEAU arxiv:0903.539v [math.co] 3 Mar 009 Abstract. A well-labelled positive path of

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) =

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = Partial Fractions A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = 3 x 2 x + 5, and h( x) = x + 26 x 2 are rational functions.

More information

6-3 Dividing Polynomials

6-3 Dividing Polynomials Polynomials can be divided using long division just like you learned with numbers. Divide) 24 6 5 6 24-8 4-0 4 Remainder 24 6 = 5 4 6 Example : Using Long Division to Divide a Polynomial Divide using

More information

5.1 Personal Probability

5.1 Personal Probability 5. Probability Value Page 1 5.1 Personal Probability Although we think probability is something that is confined to math class, in the form of personal probability it is something we use to make decisions

More information

CIVL Learning Objectives. Definitions. Discrete Distributions

CIVL Learning Objectives. Definitions. Discrete Distributions CIVL 3103 Discrete Distributions Learning Objectives Define discrete distributions, and identify common distributions applicable to engineering problems. Identify the appropriate distribution (i.e. binomial,

More information

Mathematics for Algorithms and System Analysis

Mathematics for Algorithms and System Analysis UCSD CSE 21, Spring 2014 Mathematics for Algorithms and System Analysis Midterm Review Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Review Session Get out a pencil and paper Lets solve problems

More information

MS-E2114 Investment Science Lecture 4: Applied interest rate analysis

MS-E2114 Investment Science Lecture 4: Applied interest rate analysis MS-E2114 Investment Science Lecture 4: Applied interest rate analysis A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

Probability Distributions: Discrete

Probability Distributions: Discrete Probability Distributions: Discrete Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul SEPTEMBER 27, 2016 Introduction to Data Science Algorithms Boyd-Graber and Paul Probability

More information

The Binomial Distribution

The Binomial Distribution MATH 382 The Binomial Distribution Dr. Neal, WKU Suppose there is a fixed probability p of having an occurrence (or success ) on any single attempt, and a sequence of n independent attempts is made. Then

More information

Word Expression Algebraic Expression Example. Let z first odd integer Then z 2 second consecutive odd integer z 4 third consecutive odd integer

Word Expression Algebraic Expression Example. Let z first odd integer Then z 2 second consecutive odd integer z 4 third consecutive odd integer 3.6 Applications REVIEW from Section 1.6 Five Step Word Problem Method 1) Identify a variable. 2) Write an equation. 4) State your answer. 5) Check your answer. Consecutive Integers Word Expression Algebraic

More information

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers:

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers: P.1 Algebraic Expressions, Mathematical models, and Real numbers If n is a counting number (1, 2, 3, 4,..) then Exponential notation: b n = b b b... b, where n is the Exponent or Power, and b is the base

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Lattice Paths and Their Generalizations

Lattice Paths and Their Generalizations and Their Generalizations SeungKyung Park Yonsei University August 9, 2012 Lattice paths Google search : lattice paths About 11,700,000 results (0.18 seconds) Lattice paths Google search : lattice paths

More information

Multiple Eisenstein series

Multiple Eisenstein series Heilbronn Workshop on String Theory and Arithmetic Geometry University of Bristol - 5th September 2012 Multiple zeta-values Definition For natural numbers s 1 2, s 2,..., s l 1 the multiple zeta-value

More information

The Pill Problem, Lattice Paths and Catalan Numbers

The Pill Problem, Lattice Paths and Catalan Numbers The Pill Problem, Lattice Paths and Catalan Numbers Margaret Bayer University of Kansas Lawrence, KS 66045-7594 bayer@ku.edu Keith Brandt Rockhurst University Kansas City, MO 64110 Keith.Brandt@Rockhurst.edu

More information

Factors of 10 = = 2 5 Possible pairs of factors:

Factors of 10 = = 2 5 Possible pairs of factors: Factoring Trinomials Worksheet #1 1. b 2 + 8b + 7 Signs inside the two binomials are identical and positive. Factors of b 2 = b b Factors of 7 = 1 7 b 2 + 8b + 7 = (b + 1)(b + 7) 2. n 2 11n + 10 Signs

More information

Rises in forests of binary shrubs

Rises in forests of binary shrubs Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9:, 07, #5 Rises in forests of binary shrubs Jeffrey Remmel Sainan Zheng arxiv:6.0908v4 [math.co] 8 Jul 07 Department of Mathematics, University

More information

A brief history of Riordan arrays

A brief history of Riordan arrays A brief history of Riordan arrays From antiquity to today Paul Barry WIT 8/3/17 The binomial theorem We recall that Blaise Pascal France Pascal s triangle 1623-1662 Euclid: Greece 2 nd century BC India:

More information

Realizability of n-vertex Graphs with Prescribed Vertex Connectivity, Edge Connectivity, Minimum Degree, and Maximum Degree

Realizability of n-vertex Graphs with Prescribed Vertex Connectivity, Edge Connectivity, Minimum Degree, and Maximum Degree Realizability of n-vertex Graphs with Prescribed Vertex Connectivity, Edge Connectivity, Minimum Degree, and Maximum Degree Lewis Sears IV Washington and Lee University 1 Introduction The study of graph

More information

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models MATH 5510 Mathematical Models of Financial Derivatives Topic 1 Risk neutral pricing principles under single-period securities models 1.1 Law of one price and Arrow securities 1.2 No-arbitrage theory and

More information

CATEGORICAL SKEW LATTICES

CATEGORICAL SKEW LATTICES CATEGORICAL SKEW LATTICES MICHAEL KINYON AND JONATHAN LEECH Abstract. Categorical skew lattices are a variety of skew lattices on which the natural partial order is especially well behaved. While most

More information

Chapter 9 Section 9.1 (page 649)

Chapter 9 Section 9.1 (page 649) CB_AN.qd // : PM Page Precalculus with Limits, Answers to Section. Chapter Section. (page ) Vocabular Check (page ). infinite sequence. terms. finite. recursivel. factorial. summation notation 7. inde;

More information

Course Information and Introduction

Course Information and Introduction August 20, 2015 Course Information 1 Instructor : Email : arash.rafiey@indstate.edu Office : Root Hall A-127 Office Hours : Tuesdays 12:00 pm to 1:00 pm in my office (A-127) 2 Course Webpage : http://cs.indstate.edu/

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

Some Discrete Distribution Families

Some Discrete Distribution Families Some Discrete Distribution Families ST 370 Many families of discrete distributions have been studied; we shall discuss the ones that are most commonly found in applications. In each family, we need a formula

More information

On equation. Boris Bartolomé. January 25 th, Göttingen Universität & Institut de Mathémathiques de Bordeaux

On equation. Boris Bartolomé. January 25 th, Göttingen Universität & Institut de Mathémathiques de Bordeaux Göttingen Universität & Institut de Mathémathiques de Bordeaux Boris.Bartolome@mathematik.uni-goettingen.de Boris.Bartolome@math.u-bordeaux1.fr January 25 th, 2016 January 25 th, 2016 1 / 19 Overview 1

More information

CSCE 750, Fall 2009 Quizzes with Answers

CSCE 750, Fall 2009 Quizzes with Answers CSCE 750, Fall 009 Quizzes with Answers Stephen A. Fenner September 4, 011 1. Give an exact closed form for Simplify your answer as much as possible. k 3 k+1. We reduce the expression to a form we ve already

More information

LECTURE 3: FREE CENTRAL LIMIT THEOREM AND FREE CUMULANTS

LECTURE 3: FREE CENTRAL LIMIT THEOREM AND FREE CUMULANTS LECTURE 3: FREE CENTRAL LIMIT THEOREM AND FREE CUMULANTS Recall from Lecture 2 that if (A, φ) is a non-commutative probability space and A 1,..., A n are subalgebras of A which are free with respect to

More information

Section Sampling Distributions for Counts and Proportions

Section Sampling Distributions for Counts and Proportions Section 5.1 - Sampling Distributions for Counts and Proportions Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin Distributions When dealing with inference procedures, there are two different

More information

DESCENDANTS IN HEAP ORDERED TREES OR A TRIUMPH OF COMPUTER ALGEBRA

DESCENDANTS IN HEAP ORDERED TREES OR A TRIUMPH OF COMPUTER ALGEBRA DESCENDANTS IN HEAP ORDERED TREES OR A TRIUMPH OF COMPUTER ALGEBRA Helmut Prodinger Institut für Algebra und Diskrete Mathematik Technical University of Vienna Wiedner Hauptstrasse 8 0 A-00 Vienna, Austria

More information

Name Class Date. Adding and Subtracting Polynomials

Name Class Date. Adding and Subtracting Polynomials 8-1 Reteaching Adding and Subtracting Polynomials You can add and subtract polynomials by lining up like terms and then adding or subtracting each part separately. What is the simplified form of (3x 4x

More information

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012 Finance 65: PDEs and Stochastic Calculus Midterm Examination November 9, 0 Instructor: Bjørn Kjos-anssen Student name Disclaimer: It is essential to write legibly and show your work. If your work is absent

More information

tj= =n+6 U7D1 SEQUENCES AND SERIES Introduction A function can be used to generate a sequence of numbers Example: 1(x) = x2 generates

tj= =n+6 U7D1 SEQUENCES AND SERIES Introduction A function can be used to generate a sequence of numbers Example: 1(x) = x2 generates U7D1 SEQUENCES AND SERIES Introduction A function can be used to generate a sequence of numbers Example: 1(x) = x2 generates We have the sequence 1, 4, 9, 16 Thus a sequence is the set of numbers generated

More information

Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making

Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making May 30, 2016 The purpose of this case study is to give a brief introduction to a heavy-tailed distribution and its distinct behaviors in

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA We begin by describing the problem at hand which motivates our results. Suppose that we have n financial instruments at hand,

More information

Lecture 4: Divide and Conquer

Lecture 4: Divide and Conquer Lecture 4: Divide and Conquer Divide and Conquer Merge sort is an example of a divide-and-conquer algorithm Recall the three steps (at each level to solve a divideand-conquer problem recursively Divide

More information

Options Pricing Using Combinatoric Methods Postnikov Final Paper

Options Pricing Using Combinatoric Methods Postnikov Final Paper Options Pricing Using Combinatoric Methods 18.04 Postnikov Final Paper Annika Kim May 7, 018 Contents 1 Introduction The Lattice Model.1 Overview................................ Limitations of the Lattice

More information

Solution Week 60 (11/3/03) Cereal box prizes

Solution Week 60 (11/3/03) Cereal box prizes Solution Wee 60 /3/03 Cereal box prizes First Solution: Assume that you have collected c of the colors, and let B c be the number of boxes it taes to get the next color. The average value of B c, which

More information

Principles of Financial Computing

Principles of Financial Computing Principles of Financial Computing Prof. Yuh-Dauh Lyuu Dept. Computer Science & Information Engineering and Department of Finance National Taiwan University c 2008 Prof. Yuh-Dauh Lyuu, National Taiwan University

More information

P VaR0.01 (X) > 2 VaR 0.01 (X). (10 p) Problem 4

P VaR0.01 (X) > 2 VaR 0.01 (X). (10 p) Problem 4 KTH Mathematics Examination in SF2980 Risk Management, December 13, 2012, 8:00 13:00. Examiner : Filip indskog, tel. 790 7217, e-mail: lindskog@kth.se Allowed technical aids and literature : a calculator,

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

Stochastic Processes and Advanced Mathematical Finance. Multiperiod Binomial Tree Models

Stochastic Processes and Advanced Mathematical Finance. Multiperiod Binomial Tree Models Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Steve Dunbar Due Mon, October 5, 2009 1. (a) For T 0 = 10 and a = 20, draw a graph of the probability of ruin as a function

More information

A Polya Random Walk On A Lattice

A Polya Random Walk On A Lattice A Polya Random Walk On A Lattice Finding The Probability Of Ever Reaching A Specified Lattice Point John Snyder January, 05 Problem A random walk on the -dimensional integer lattice begins at the origin.

More information

Chapter Five. The Binomial Distribution and Related Topics

Chapter Five. The Binomial Distribution and Related Topics Chapter Five The Binomial Distribution and Related Topics Section 2 Binomial Probabilities Essential Question What are the three methods for solving binomial probability questions? Explain each of the

More information

P (X = x) = x=25

P (X = x) = x=25 Chapter 2 Random variables Exercise 2. (Uniform distribution) Let X be uniformly distributed on 0,,..., 99. Calculate P(X 25). Solution of Exercise 2. : We have P(X 25) P(X 24) F (24) 25 00 3 4. Alternative

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Algebra II Exam 4

Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Algebra II Exam 4 Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Exam 4 Description: Algebra 2 Topic 9 Sequences and Series Form: 201 1. Beginning with Step

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 23 (2010) 286 290 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: wwwelseviercom/locate/aml The number of spanning trees of a graph Jianxi

More information

Modular and Distributive Lattices

Modular and Distributive Lattices CHAPTER 4 Modular and Distributive Lattices Background R. P. DILWORTH Imbedding problems and the gluing construction. One of the most powerful tools in the study of modular lattices is the notion of the

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Financial Modelling Using Discrete Stochastic Calculus

Financial Modelling Using Discrete Stochastic Calculus Preprint typeset in JHEP style - HYPER VERSION Financial Modelling Using Discrete Stochastic Calculus Eric A. Forgy, Ph.D. E-mail: eforgy@yahoo.com Abstract: In the present report, a review of discrete

More information

Non replication of options

Non replication of options Non replication of options Christos Kountzakis, Ioannis A Polyrakis and Foivos Xanthos June 30, 2008 Abstract In this paper we study the scarcity of replication of options in the two period model of financial

More information

Supporting Information

Supporting Information Supporting Information Novikoff et al. 0.073/pnas.0986309 SI Text The Recap Method. In The Recap Method in the paper, we described a schedule in terms of a depth-first traversal of a full binary tree,

More information

Lattice Tree Methods for Strongly Path Dependent

Lattice Tree Methods for Strongly Path Dependent Lattice Tree Methods for Strongly Path Dependent Options Path dependent options are options whose payoffs depend on the path dependent function F t = F(S t, t) defined specifically for the given nature

More information

CPS-111:Tutorial 6. Discrete Probability II. Steve Gu Feb 22, 2008

CPS-111:Tutorial 6. Discrete Probability II. Steve Gu Feb 22, 2008 CPS-111:Tutorial 6 Discrete Probability II Steve Gu Feb 22, 2008 Outline Joint, Marginal, Conditional Bayes Rule Bernoulli Binomial Part I: Joint, Marginal, Conditional Probability Joint Probability Let

More information

The Binomial distribution

The Binomial distribution The Binomial distribution Examples and Definition Binomial Model (an experiment ) 1 A series of n independent trials is conducted. 2 Each trial results in a binary outcome (one is labeled success the other

More information

Review. What is the probability of throwing two 6s in a row with a fair die? a) b) c) d) 0.333

Review. What is the probability of throwing two 6s in a row with a fair die? a) b) c) d) 0.333 Review In most card games cards are dealt without replacement. What is the probability of being dealt an ace and then a 3? Choose the closest answer. a) 0.0045 b) 0.0059 c) 0.0060 d) 0.1553 Review What

More information