Modular and Distributive Lattices

Size: px
Start display at page:

Download "Modular and Distributive Lattices"

Transcription

1 CHAPTER 4 Modular and Distributive Lattices Background R. P. DILWORTH Imbedding problems and the gluing construction. One of the most powerful tools in the study of modular lattices is the notion of the projectivity of intervals. The intervals [a, avb] and [at\b, b) are tmnsposes of one another. Two intervals which can be transformed into each other by a series of transposes are said to be projective. For example, in the lattice of Figure 1 every covering interval is projective to the interval [a, e) and hence every two covering intervals are projective. If an interval is collapsed under a homomorphism, then every transpose is also collapsed and hence every interval projective to it is collapsed. Thus a homomorphism of the lattice in Figure 1 is either an isomorphism or it maps the entire lattice onto a one-element lattice. A lattice with this property is said to be simple. In particular, if a simple lattice is imbedded in a direct product oflattices, then it can also be imbedded in one of the component lattices since not all of the homomorphisms onto the components can be trivial. During my graduate years at Caltech I had noticed that two lattices could be combined to form a larger lattice if an upper interval of one lattice was isomorphic to a lower interval of the other lattice. The process was to patch the two lattices together so that corresponding elements under the isomorphism were identified as indicated in Figure 2. This process of patching (now called 'gluing') had the property of preserving modularity and also distributivity. Also if the isomorphic intervals were non-trivial and the lattices were simple, then the resulting lattice would likewise be simple. While I was at Yale, it occurred to me that the patching technique might be relevant to one of the then outstanding problems concerning modular lattices, 205

2 Figure 1 Figure 2 namely, can every modular lattice be imbedded in a complemented modular lattice. It seemed unlikely that there would be an affirmative answer since simple complemented modular lattices were projective geometries which were highly uniform in their structure. I discussed this problem with Marshall Hall who was at Yale at this time and mentioned the patching technique. Almost immediately he came up with the idea of patching the lattice of Figure 1 onto the lattice of subspaces of a non-desarguesian plane to give the lattice schematically represented in Figure 3. If this modular lattice could be imbedded isometrically in a complemented modular lattice L, then, since L is a direct product of projective geometries, the lattice could be imbedded in one of the components which would have to be of projective dimension at least 3. But every plane in a projective geometry of projective dimension at least 3 is Desarguesian. Thus such an imbedding is not possible. Hall went on to show that it could not be imbedded in any way in a complemented modular lattice. We then constructed several other examples of modular lattices which could not be isometrically imbedded in a complemented modular lattice. Meet and join irreducible elements in modular lattices. Meet and join irreducibles have played an important role in many aspects of lattice theory. An element q is meet irreducible if q = x 1\ y implies q = x or q = y. Join irreducibles are defined dually. If a finite dimensional lattice is distributive, there is a natural one-to-one correspondence between the meet and join irreducibles, namely if q is a 206 THE DILWORTH THEOREMS

3 Figure 3 meet irreducible, there is a unique minimal join irreducible p such that p i q. In turn, q is the unique maximal meet irreducible not containing p. It follows from this correspondence that a finite distributive lattice has the same number of meet and join irreducibles. Although there is no natural correspondence between meet and join irreducibles in a finite modular lattice it was observed in the early 1940's that the number of meet irreducibles was the same as the number of join irreducibles. This was stated as a conjecture by Schiitzenberger but for a number of years no proof was forthcoming. In the early 1950's I decided to make a major attack on the problem. Since meet irreducibles are those elements covered by a single element of the lattice and join irreducibles are those elements covering a single element of the lattice, it was natural to attack the more general problem of showing that IVkl = IWkl where Vk is the set of elements of the lattice covered by precisely k lattice elements, Wk is the set of elements covering precisely k elements, and lsi denotes the number of elements in the set S. This equality had been known for some time in the case of the lattice of subspaces of a projective geometry. Since a finite complemented lattice is a direct product of projective geometries, it follows that the equality holds for all finite complemented modular lattices. I spent some time trying to describe the lattice structure of a finite modular lattice in terms of its complemented sublattices. However, this seemed to be a more complicated problem than the original combinatorial problem. It did become clear from these early investigations that the complemented modular sublattice M generated by the atoms of the lattice L would playa significant role. This led to the idea of reducing the problem from the lattice L to the sublattices L m, where me M and Lm consists of the elements of L containing m. If it turned out to be possible to express IVk I in terms of the corresponding numbers for lattices Lm and the same expression also works for IWkl, then the result would follow by induction on the dimension of the lattice. Now there was available a standard device for counting elements in an ordered set, namely, the Mobius function. For m E M, f..l(m) is Modular and Distributive Lattices 207

4 defined by the recurrence relation x$m ~ J l ( x ) = { ~ if m equals z, the null element of the lattice, if m does not equal z. From this basic property of the Mobius function it was quite direct to show that IVkl was expressible as a linear combination of the corresponding numbers for the lattices Lm with Mobius coefficients. With some additional work and making use of the fact that equality holds in the complemented case, I was able to show that the same linear relation held for IWkl in terms of the corresponding number of the lattices Lm. The theorem then follows by induction. Distributivity in lattices. A closure operation on a set S is a mapping c.p from subsets of S to subsets of S with the following properties: (1) T ~ c.p(t) for all T ~ S; (2) c.p(u) ~ c.p(t) if U ~ T; (3) c.p(c.p(t)) = c.p(t) i f T ~ S ; If S is an ordered set, a closure operation c.p is called an imbedding operator if ( 4 ) c.p( { s }) = (s) for all s E S, where (s) denotes the set of all xes such that x ~ s. A subset T of S is said to be c.p-closed if c.p(t) = T. The c.p-closed subsets form a complete lattice under the operation of set intersection and the closure of the set union. If S is an ordered set, the mapping s 1-+ (s) imbeds S in the lattice of c.p-closed subsets of S. Imbedding operators have a natural ordering given by c.p ~ 'IjJ if and only if c.p(t) ~ 'IjJ(T) for all T ~ S. The minimum operator w has the defining property that w(t) consists of all x such that x ~ t for some t E T. The maximum operator v is defined by letting v(t) be the set of all lower bounds of the upper bounds of T. The starting point of the paper "Distributivity in Lattices" was the observation that the usual distributivity of meet with respect to join in a lattice L can be expressed in terms of an imbedding operator fj as a /\ fj(t) = (J( a /\ T) where a /\ T = {a /\ t : t E T} and fj(t) is the ideal of L generated by T, i.e., the set of all elements of L contained in a finite join of elements of T. ReplaCing (J by an arbitrary imbedding operator c.p produces many possibilities for distributivity conditions in lattices. This raised a number of questions concerning the relationships between the different distributivities and the relation to the lattice structure of the imbedding operators. I proposed to investigate these questions and was joined in the study by an innovative young graduate student, Jack McLaughlin. It is a natural conjecture that if c.p 2: 'IjJ then c.p-distributivity should imply 'IjJ-distributivity. However, this turns out not to be the case. In fact, there exists an imbedding operator c.p on the Boolean algebra of order 8 such that the Boolean 208 THE DILWORTH THEOREMS

5 algebra is not <p-distributive, while it is also true that every Boolean algebra is v distributive. <p-distributivity is related to v-distributivity in the following way: L is <p-distributive if and only if the lattice of <p-closed subsets of L is v-distributive. But for complete lattices v-distributivity is equivalent to ordinary infinite distributivity. Hence, <p-distributivity of L is equivalent to infinite distributivity of the lattice of <p-closed subsets of L. Given an imbedding operator <p, suitable collections of subsets of S provide associated imbedding operators contained in <po These associated operators have consistency properties for distributivity not found among imbedding operators in general. It turns out that all of the common imbedding operators are associated with the normal imbedding operator v. Editors' note. The paper "Aspects of Distributivity," published in 1984, is in part a survey of distributivity and gives much insight into Dilworth's thinking about this area of lattice theory. In addition, Dilworth proved that in a distributive lattice, an irredundant decomposition into irreducibles is unique (if it exists), even when the ascending chain condition fails. Modular and Distributive Lattices 209

Theorem 1.3. Every finite lattice has a congruence-preserving embedding to a finite atomistic lattice.

Theorem 1.3. Every finite lattice has a congruence-preserving embedding to a finite atomistic lattice. CONGRUENCE-PRESERVING EXTENSIONS OF FINITE LATTICES TO SEMIMODULAR LATTICES G. GRÄTZER AND E.T. SCHMIDT Abstract. We prove that every finite lattice hasa congruence-preserving extension to a finite semimodular

More information

INTERVAL DISMANTLABLE LATTICES

INTERVAL DISMANTLABLE LATTICES INTERVAL DISMANTLABLE LATTICES KIRA ADARICHEVA, JENNIFER HYNDMAN, STEFFEN LEMPP, AND J. B. NATION Abstract. A finite lattice is interval dismantlable if it can be partitioned into an ideal and a filter,

More information

The finite lattice representation problem and intervals in subgroup lattices of finite groups

The finite lattice representation problem and intervals in subgroup lattices of finite groups The finite lattice representation problem and intervals in subgroup lattices of finite groups William DeMeo Math 613: Group Theory 15 December 2009 Abstract A well-known result of universal algebra states:

More information

The illustrated zoo of order-preserving functions

The illustrated zoo of order-preserving functions The illustrated zoo of order-preserving functions David Wilding, February 2013 http://dpw.me/mathematics/ Posets (partially ordered sets) underlie much of mathematics, but we often don t give them a second

More information

An orderly algorithm to enumerate finite (semi)modular lattices

An orderly algorithm to enumerate finite (semi)modular lattices An orderly algorithm to enumerate finite (semi)modular lattices BLAST 23 Chapman University October 6, 23 Outline The original algorithm: Generating all finite lattices Generating modular and semimodular

More information

General Lattice Theory: 1979 Problem Update

General Lattice Theory: 1979 Problem Update Algebra Universalis, 11 (1980) 396-402 Birkhauser Verlag, Basel General Lattice Theory: 1979 Problem Update G. GRATZER Listed below are all the solutions or partial solutions to problems in the book General

More information

Projective Lattices. with applications to isotope maps and databases. Ralph Freese CLA La Rochelle

Projective Lattices. with applications to isotope maps and databases. Ralph Freese CLA La Rochelle Projective Lattices with applications to isotope maps and databases Ralph Freese CLA 2013. La Rochelle Ralph Freese () Projective Lattices Oct 2013 1 / 17 Projective Lattices A lattice L is projective

More information

Introduction to Priestley duality 1 / 24

Introduction to Priestley duality 1 / 24 Introduction to Priestley duality 1 / 24 2 / 24 Outline What is a distributive lattice? Priestley duality for finite distributive lattices Using the duality: an example Priestley duality for infinite distributive

More information

PURITY IN IDEAL LATTICES. Abstract.

PURITY IN IDEAL LATTICES. Abstract. ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I.CUZA IAŞI Tomul XLV, s.i a, Matematică, 1999, f.1. PURITY IN IDEAL LATTICES BY GRIGORE CĂLUGĂREANU Abstract. In [4] T. HEAD gave a general definition of purity

More information

Generating all modular lattices of a given size

Generating all modular lattices of a given size Generating all modular lattices of a given size ADAM 2013 Nathan Lawless Chapman University June 6-8, 2013 Outline Introduction to Lattice Theory: Modular Lattices The Objective: Generating and Counting

More information

CATEGORICAL SKEW LATTICES

CATEGORICAL SKEW LATTICES CATEGORICAL SKEW LATTICES MICHAEL KINYON AND JONATHAN LEECH Abstract. Categorical skew lattices are a variety of skew lattices on which the natural partial order is especially well behaved. While most

More information

Congruence lattices of finite intransitive group acts

Congruence lattices of finite intransitive group acts Congruence lattices of finite intransitive group acts Steve Seif June 18, 2010 Finite group acts A finite group act is a unary algebra X = X, G, where G is closed under composition, and G consists of permutations

More information

Lattice Laws Forcing Distributivity Under Unique Complementation

Lattice Laws Forcing Distributivity Under Unique Complementation Lattice Laws Forcing Distributivity Under Unique Complementation R. Padmanabhan Department of Mathematics University of Manitoba Winnipeg, Manitoba R3T 2N2 Canada W. McCune Mathematics and Computer Science

More information

INFLATION OF FINITE LATTICES ALONG ALL-OR-NOTHING SETS TRISTAN HOLMES J. B. NATION

INFLATION OF FINITE LATTICES ALONG ALL-OR-NOTHING SETS TRISTAN HOLMES J. B. NATION INFLATION OF FINITE LATTICES ALONG ALL-OR-NOTHING SETS TRISTAN HOLMES J. B. NATION Department of Mathematics, University of Hawaii, Honolulu, HI 96822, USA Phone:(808)956-4655 Abstract. We introduce a

More information

Gödel algebras free over finite distributive lattices

Gödel algebras free over finite distributive lattices TANCL, Oxford, August 4-9, 2007 1 Gödel algebras free over finite distributive lattices Stefano Aguzzoli Brunella Gerla Vincenzo Marra D.S.I. D.I.COM. D.I.C.O. University of Milano University of Insubria

More information

LATTICE LAWS FORCING DISTRIBUTIVITY UNDER UNIQUE COMPLEMENTATION

LATTICE LAWS FORCING DISTRIBUTIVITY UNDER UNIQUE COMPLEMENTATION LATTICE LAWS FORCING DISTRIBUTIVITY UNDER UNIQUE COMPLEMENTATION R. PADMANABHAN, W. MCCUNE, AND R. VEROFF Abstract. We give several new lattice identities valid in nonmodular lattices such that a uniquely

More information

Non replication of options

Non replication of options Non replication of options Christos Kountzakis, Ioannis A Polyrakis and Foivos Xanthos June 30, 2008 Abstract In this paper we study the scarcity of replication of options in the two period model of financial

More information

ON THE LATTICE OF ORTHOMODULAR LOGICS

ON THE LATTICE OF ORTHOMODULAR LOGICS Jacek Malinowski ON THE LATTICE OF ORTHOMODULAR LOGICS Abstract The upper part of the lattice of orthomodular logics is described. In [1] and [2] Bruns and Kalmbach have described the lower part of the

More information

Lattices and the Knaster-Tarski Theorem

Lattices and the Knaster-Tarski Theorem Lattices and the Knaster-Tarski Theorem Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 8 August 27 Outline 1 Why study lattices 2 Partial Orders 3

More information

COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI SZEGED (HUNGARY), 1980.

COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI SZEGED (HUNGARY), 1980. COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI 33. CONTRIBUTIONS TO LATTICE THEORY SZEGED (HUNGARY), 1980. A SURVEY OF PRODUCTS OF LATTICE VARIETIES G. GRATZER - D. KELLY Let y and Wbe varieties of lattices.

More information

THE NUMBER OF UNARY CLONES CONTAINING THE PERMUTATIONS ON AN INFINITE SET

THE NUMBER OF UNARY CLONES CONTAINING THE PERMUTATIONS ON AN INFINITE SET THE NUMBER OF UNARY CLONES CONTAINING THE PERMUTATIONS ON AN INFINITE SET MICHAEL PINSKER Abstract. We calculate the number of unary clones (submonoids of the full transformation monoid) containing the

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

CONSTRUCTION OF CODES BY LATTICE VALUED FUZZY SETS. 1. Introduction. Novi Sad J. Math. Vol. 35, No. 2, 2005,

CONSTRUCTION OF CODES BY LATTICE VALUED FUZZY SETS. 1. Introduction. Novi Sad J. Math. Vol. 35, No. 2, 2005, Novi Sad J. Math. Vol. 35, No. 2, 2005, 155-160 CONSTRUCTION OF CODES BY LATTICE VALUED FUZZY SETS Mališa Žižović 1, Vera Lazarević 2 Abstract. To every finite lattice L, one can associate a binary blockcode,

More information

Fuzzy L-Quotient Ideals

Fuzzy L-Quotient Ideals International Journal of Fuzzy Mathematics and Systems. ISSN 2248-9940 Volume 3, Number 3 (2013), pp. 179-187 Research India Publications http://www.ripublication.com Fuzzy L-Quotient Ideals M. Mullai

More information

Research Statement. Dapeng Zhan

Research Statement. Dapeng Zhan Research Statement Dapeng Zhan The Schramm-Loewner evolution (SLE), first introduced by Oded Schramm ([12]), is a oneparameter (κ (0, )) family of random non-self-crossing curves, which has received a

More information

LATTICE EFFECT ALGEBRAS DENSELY EMBEDDABLE INTO COMPLETE ONES

LATTICE EFFECT ALGEBRAS DENSELY EMBEDDABLE INTO COMPLETE ONES K Y BERNETIKA VOLUM E 47 ( 2011), NUMBER 1, P AGES 100 109 LATTICE EFFECT ALGEBRAS DENSELY EMBEDDABLE INTO COMPLETE ONES Zdenka Riečanová An effect algebraic partial binary operation defined on the underlying

More information

Laurence Boxer and Ismet KARACA

Laurence Boxer and Ismet KARACA SOME PROPERTIES OF DIGITAL COVERING SPACES Laurence Boxer and Ismet KARACA Abstract. In this paper we study digital versions of some properties of covering spaces from algebraic topology. We correct and

More information

On axiomatisablity questions about monoid acts

On axiomatisablity questions about monoid acts University of York Universal Algebra and Lattice Theory, Szeged 25 June, 2012 Based on joint work with V. Gould and L. Shaheen Monoid acts Right acts A is a left S-act if there exists a map : S A A such

More information

Residuated Lattices of Size 12 extended version

Residuated Lattices of Size 12 extended version Residuated Lattices of Size 12 extended version Radim Belohlavek 1,2, Vilem Vychodil 1,2 1 Dept. Computer Science, Palacky University, Olomouc 17. listopadu 12, Olomouc, CZ 771 46, Czech Republic 2 SUNY

More information

The (λ, κ)-fn and the order theory of bases in boolean algebras

The (λ, κ)-fn and the order theory of bases in boolean algebras The (λ, κ)-fn and the order theory of bases in boolean algebras David Milovich Texas A&M International University david.milovich@tamiu.edu http://www.tamiu.edu/ dmilovich/ June 2, 2010 BLAST 1 / 22 The

More information

Generating all nite modular lattices of a given size

Generating all nite modular lattices of a given size Generating all nite modular lattices of a given size Peter Jipsen and Nathan Lawless Dedicated to Brian Davey on the occasion of his 65th birthday Abstract. Modular lattices, introduced by R. Dedekind,

More information

Laurence Boxer and Ismet KARACA

Laurence Boxer and Ismet KARACA THE CLASSIFICATION OF DIGITAL COVERING SPACES Laurence Boxer and Ismet KARACA Abstract. In this paper we classify digital covering spaces using the conjugacy class corresponding to a digital covering space.

More information

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Midterm #1, February 3, 2017 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By

More information

Transcendental lattices of complex algebraic surfaces

Transcendental lattices of complex algebraic surfaces Transcendental lattices of complex algebraic surfaces Ichiro Shimada Hiroshima University November 25, 2009, Tohoku 1 / 27 Introduction Let Aut(C) be the automorphism group of the complex number field

More information

COMBINATORICS OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS

COMBINATORICS OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS COMBINATORICS OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS DAN HATHAWAY AND SCOTT SCHNEIDER Abstract. We discuss combinatorial conditions for the existence of various types of reductions between equivalence

More information

Translates of (Anti) Fuzzy Submodules

Translates of (Anti) Fuzzy Submodules International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 2 (December 2012), PP. 27-31 P.K. Sharma Post Graduate Department of Mathematics,

More information

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2

6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2 6.207/14.15: Networks Lecture 10: Introduction to Game Theory 2 Daron Acemoglu and Asu Ozdaglar MIT October 14, 2009 1 Introduction Outline Review Examples of Pure Strategy Nash Equilibria Mixed Strategies

More information

CTL Model Checking. Goal Method for proving M sat σ, where M is a Kripke structure and σ is a CTL formula. Approach Model checking!

CTL Model Checking. Goal Method for proving M sat σ, where M is a Kripke structure and σ is a CTL formula. Approach Model checking! CMSC 630 March 13, 2007 1 CTL Model Checking Goal Method for proving M sat σ, where M is a Kripke structure and σ is a CTL formula. Approach Model checking! Mathematically, M is a model of σ if s I = M

More information

Forecast Horizons for Production Planning with Stochastic Demand

Forecast Horizons for Production Planning with Stochastic Demand Forecast Horizons for Production Planning with Stochastic Demand Alfredo Garcia and Robert L. Smith Department of Industrial and Operations Engineering Universityof Michigan, Ann Arbor MI 48109 December

More information

Decompositions of Binomial Ideals

Decompositions of Binomial Ideals Decompositions of Binomial Ideals Laura Felicia Matusevich Texas A&M University AMS Spring Central Sectional Meeting, April 17, 2016 Polynomial Ideals R = k[x 1 ; : : : ; x n ] the polynomial ring over

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

Filters - Part II. Quotient Lattices Modulo Filters and Direct Product of Two Lattices

Filters - Part II. Quotient Lattices Modulo Filters and Direct Product of Two Lattices FORMALIZED MATHEMATICS Vol2, No3, May August 1991 Université Catholique de Louvain Filters - Part II Quotient Lattices Modulo Filters and Direct Product of Two Lattices Grzegorz Bancerek Warsaw University

More information

CHARACTERIZATION OF CLOSED CONVEX SUBSETS OF R n

CHARACTERIZATION OF CLOSED CONVEX SUBSETS OF R n CHARACTERIZATION OF CLOSED CONVEX SUBSETS OF R n Chebyshev Sets A subset S of a metric space X is said to be a Chebyshev set if, for every x 2 X; there is a unique point in S that is closest to x: Put

More information

Fuzzy Join - Semidistributive Lattice

Fuzzy Join - Semidistributive Lattice International Journal of Mathematics Research. ISSN 0976-5840 Volume 8, Number 2 (2016), pp. 85-92 International Research Publication House http://www.irphouse.com Fuzzy Join - Semidistributive Lattice

More information

Kodaira dimensions of low dimensional manifolds

Kodaira dimensions of low dimensional manifolds University of Minnesota July 30, 2013 1 The holomorphic Kodaira dimension κ h 2 3 4 Kodaira dimension type invariants Roughly speaking, a Kodaira dimension type invariant on a class of n dimensional manifolds

More information

Online Shopping Intermediaries: The Strategic Design of Search Environments

Online Shopping Intermediaries: The Strategic Design of Search Environments Online Supplemental Appendix to Online Shopping Intermediaries: The Strategic Design of Search Environments Anthony Dukes University of Southern California Lin Liu University of Central Florida February

More information

1102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH Genyuan Wang and Xiang-Gen Xia, Senior Member, IEEE

1102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH Genyuan Wang and Xiang-Gen Xia, Senior Member, IEEE 1102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 51, NO 3, MARCH 2005 On Optimal Multilayer Cyclotomic Space Time Code Designs Genyuan Wang Xiang-Gen Xia, Senior Member, IEEE Abstract High rate large

More information

Outline of Lecture 1. Martin-Löf tests and martingales

Outline of Lecture 1. Martin-Löf tests and martingales Outline of Lecture 1 Martin-Löf tests and martingales The Cantor space. Lebesgue measure on Cantor space. Martin-Löf tests. Basic properties of random sequences. Betting games and martingales. Equivalence

More information

Algebra homework 8 Homomorphisms, isomorphisms

Algebra homework 8 Homomorphisms, isomorphisms MATH-UA.343.005 T.A. Louis Guigo Algebra homework 8 Homomorphisms, isomorphisms For every n 1 we denote by S n the n-th symmetric group. Exercise 1. Consider the following permutations: ( ) ( 1 2 3 4 5

More information

3.2 No-arbitrage theory and risk neutral probability measure

3.2 No-arbitrage theory and risk neutral probability measure Mathematical Models in Economics and Finance Topic 3 Fundamental theorem of asset pricing 3.1 Law of one price and Arrow securities 3.2 No-arbitrage theory and risk neutral probability measure 3.3 Valuation

More information

Maximum Contiguous Subsequences

Maximum Contiguous Subsequences Chapter 8 Maximum Contiguous Subsequences In this chapter, we consider a well-know problem and apply the algorithm-design techniques that we have learned thus far to this problem. While applying these

More information

CARDINALITIES OF RESIDUE FIELDS OF NOETHERIAN INTEGRAL DOMAINS

CARDINALITIES OF RESIDUE FIELDS OF NOETHERIAN INTEGRAL DOMAINS CARDINALITIES OF RESIDUE FIELDS OF NOETHERIAN INTEGRAL DOMAINS KEITH A. KEARNES AND GREG OMAN Abstract. We determine the relationship between the cardinality of a Noetherian integral domain and the cardinality

More information

New tools of set-theoretic homological algebra and their applications to modules

New tools of set-theoretic homological algebra and their applications to modules New tools of set-theoretic homological algebra and their applications to modules Jan Trlifaj Univerzita Karlova, Praha Workshop on infinite-dimensional representations of finite dimensional algebras Manchester,

More information

METRIC POSTULATES FOR MODULAR, DISTRIBUTIVE, AND BOOLEAN LATTICES

METRIC POSTULATES FOR MODULAR, DISTRIBUTIVE, AND BOOLEAN LATTICES Bulletin of the Section of Logic Volume 8/4 (1979), pp. 191 195 reedition 2010 [original edition, pp. 191 196] David Miller METRIC POSTULATES FOR MODULAR, DISTRIBUTIVE, AND BOOLEAN LATTICES This is an

More information

Variations on a theme by Weetman

Variations on a theme by Weetman Variations on a theme by Weetman A.E. Brouwer Abstract We show for many strongly regular graphs, and for all Taylor graphs except the hexagon, that locally graphs have bounded diameter. 1 Locally graphs

More information

Collinear Triple Hypergraphs and the Finite Plane Kakeya Problem

Collinear Triple Hypergraphs and the Finite Plane Kakeya Problem Collinear Triple Hypergraphs and the Finite Plane Kakeya Problem Joshua Cooper August 14, 006 Abstract We show that the problem of counting collinear points in a permutation (previously considered by the

More information

On the h-vector of a Lattice Path Matroid

On the h-vector of a Lattice Path Matroid On the h-vector of a Lattice Path Matroid Jay Schweig Department of Mathematics University of Kansas Lawrence, KS 66044 jschweig@math.ku.edu Submitted: Sep 16, 2009; Accepted: Dec 18, 2009; Published:

More information

Ideals and involutive filters in residuated lattices

Ideals and involutive filters in residuated lattices Ideals and involutive filters in residuated lattices Jiří Rachůnek and Dana Šalounová Palacký University in Olomouc VŠB Technical University of Ostrava Czech Republic SSAOS 2014, Stará Lesná, September

More information

The Binomial Theorem and Consequences

The Binomial Theorem and Consequences The Binomial Theorem and Consequences Juris Steprāns York University November 17, 2011 Fermat s Theorem Pierre de Fermat claimed the following theorem in 1640, but the first published proof (by Leonhard

More information

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models MATH 5510 Mathematical Models of Financial Derivatives Topic 1 Risk neutral pricing principles under single-period securities models 1.1 Law of one price and Arrow securities 1.2 No-arbitrage theory and

More information

THE IRREDUCIBILITY OF CERTAIN PURE-CYCLE HURWITZ SPACES

THE IRREDUCIBILITY OF CERTAIN PURE-CYCLE HURWITZ SPACES THE IRREDUCIBILITY OF CERTAIN PURE-CYCLE HURWITZ SPACES FU LIU AND BRIAN OSSERMAN Abstract. We study pure-cycle Hurwitz spaces, parametrizing covers of the projective line having only one ramified point

More information

Quadrant marked mesh patterns in 123-avoiding permutations

Quadrant marked mesh patterns in 123-avoiding permutations Quadrant marked mesh patterns in 23-avoiding permutations Dun Qiu Department of Mathematics University of California, San Diego La Jolla, CA 92093-02. USA duqiu@math.ucsd.edu Jeffrey Remmel Department

More information

An Optimal Odd Unimodular Lattice in Dimension 72

An Optimal Odd Unimodular Lattice in Dimension 72 An Optimal Odd Unimodular Lattice in Dimension 72 Masaaki Harada and Tsuyoshi Miezaki September 27, 2011 Abstract It is shown that if there is an extremal even unimodular lattice in dimension 72, then

More information

Notes on the symmetric group

Notes on the symmetric group Notes on the symmetric group 1 Computations in the symmetric group Recall that, given a set X, the set S X of all bijections from X to itself (or, more briefly, permutations of X) is group under function

More information

MAC Learning Objectives. Learning Objectives (Cont.)

MAC Learning Objectives. Learning Objectives (Cont.) MAC 1140 Module 12 Introduction to Sequences, Counting, The Binomial Theorem, and Mathematical Induction Learning Objectives Upon completing this module, you should be able to 1. represent sequences. 2.

More information

Skew lattices of matrices in rings

Skew lattices of matrices in rings Algebra univers. 53 (2005) 471 479 0002-5240/05/040471 09 DOI 10.1007/s00012-005-1913-5 c Birkhäuser Verlag, Basel, 2005 Algebra Universalis Skew lattices of matrices in rings Karin Cvetko-Vah Abstract.

More information

Computational Intelligence Winter Term 2009/10

Computational Intelligence Winter Term 2009/10 Computational Intelligence Winter Term 2009/10 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund Plan for Today Fuzzy Sets Basic Definitionsand ResultsforStandard

More information

Epimorphisms and Ideals of Distributive Nearlattices

Epimorphisms and Ideals of Distributive Nearlattices Annals of Pure and Applied Mathematics Vol. 18, No. 2, 2018,175-179 ISSN: 2279-087X (P), 2279-0888(online) Published on 9 November 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v18n2a5

More information

RANDOM POSETS, LATTICES, AND LATTICES TERMS

RANDOM POSETS, LATTICES, AND LATTICES TERMS 125 (2000) MATHEMATICA BOHEMICA No. 2, 129 133 RANDOM POSETS, LATTICES, AND LATTICES TERMS Jaroslav Ježek, Václav Slavík, Praha (Received January 6, 1998) Abstract. Algorithms for generating random posets,

More information

Exercise sheet 10. Discussion: Thursday,

Exercise sheet 10. Discussion: Thursday, Exercise sheet 10 Discussion: Thursday, 04.02.2016. Exercise 10.1 Let K K n o, t > 0. Show that N (K, t B n ) N (K, 4t B n ) N (B n, (t/16)k ), N (B n, t K) N (B n, 4t K) N (K, (t/16)b n ). Hence, e.g.,

More information

Randomness and Fractals

Randomness and Fractals Randomness and Fractals Why do so many physicists become traders? Gregory F. Lawler Department of Mathematics Department of Statistics University of Chicago September 25, 2011 1 / 24 Mathematics and the

More information

Finite Memory and Imperfect Monitoring

Finite Memory and Imperfect Monitoring Federal Reserve Bank of Minneapolis Research Department Finite Memory and Imperfect Monitoring Harold L. Cole and Narayana Kocherlakota Working Paper 604 September 2000 Cole: U.C.L.A. and Federal Reserve

More information

A Property Equivalent to n-permutability for Infinite Groups

A Property Equivalent to n-permutability for Infinite Groups Journal of Algebra 221, 570 578 (1999) Article ID jabr.1999.7996, available online at http://www.idealibrary.com on A Property Equivalent to n-permutability for Infinite Groups Alireza Abdollahi* and Aliakbar

More information

FUZZY PRIME L-FILTERS

FUZZY PRIME L-FILTERS International Journal of Applied Mathematical Sciences ISSN 0973-0176 Volume 9, Number 1 (2016), pp. 37-44 Research India Publications http://www.ripublication.com FUZZY PRIME L-FILTERS M. Mullai Assistant

More information

CONGRUENCES AND IDEALS IN A DISTRIBUTIVE LATTICE WITH RESPECT TO A DERIVATION

CONGRUENCES AND IDEALS IN A DISTRIBUTIVE LATTICE WITH RESPECT TO A DERIVATION Bulletin of the Section of Logic Volume 42:1/2 (2013), pp. 1 10 M. Sambasiva Rao CONGRUENCES AND IDEALS IN A DISTRIBUTIVE LATTICE WITH RESPECT TO A DERIVATION Abstract Two types of congruences are introduced

More information

Principles of Program Analysis: Abstract Interpretation

Principles of Program Analysis: Abstract Interpretation Principles of Program Analysis: Abstract Interpretation Transparencies based on Chapter 4 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis. Springer Verlag

More information

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming Dynamic Programming: An overview These notes summarize some key properties of the Dynamic Programming principle to optimize a function or cost that depends on an interval or stages. This plays a key role

More information

Pricing Kernel. v,x = p,y = p,ax, so p is a stochastic discount factor. One refers to p as the pricing kernel.

Pricing Kernel. v,x = p,y = p,ax, so p is a stochastic discount factor. One refers to p as the pricing kernel. Payoff Space The set of possible payoffs is the range R(A). This payoff space is a subspace of the state space and is a Euclidean space in its own right. 1 Pricing Kernel By the law of one price, two portfolios

More information

Approximate Revenue Maximization with Multiple Items

Approximate Revenue Maximization with Multiple Items Approximate Revenue Maximization with Multiple Items Nir Shabbat - 05305311 December 5, 2012 Introduction The paper I read is called Approximate Revenue Maximization with Multiple Items by Sergiu Hart

More information

Cut-free sequent calculi for algebras with adjoint modalities

Cut-free sequent calculi for algebras with adjoint modalities Cut-free sequent calculi for algebras with adjoint modalities Roy Dyckhoff (University of St Andrews) and Mehrnoosh Sadrzadeh (Universities of Oxford & Southampton) TANCL Conference, Oxford, 8 August 2007

More information

Conditional Rewriting

Conditional Rewriting Conditional Rewriting Bernhard Gramlich ISR 2009, Brasilia, Brazil, June 22-26, 2009 Bernhard Gramlich Conditional Rewriting ISR 2009, July 22-26, 2009 1 Outline Introduction Basics in Conditional Rewriting

More information

Sy D. Friedman. August 28, 2001

Sy D. Friedman. August 28, 2001 0 # and Inner Models Sy D. Friedman August 28, 2001 In this paper we examine the cardinal structure of inner models that satisfy GCH but do not contain 0 #. We show, assuming that 0 # exists, that such

More information

Self-organized criticality on the stock market

Self-organized criticality on the stock market Prague, January 5th, 2014. Some classical ecomomic theory In classical economic theory, the price of a commodity is determined by demand and supply. Let D(p) (resp. S(p)) be the total demand (resp. supply)

More information

Attempt QUESTIONS 1 and 2, and THREE other questions. Do not turn over until you are told to do so by the Invigilator.

Attempt QUESTIONS 1 and 2, and THREE other questions. Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 SET THEORY MTHE6003B Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions. Notes are not permitted

More information

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE GÜNTER ROTE Abstract. A salesperson wants to visit each of n objects that move on a line at given constant speeds in the shortest possible time,

More information

Portfolio Choice. := δi j, the basis is orthonormal. Expressed in terms of the natural basis, x = j. x j x j,

Portfolio Choice. := δi j, the basis is orthonormal. Expressed in terms of the natural basis, x = j. x j x j, Portfolio Choice Let us model portfolio choice formally in Euclidean space. There are n assets, and the portfolio space X = R n. A vector x X is a portfolio. Even though we like to see a vector as coordinate-free,

More information

arxiv: v1 [math.lo] 24 Feb 2014

arxiv: v1 [math.lo] 24 Feb 2014 Residuated Basic Logic II. Interpolation, Decidability and Embedding Minghui Ma 1 and Zhe Lin 2 arxiv:1404.7401v1 [math.lo] 24 Feb 2014 1 Institute for Logic and Intelligence, Southwest University, Beibei

More information

Distributive Lattices

Distributive Lattices Distributive Lattices by Taqseer Khan Submitted to Central European University Department of Mathematics and its Applications In partial fulfulment of the requirements for the degree of Master of Science

More information

Submodular Minimisation using Graph Cuts

Submodular Minimisation using Graph Cuts Submodular Minimisation using Graph Cuts Pankaj Pansari 18 April, 2016 1 Overview Graph construction to minimise special class of submodular functions For this special class, submodular minimisation translates

More information

Best counterstrategy for C

Best counterstrategy for C Best counterstrategy for C In the previous lecture we saw that if R plays a particular mixed strategy and shows no intention of changing it, the expected payoff for R (and hence C) varies as C varies her

More information

Bianchi (hyper-)cubes and a geometric unification of the Hirota and Miwa equations. W.K. Schief. The University of New South Wales, Sydney

Bianchi (hyper-)cubes and a geometric unification of the Hirota and Miwa equations. W.K. Schief. The University of New South Wales, Sydney Bianchi (hyper-)cubes and a geometric unification of the Hirota and Miwa equations by W.K. Schief The University of New South Wales, Sydney ARC Centre of Excellence for Mathematics and Statistics of Complex

More information

A First Course in Probability

A First Course in Probability A First Course in Probability Seventh Edition Sheldon Ross University of Southern California PEARSON Prentice Hall Upper Saddle River, New Jersey 07458 Preface 1 Combinatorial Analysis 1 1.1 Introduction

More information

On Applications of Matroids in Class-oriented Concept Lattices

On Applications of Matroids in Class-oriented Concept Lattices Math Sci Lett 3, No 1, 35-41 (2014) 35 Mathematical Sciences Letters An International Journal http://dxdoiorg/1012785/msl/030106 On Applications of Matroids in Class-oriented Concept Lattices Hua Mao Department

More information

7. Infinite Games. II 1

7. Infinite Games. II 1 7. Infinite Games. In this Chapter, we treat infinite two-person, zero-sum games. These are games (X, Y, A), in which at least one of the strategy sets, X and Y, is an infinite set. The famous example

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

October An Equilibrium of the First Price Sealed Bid Auction for an Arbitrary Distribution.

October An Equilibrium of the First Price Sealed Bid Auction for an Arbitrary Distribution. October 13..18.4 An Equilibrium of the First Price Sealed Bid Auction for an Arbitrary Distribution. We now assume that the reservation values of the bidders are independently and identically distributed

More information

V. Fields and Galois Theory

V. Fields and Galois Theory Math 201C - Alebra Erin Pearse V.2. The Fundamental Theorem. V. Fields and Galois Theory 4. What is the Galois roup of F = Q( 2, 3, 5) over Q? Since F is enerated over Q by {1, 2, 3, 5}, we need to determine

More information

Fair semigroups. Valdis Laan. University of Tartu, Estonia. (Joint research with László Márki) 1/19

Fair semigroups. Valdis Laan. University of Tartu, Estonia. (Joint research with László Márki) 1/19 Fair semigroups Valdis Laan University of Tartu, Estonia (Joint research with László Márki) 1/19 A semigroup S is called factorisable if ( s S)( x, y S) s = xy. 2/19 A semigroup S is called factorisable

More information

based on two joint papers with Sara Biagini Scuola Normale Superiore di Pisa, Università degli Studi di Perugia

based on two joint papers with Sara Biagini Scuola Normale Superiore di Pisa, Università degli Studi di Perugia Marco Frittelli Università degli Studi di Firenze Winter School on Mathematical Finance January 24, 2005 Lunteren. On Utility Maximization in Incomplete Markets. based on two joint papers with Sara Biagini

More information

The Stigler-Luckock model with market makers

The Stigler-Luckock model with market makers Prague, January 7th, 2017. Order book Nowadays, demand and supply is often realized by electronic trading systems storing the information in databases. Traders with access to these databases quote their

More information