Fast Laplacian Solvers by Sparsification

Size: px
Start display at page:

Download "Fast Laplacian Solvers by Sparsification"

Transcription

1 Spectral Graph Theory Lecture 19 Fast Laplacan Solvers by Sparsfcaton Danel A. Spelman November 9, 2015 Dsclamer These notes are not necessarly an accurate representaton of what happened n class. The notes wrtten before class say what I thnk I should say. I sometmes edt the notes after class to make them way what I wsh I had sad. There may be small mstakes, so I recommend that you check any mathematcally precse statement before usng t n your own work. These notes were last revsed on November 9, Overvew We wll see how sparsfcaton allows us to solve systems of lnear equatons n Laplacan matrces and ther sub-matrces n nearly lnear tme. By nearly-lnear, I mean tme O(m log c (nκ 1 ) log ɛ 1 ) for systems wth m nonzero entres, n dmensons, condton number κ. and accuracy ɛ. Ths algorthm comes from [PS14] Today s noton of approxmaton In today s lecture, I wll fnd t convenent to defne matrx approxmatons slghtly dfferently from prevous lectures. Today, I defne A ɛ B to mean e ɛ A B e ɛ A. Note that ths relaton s symmetrc n A and B, and that for ɛ small e ɛ 1 + ɛ. The advantage of ths defnton s that A α B and B β C mples A α+β C The Idea I begn by descrbng the dea behnd the algorthm. Ths dea won t qute work. But, we wll see how to turn t nto one that does. 19-1

2 Lecture 19: November 9, We wll work wth matrces that look lke M = L + X where L s a Laplacan and X s a non-zero, non-negatve dagonal matrx. Such matrces are called M-matrces. A symmetrc M-matrx s a matrx M wth nonpostve off-dagonal entres such that M 1 s nonnegatve and nonzero. We have encountered M-matrces before wthout namng them. If G = (V, E) s a graph, S V, and G(S) s connected, then the submatrx of L G ndexed by rows and columns n S s an M- matrx. Algorthmcally, the problems of solvng systems of equatons n Laplacans and symmetrc M-matrces are equvalent. The sparsfcaton results that we learned for Laplacans translate over to M-matrces. Every M- matrx M can be wrtten n the form X + L where L s a Laplacan and X s a nonnegatve dagonal matrx. If L ɛ L, then t s easy to show (too easy for homework) that X + L ɛ X + L. In Lecture 7, Lemma 7.3.1, we proved that f X has at least one nonzero entry and f L s connected, then X + L s nonsngular. We wrte such a matrx n the form M = D A where D s postve dagonal and A s nonnegatve, and note that ts beng nonsngular and postve semdefnte mples Usng the Perron-Frobenus theorem, one can also show that D A 0 D A. (19.1) D A. (19.2) Multplyng M by D 1/2 on ether sde, we obtan Defne I D 1/2 AD 1/2. B = D 1/2 AD 1/2, and note that nequaltes (19.1) and (19.2) mply that all egenvalues of B have absolute value strctly less than 1. It suffces to fgure out how to solve systems of equatons n I B. One way to do ths s to explot the power seres expanson: (I B) 1 = I + B + B 2 + B 3 + However, ths seres mght need many terms to converge. We can fgure out how many. If the largest egenvalue of B s (1 κ) < 1, then we need at least 1/κ terms. We can wrte a seres wth fewer terms f we express t as a product nstead of as a sum: (I + B 2j ). 0 B = j 1 To see why ths works, look at the frst few terms (I +B)(I +B 2 )(I +B 4 ) = (I +B +B 2 +B 3 )(I +B 4 ) = (I +B +B 2 +B 3 )+B 4 (I +B +B 2 +B 3 ).

3 Lecture 19: November 9, We only need O(log κ 1 ) terms of ths product to obtan a good approxmaton of (I B) 1. The obstacle to quckly applyng a seres lke ths s that the matrces I + B 2j are probably dense. We know how to solve ths problem: we can sparsfy them! I m not sayng that flppantly. We actually do know how to sparfy matrces of ths form. But, smply sparsfyng the matrces I + B 2j does not solve our problem because approxmaton s not preserved by products. That s, even f A ɛ  and B ɛ B,  B could be a very poor approxmaton of AB. In fact, snce the product  B s not necessarly symmetrc, we haven t even defned what t would mean for t to approxmate AB A symmetrc expanson We wll now derve a way of expandng (I B) 1 that s amenable to approxmaton. We begn wth an alternate dervaton of the seres we saw before. Note that and so Takng the nverse of both sdes gves (I B)(I + B) = (I B 2 ), (I B) = (I B 2 )(I + B) 1. (I B) 1 = (I + B)(I B 2 ) 1. We can then apply the same expanson to (I B 2 ) 1 to obtan (I B) 1 = (I + B)(I + B 2 )(I B 4 ) 1. What we need s a symmetrc expanson. We use (I B) 1 = 1 2 I (I + B)(I B 2 ) 1 (I + B). (19.3) We wll verfy ths by multplyng the rght hand sde by (I B): (I + B)(I B 2 ) 1 (I + B)(I B) = (I + B)(I B 2 ) 1 (I B 2 ) = I + B; so 1 [ I + (I + B)(I B 2 ) 1 (I + B) ] (I B) = 1 [(I B) + (I + B)] = I. 2 2 Ths expresson for (I B) 1 plays ncely wth matrx approxmatons. If M 1 ɛ (I B 2 ), then you can show (I B) 1 1 [ ɛ I + (I + B)M (I + B)]. If we can apply M 1 1 quckly and f B s sparse, then we can quckly approxmate (I B) 1. You may now be wonderng how we wll construct such an M 1. The answer, n short, s recursvely.

4 Lecture 19: November 9, D and A Unfortunately, we are gong to need to stop wrttng matrces n terms of I and B, and return to wrtng them n terms of D and A. The reason ths s unfortunate s that t makes for longer expressons. The analog of (19.3) s (D A) 1 = 1 2 [ D 1 + (I + D 1 A)(D AD 1 A) 1 (I + AD 1 ) ]. (19.4) In order to be able to work wth ths expresson nductvely, we need to check that the mddle matrx s an M-matrx. Lemma If D s a dagonal matrx and A s a nonnegatve matrx so that M = D A s an M-matrx, then M 1 = D AD 1 A s also an M-matrx. Proof. As the off-dagonal entres of ths matrx are symmetrc and nonpostve, t suffces to prove that M 1 0 and M 1 0. To compute the row sums set d = D1 and a = A1, and note that d a 0 and d a 0. For M 1, we have whch s nonnegatve and not exactly zero. (D AD 1 A)1 = d AD 1 a d A1 = d a, We wll apply transformaton lke ths many tmes durng our algorthm. To keep track of progress, I say that (D, A) s an (α, β)-par f a. D s postve dagonal, b. A s nonnegatve (and can have dagonal entres), and c. αd A and βd A. For our ntal matrx M = D A, we know that there s some number κ > 0 for whch (D, A) s a (1 κ, 1 κ)-par. At the end of our recurson we wll seek a (1/4, 1/4)-par. When we have such a par, we can just approxmate D A by D. Lemma If M = D A and (D, A) s a (1/4, 1/4)-par, then M 1/3 D.

5 Lecture 19: November 9, Proof. We have and M = D A (1 + 1/4)D e 1/4 D, M = D A D (1/4)D = (3/4)D e 1/3 D. Lemma If (D, A) s an (α, α)-par, then (D, AD 1 A) s an (α 2, 0)-par. Proof. From Lecture 14, Lemma 3.1, we know that the condton of the lemma s equvalent to the asserton that all egenvalues of D 1 A have absolute value at most α, and that the concluson s equvalent to the asserton that all egenvalues of D 1 AD 1 A le between 0 and α 2, whch s mmedate as they are the squares of the egenvalues of D 1 A. So, f we start wth matrces D and A that are a (1 κ, 1 κ)-par, then after applyng ths transformaton approxmately log κ tmes we obtan a (1/4, 0)-par. But, the matrces n ths par could be dense. To keep them sparse, we need to fgure out how approxmatng D A degrades ts qualty. Lemma If ɛ 1/3, a. (D, A) s a (1 κ, 0) par, b. D A ɛ D Â, and c. D ɛ D, then D Â s an (1 κe 2ɛ, 3ɛ)-par. Proof. Frst observe that Then, compute (1 κ)d A D A κd. D Â e ɛ (D A) e ɛ κd e 2ɛ κ D. For the other sde, compute e 2ɛ D e ɛ D e ɛ (D A) ( D Â). For ɛ 1/3, 3ɛ e 2ɛ 1, so 3ɛ D (e 2ɛ 1) D Â.

6 Lecture 19: November 9, It remans to confrm that sparsfcaton satsfes the requrements of ths lemma. The reason ths mght not be obvous s that we allow A to have nonnegatve dagonal elements. Whle ths does not nterfere wth condton b, you mght be concerned that t would nterfere wth condton c. It need not. Let C be the dagonal of A, and let L be the Laplacan of the graph wth adjacency matrx A C, and set X so that X + L = D A. Let L be a sparse ɛ-approxmaton of L. By computng the quadratc form n elementary unt vectors, you can check that the dagonals of L and L approxmate each other. If we now wrte L = D Ã, where à has zero dagonal, and set D = D + C and  = à + C You can now check that D and  satsfy the requrements of Lemma You mght wonder why we bother to keep dagonal elements n a matrx lke A. It seems smpler to get rd of them. However, we want (D, A) to be an (α, β) par, and removng subtractng C from both of them would make β worse. Ths mght not matter too much as we have good control over β. But, I don t yet see a nce way to carry out a proof that explots ths Sketch of the constructon We begn wth an M-matrx M 0 = D 0 A 0. Snce ths matrx s nonsngular, there s a κ 0 > 0 so that (D 0, A 0 ) s a (1 κ 0, 1 κ 0 ) par. We now know that the matrx D 0 A 0 D 1 0 A 0 s an M-matrx and that (D 0, A 0 D 1 0 A 0) s a ((1 κ 0 ) 2, 0)-par. Defne κ 1 so that 1 κ 1 = (1 κ) 2 0, and note that κ 1 s approxmately 2κ 0. Lemma and the dscusson followng t tells us that there s a (1 κ 1 e 2ɛ, 3ɛ)-par (D 1, A 1 ) so that and so that A 1 has O(n/ɛ 2 ) nonzero entres. D 1 A 1 ɛ D 0 A 0 D 1 0 A 0 Contnung nductvely for some number k steps, we fnd (1 κ, 3ɛ) pars (D, A ) so that has O(n/ɛ 2 ) nonzero entres, and M = D A M ɛ D A 1 D 1 1 A 1. For the such that κ s small, κ +1 s approxmately twce κ. So, for k = 2 + log 2 1/κ and ɛ close to zero, we can guarantee that (D k, A k ) s a (1/4, 1/4) par. We now see how ths constructon allows us to approxmately solve systems of equatons n D 0 A 0, and how we must set ɛ for t to work. For every 0 < k, we have (D A ) D (I +D 1 A )(D A D 1 A ) 1 (I +A D 1 1 ) ɛ 2 D (I +D 1 A )(D +1 A +1 ) 1 (I +

7 Lecture 19: November 9, and (D k A k ) 1 1/3 D 1 k. By substtutng through each of these approxmatons, we obtan solutons to systems of equatons n D 0 A 0 wth accuracy 1/3 + kɛ. So, we should set kɛ = 1/3, and thus ɛ = 1/(2 + log 2 κ 1 ). The domnant cost of the resultng algorthm wll be the multplcaton of vectors by 2k matrces of O(n/ɛ 2 ) entres, wth a total cost of O(n(log 2 (1/κ)) 3 ) Makng the constructon effcent In the above constructon, I just assumed that approprate sparsfers exst, rather than constructng them effcently. To construct them effcently, we need two deas. The frst s that we need to be able to quckly approxmate effectve resstances so that we can use the samplng algorthm from Lecture 17. The second s to observe that we do not actually want to form the matrx AD 1 A before sparsfyng t, as that could take too long. Instead, we express t as a product of clques that have succnct descrptons, and we form the sum of approxmatons of each of those Improvements The fastest known algorthms for solvng systems of equatons run n tme O(m log n log ɛ 1 ) [CKM + 14]. The algorthm I have presented here can be substantally mproved by combnng t wth Cholesky factorzaton. Ths both gves an effcent parallel algorthm, and proves the exstence of an approxmate nverse for every M-matrx that has a lnear number of nonzeros [LPS15]. References [CKM + 14] Mchael B. Cohen, Rasmus Kyng, Gary L. Mller, Jakub W. Pachock, Rchard Peng, Anup B. Rao, and Shen Chen Xu. Solvng sdd lnear systems n nearly mlog1/2n tme. In Proceedngs of the 46th Annual ACM Symposum on Theory of Computng, STOC 14, pages , New York, NY, USA, ACM. [LPS15] Yn Tat Lee, Rchard Peng, and Danel A. Spelman. Sparsfed cholesky solvers for SDD lnear systems. CoRR, abs/ , [PS14] Rchard Peng and Danel A. Spelman. An effcent parallel solver for SDD lnear systems. In Symposum on Theory of Computng, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages , 2014.

Parallel Prefix addition

Parallel Prefix addition Marcelo Kryger Sudent ID 015629850 Parallel Prefx addton The parallel prefx adder presented next, performs the addton of two bnary numbers n tme of complexty O(log n) and lnear cost O(n). Lets notce the

More information

15-451/651: Design & Analysis of Algorithms January 22, 2019 Lecture #3: Amortized Analysis last changed: January 18, 2019

15-451/651: Design & Analysis of Algorithms January 22, 2019 Lecture #3: Amortized Analysis last changed: January 18, 2019 5-45/65: Desgn & Analyss of Algorthms January, 09 Lecture #3: Amortzed Analyss last changed: January 8, 09 Introducton In ths lecture we dscuss a useful form of analyss, called amortzed analyss, for problems

More information

Appendix for Solving Asset Pricing Models when the Price-Dividend Function is Analytic

Appendix for Solving Asset Pricing Models when the Price-Dividend Function is Analytic Appendx for Solvng Asset Prcng Models when the Prce-Dvdend Functon s Analytc Ovdu L. Caln Yu Chen Thomas F. Cosmano and Alex A. Hmonas January 3, 5 Ths appendx provdes proofs of some results stated n our

More information

ECE 586GT: Problem Set 2: Problems and Solutions Uniqueness of Nash equilibria, zero sum games, evolutionary dynamics

ECE 586GT: Problem Set 2: Problems and Solutions Uniqueness of Nash equilibria, zero sum games, evolutionary dynamics Unversty of Illnos Fall 08 ECE 586GT: Problem Set : Problems and Solutons Unqueness of Nash equlbra, zero sum games, evolutonary dynamcs Due: Tuesday, Sept. 5, at begnnng of class Readng: Course notes,

More information

Price and Quantity Competition Revisited. Abstract

Price and Quantity Competition Revisited. Abstract rce and uantty Competton Revsted X. Henry Wang Unversty of Mssour - Columba Abstract By enlargng the parameter space orgnally consdered by Sngh and Vves (984 to allow for a wder range of cost asymmetry,

More information

2.1 Rademacher Calculus... 3

2.1 Rademacher Calculus... 3 COS 598E: Unsupervsed Learnng Week 2 Lecturer: Elad Hazan Scrbe: Kran Vodrahall Contents 1 Introducton 1 2 Non-generatve pproach 1 2.1 Rademacher Calculus............................... 3 3 Spectral utoencoders

More information

Lecture 7. We now use Brouwer s fixed point theorem to prove Nash s theorem.

Lecture 7. We now use Brouwer s fixed point theorem to prove Nash s theorem. Topcs on the Border of Economcs and Computaton December 11, 2005 Lecturer: Noam Nsan Lecture 7 Scrbe: Yoram Bachrach 1 Nash s Theorem We begn by provng Nash s Theorem about the exstance of a mxed strategy

More information

Survey of Math: Chapter 22: Consumer Finance Borrowing Page 1

Survey of Math: Chapter 22: Consumer Finance Borrowing Page 1 Survey of Math: Chapter 22: Consumer Fnance Borrowng Page 1 APR and EAR Borrowng s savng looked at from a dfferent perspectve. The dea of smple nterest and compound nterest stll apply. A new term s the

More information

TCOM501 Networking: Theory & Fundamentals Final Examination Professor Yannis A. Korilis April 26, 2002

TCOM501 Networking: Theory & Fundamentals Final Examination Professor Yannis A. Korilis April 26, 2002 TO5 Networng: Theory & undamentals nal xamnaton Professor Yanns. orls prl, Problem [ ponts]: onsder a rng networ wth nodes,,,. In ths networ, a customer that completes servce at node exts the networ wth

More information

332 Mathematical Induction Solutions for Chapter 14. for every positive integer n. Proof. We will prove this with mathematical induction.

332 Mathematical Induction Solutions for Chapter 14. for every positive integer n. Proof. We will prove this with mathematical induction. 33 Mathematcal Inducton. Solutons for Chapter. Prove that 3 n n n for every postve nteger n. Proof. We wll prove ths wth mathematcal nducton. Observe that f n, ths statement s, whch s obvously true. Consder

More information

Problem Set 6 Finance 1,

Problem Set 6 Finance 1, Carnege Mellon Unversty Graduate School of Industral Admnstraton Chrs Telmer Wnter 2006 Problem Set 6 Fnance, 47-720. (representatve agent constructon) Consder the followng two-perod, two-agent economy.

More information

Understanding Annuities. Some Algebraic Terminology.

Understanding Annuities. Some Algebraic Terminology. Understandng Annutes Ma 162 Sprng 2010 Ma 162 Sprng 2010 March 22, 2010 Some Algebrac Termnology We recall some terms and calculatons from elementary algebra A fnte sequence of numbers s a functon of natural

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #21 Scribe: Lawrence Diao April 23, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #21 Scribe: Lawrence Diao April 23, 2013 COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #21 Scrbe: Lawrence Dao Aprl 23, 2013 1 On-Lne Log Loss To recap the end of the last lecture, we have the followng on-lne problem wth N

More information

Finance 402: Problem Set 1 Solutions

Finance 402: Problem Set 1 Solutions Fnance 402: Problem Set 1 Solutons Note: Where approprate, the fnal answer for each problem s gven n bold talcs for those not nterested n the dscusson of the soluton. 1. The annual coupon rate s 6%. A

More information

Quiz on Deterministic part of course October 22, 2002

Quiz on Deterministic part of course October 22, 2002 Engneerng ystems Analyss for Desgn Quz on Determnstc part of course October 22, 2002 Ths s a closed book exercse. You may use calculators Grade Tables There are 90 ponts possble for the regular test, or

More information

EDC Introduction

EDC Introduction .0 Introducton EDC3 In the last set of notes (EDC), we saw how to use penalty factors n solvng the EDC problem wth losses. In ths set of notes, we want to address two closely related ssues. What are, exactly,

More information

Production and Supply Chain Management Logistics. Paolo Detti Department of Information Engeneering and Mathematical Sciences University of Siena

Production and Supply Chain Management Logistics. Paolo Detti Department of Information Engeneering and Mathematical Sciences University of Siena Producton and Supply Chan Management Logstcs Paolo Dett Department of Informaton Engeneerng and Mathematcal Scences Unversty of Sena Convergence and complexty of the algorthm Convergence of the algorthm

More information

Games and Decisions. Part I: Basic Theorems. Contents. 1 Introduction. Jane Yuxin Wang. 1 Introduction 1. 2 Two-player Games 2

Games and Decisions. Part I: Basic Theorems. Contents. 1 Introduction. Jane Yuxin Wang. 1 Introduction 1. 2 Two-player Games 2 Games and Decsons Part I: Basc Theorems Jane Yuxn Wang Contents 1 Introducton 1 2 Two-player Games 2 2.1 Zero-sum Games................................ 3 2.1.1 Pure Strateges.............................

More information

Appendix - Normally Distributed Admissible Choices are Optimal

Appendix - Normally Distributed Admissible Choices are Optimal Appendx - Normally Dstrbuted Admssble Choces are Optmal James N. Bodurtha, Jr. McDonough School of Busness Georgetown Unversty and Q Shen Stafford Partners Aprl 994 latest revson September 00 Abstract

More information

OCR Statistics 1 Working with data. Section 2: Measures of location

OCR Statistics 1 Working with data. Section 2: Measures of location OCR Statstcs 1 Workng wth data Secton 2: Measures of locaton Notes and Examples These notes have sub-sectons on: The medan Estmatng the medan from grouped data The mean Estmatng the mean from grouped data

More information

SIMPLE FIXED-POINT ITERATION

SIMPLE FIXED-POINT ITERATION SIMPLE FIXED-POINT ITERATION The fed-pont teraton method s an open root fndng method. The method starts wth the equaton f ( The equaton s then rearranged so that one s one the left hand sde of the equaton

More information

Tests for Two Correlations

Tests for Two Correlations PASS Sample Sze Software Chapter 805 Tests for Two Correlatons Introducton The correlaton coeffcent (or correlaton), ρ, s a popular parameter for descrbng the strength of the assocaton between two varables.

More information

Scribe: Chris Berlind Date: Feb 1, 2010

Scribe: Chris Berlind Date: Feb 1, 2010 CS/CNS/EE 253: Advanced Topcs n Machne Learnng Topc: Dealng wth Partal Feedback #2 Lecturer: Danel Golovn Scrbe: Chrs Berlnd Date: Feb 1, 2010 8.1 Revew In the prevous lecture we began lookng at algorthms

More information

Elton, Gruber, Brown, and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 9

Elton, Gruber, Brown, and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 9 Elton, Gruber, Brown, and Goetzmann Modern Portfolo Theory and Investment Analyss, 7th Edton Solutons to Text Problems: Chapter 9 Chapter 9: Problem In the table below, gven that the rskless rate equals

More information

CS 286r: Matching and Market Design Lecture 2 Combinatorial Markets, Walrasian Equilibrium, Tâtonnement

CS 286r: Matching and Market Design Lecture 2 Combinatorial Markets, Walrasian Equilibrium, Tâtonnement CS 286r: Matchng and Market Desgn Lecture 2 Combnatoral Markets, Walrasan Equlbrum, Tâtonnement Matchng and Money Recall: Last tme we descrbed the Hungaran Method for computng a maxmumweght bpartte matchng.

More information

arxiv: v1 [math.nt] 29 Oct 2015

arxiv: v1 [math.nt] 29 Oct 2015 A DIGITAL BINOMIAL THEOREM FOR SHEFFER SEQUENCES TOUFIK MANSOUR AND HIEU D. NGUYEN arxv:1510.08529v1 [math.nt] 29 Oct 2015 Abstract. We extend the dgtal bnomal theorem to Sheffer polynomal sequences by

More information

Problems to be discussed at the 5 th seminar Suggested solutions

Problems to be discussed at the 5 th seminar Suggested solutions ECON4260 Behavoral Economcs Problems to be dscussed at the 5 th semnar Suggested solutons Problem 1 a) Consder an ultmatum game n whch the proposer gets, ntally, 100 NOK. Assume that both the proposer

More information

S yi a bx i cx yi a bx i cx 2 i =0. yi a bx i cx 2 i xi =0. yi a bx i cx 2 i x

S yi a bx i cx yi a bx i cx 2 i =0. yi a bx i cx 2 i xi =0. yi a bx i cx 2 i x LEAST-SQUARES FIT (Chapter 8) Ft the best straght lne (parabola, etc.) to a gven set of ponts. Ths wll be done by mnmzng the sum of squares of the vertcal dstances (called resduals) from the ponts to the

More information

FORD MOTOR CREDIT COMPANY SUGGESTED ANSWERS. Richard M. Levich. New York University Stern School of Business. Revised, February 1999

FORD MOTOR CREDIT COMPANY SUGGESTED ANSWERS. Richard M. Levich. New York University Stern School of Business. Revised, February 1999 FORD MOTOR CREDIT COMPANY SUGGESTED ANSWERS by Rchard M. Levch New York Unversty Stern School of Busness Revsed, February 1999 1 SETTING UP THE PROBLEM The bond s beng sold to Swss nvestors for a prce

More information

3: Central Limit Theorem, Systematic Errors

3: Central Limit Theorem, Systematic Errors 3: Central Lmt Theorem, Systematc Errors 1 Errors 1.1 Central Lmt Theorem Ths theorem s of prme mportance when measurng physcal quanttes because usually the mperfectons n the measurements are due to several

More information

Consumption Based Asset Pricing

Consumption Based Asset Pricing Consumpton Based Asset Prcng Mchael Bar Aprl 25, 208 Contents Introducton 2 Model 2. Prcng rsk-free asset............................... 3 2.2 Prcng rsky assets................................ 4 2.3 Bubbles......................................

More information

Elements of Economic Analysis II Lecture VI: Industry Supply

Elements of Economic Analysis II Lecture VI: Industry Supply Elements of Economc Analyss II Lecture VI: Industry Supply Ka Hao Yang 10/12/2017 In the prevous lecture, we analyzed the frm s supply decson usng a set of smple graphcal analyses. In fact, the dscusson

More information

Finite Math - Fall Section Future Value of an Annuity; Sinking Funds

Finite Math - Fall Section Future Value of an Annuity; Sinking Funds Fnte Math - Fall 2016 Lecture Notes - 9/19/2016 Secton 3.3 - Future Value of an Annuty; Snkng Funds Snkng Funds. We can turn the annutes pcture around and ask how much we would need to depost nto an account

More information

Measures of Spread IQR and Deviation. For exam X, calculate the mean, median and mode. For exam Y, calculate the mean, median and mode.

Measures of Spread IQR and Deviation. For exam X, calculate the mean, median and mode. For exam Y, calculate the mean, median and mode. Part 4 Measures of Spread IQR and Devaton In Part we learned how the three measures of center offer dfferent ways of provdng us wth a sngle representatve value for a data set. However, consder the followng

More information

Supplementary material for Non-conjugate Variational Message Passing for Multinomial and Binary Regression

Supplementary material for Non-conjugate Variational Message Passing for Multinomial and Binary Regression Supplementary materal for Non-conjugate Varatonal Message Passng for Multnomal and Bnary Regresson October 9, 011 1 Alternatve dervaton We wll focus on a partcular factor f a and varable x, wth the am

More information

Elton, Gruber, Brown, and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 16

Elton, Gruber, Brown, and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 16 lton, Gruer, rown, and Goetzmann Modern Portfolo Theory and Investment nalyss, 7th dton Solutons to Text Prolems: hapter 6 hapter 6: Prolem From the text we know that three ponts determne a plane. The

More information

On the Moments of the Traces of Unitary and Orthogonal Random Matrices

On the Moments of the Traces of Unitary and Orthogonal Random Matrices Proceedngs of Insttute of Mathematcs of NAS of Ukrane 2004 Vol. 50 Part 3 1207 1213 On the Moments of the Traces of Untary and Orthogonal Random Matrces Vladmr VASILCHU B. Verkn Insttute for Low Temperature

More information

Mode is the value which occurs most frequency. The mode may not exist, and even if it does, it may not be unique.

Mode is the value which occurs most frequency. The mode may not exist, and even if it does, it may not be unique. 1.7.4 Mode Mode s the value whch occurs most frequency. The mode may not exst, and even f t does, t may not be unque. For ungrouped data, we smply count the largest frequency of the gven value. If all

More information

Creating a zero coupon curve by bootstrapping with cubic splines.

Creating a zero coupon curve by bootstrapping with cubic splines. MMA 708 Analytcal Fnance II Creatng a zero coupon curve by bootstrappng wth cubc splnes. erg Gryshkevych Professor: Jan R. M. Röman 0.2.200 Dvson of Appled Mathematcs chool of Educaton, Culture and Communcaton

More information

Equilibrium in Prediction Markets with Buyers and Sellers

Equilibrium in Prediction Markets with Buyers and Sellers Equlbrum n Predcton Markets wth Buyers and Sellers Shpra Agrawal Nmrod Megddo Benamn Armbruster Abstract Predcton markets wth buyers and sellers of contracts on multple outcomes are shown to have unque

More information

OPERATIONS RESEARCH. Game Theory

OPERATIONS RESEARCH. Game Theory OPERATIONS RESEARCH Chapter 2 Game Theory Prof. Bbhas C. Gr Department of Mathematcs Jadavpur Unversty Kolkata, Inda Emal: bcgr.umath@gmal.com 1.0 Introducton Game theory was developed for decson makng

More information

Computational Finance

Computational Finance Department of Mathematcs at Unversty of Calforna, San Dego Computatonal Fnance Dfferental Equaton Technques [Lectures 8-10] Mchael Holst February 27, 2017 Contents 1 Modelng Fnancal Optons wth the Black-Scholes

More information

Taxation and Externalities. - Much recent discussion of policy towards externalities, e.g., global warming debate/kyoto

Taxation and Externalities. - Much recent discussion of policy towards externalities, e.g., global warming debate/kyoto Taxaton and Externaltes - Much recent dscusson of polcy towards externaltes, e.g., global warmng debate/kyoto - Increasng share of tax revenue from envronmental taxaton 6 percent n OECD - Envronmental

More information

Topics on the Border of Economics and Computation November 6, Lecture 2

Topics on the Border of Economics and Computation November 6, Lecture 2 Topcs on the Border of Economcs and Computaton November 6, 2005 Lecturer: Noam Nsan Lecture 2 Scrbe: Arel Procacca 1 Introducton Last week we dscussed the bascs of zero-sum games n strategc form. We characterzed

More information

Final Exam. 7. (10 points) Please state whether each of the following statements is true or false. No explanation needed.

Final Exam. 7. (10 points) Please state whether each of the following statements is true or false. No explanation needed. Fnal Exam Fall 4 Econ 8-67 Closed Book. Formula Sheet Provded. Calculators OK. Tme Allowed: hours Please wrte your answers on the page below each queston. (5 ponts) Assume that the rsk-free nterest rate

More information

Introduction to PGMs: Discrete Variables. Sargur Srihari

Introduction to PGMs: Discrete Variables. Sargur Srihari Introducton to : Dscrete Varables Sargur srhar@cedar.buffalo.edu Topcs. What are graphcal models (or ) 2. Use of Engneerng and AI 3. Drectonalty n graphs 4. Bayesan Networks 5. Generatve Models and Samplng

More information

Tests for Two Ordered Categorical Variables

Tests for Two Ordered Categorical Variables Chapter 253 Tests for Two Ordered Categorcal Varables Introducton Ths module computes power and sample sze for tests of ordered categorcal data such as Lkert scale data. Assumng proportonal odds, such

More information

2) In the medium-run/long-run, a decrease in the budget deficit will produce:

2) In the medium-run/long-run, a decrease in the budget deficit will produce: 4.02 Quz 2 Solutons Fall 2004 Multple-Choce Questons ) Consder the wage-settng and prce-settng equatons we studed n class. Suppose the markup, µ, equals 0.25, and F(u,z) = -u. What s the natural rate of

More information

MULTIPLE CURVE CONSTRUCTION

MULTIPLE CURVE CONSTRUCTION MULTIPLE CURVE CONSTRUCTION RICHARD WHITE 1. Introducton In the post-credt-crunch world, swaps are generally collateralzed under a ISDA Master Agreement Andersen and Pterbarg p266, wth collateral rates

More information

Parsing beyond context-free grammar: Tree Adjoining Grammar Parsing I

Parsing beyond context-free grammar: Tree Adjoining Grammar Parsing I Parsng beyond context-free grammar: Tree donng Grammar Parsng I Laura Kallmeyer, Wolfgang Maer ommersemester 2009 duncton and substtuton (1) Tree donng Grammars (TG) Josh et al. (1975), Josh & chabes (1997):

More information

YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH A Test #2 November 03, 2014

YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH A Test #2 November 03, 2014 Famly Name prnt): YORK UNIVERSITY Faculty of Scence Department of Mathematcs and Statstcs MATH 2280.00 A Test #2 November 0, 2014 Solutons Gven Name: Student No: Sgnature: INSTRUCTIONS: 1. Please wrte

More information

SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS. EXAM FM SAMPLE SOLUTIONS Interest Theory

SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS. EXAM FM SAMPLE SOLUTIONS Interest Theory SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE SOLUTIONS Interest Theory Ths page ndcates changes made to Study Note FM-09-05. January 14, 014: Questons and solutons 58 60 were added.

More information

Foundations of Machine Learning II TP1: Entropy

Foundations of Machine Learning II TP1: Entropy Foundatons of Machne Learnng II TP1: Entropy Gullaume Charpat (Teacher) & Gaétan Marceau Caron (Scrbe) Problem 1 (Gbbs nequalty). Let p and q two probablty measures over a fnte alphabet X. Prove that KL(p

More information

Elton, Gruber, Brown and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 4

Elton, Gruber, Brown and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 4 Elton, Gruber, Brown and Goetzmann Modern ortfolo Theory and Investment Analyss, 7th Edton Solutons to Text roblems: Chapter 4 Chapter 4: roblem 1 A. Expected return s the sum of each outcome tmes ts assocated

More information

2.1 The Inverting Configuration

2.1 The Inverting Configuration /3/0 secton _ The nertng confguraton /. The Inertng Confguraton eadng Assgnment: pp. 6876 One use of amps s to make amplfers! Ths seems rather obous, but remember an amp by tself has too much gan to be

More information

A Php 5,000 loan is being repaid in 10 yearly payments. If interest is 8% effective, find the annual payment. 1 ( ) 10) 0.

A Php 5,000 loan is being repaid in 10 yearly payments. If interest is 8% effective, find the annual payment. 1 ( ) 10) 0. Amortzaton If a loan s repad on nstalment (whch s usually n equal amounts); then the loan s sad to be repad by the amortzaton method. Under ths method, each nstalment ncludes the repayment of prncpal and

More information

An annuity is a series of payments made at equal intervals. There are many practical examples of financial transactions involving annuities, such as

An annuity is a series of payments made at equal intervals. There are many practical examples of financial transactions involving annuities, such as 2 Annutes An annuty s a seres of payments made at equal ntervals. There are many practcal examples of fnancal transactons nvolvng annutes, such as a car loan beng repad wth equal monthly nstallments a

More information

Maximum Likelihood Estimation of Isotonic Normal Means with Unknown Variances*

Maximum Likelihood Estimation of Isotonic Normal Means with Unknown Variances* Journal of Multvarate Analyss 64, 183195 (1998) Artcle No. MV971717 Maxmum Lelhood Estmaton of Isotonc Normal Means wth Unnown Varances* Nng-Zhong Sh and Hua Jang Northeast Normal Unversty, Changchun,Chna

More information

The convolution computation for Perfectly Matched Boundary Layer algorithm in finite differences

The convolution computation for Perfectly Matched Boundary Layer algorithm in finite differences The convoluton computaton for Perfectly Matched Boundary Layer algorthm n fnte dfferences Herman Jaramllo May 10, 2016 1 Introducton Ths s an exercse to help on the understandng on some mportant ssues

More information

Evaluating Performance

Evaluating Performance 5 Chapter Evaluatng Performance In Ths Chapter Dollar-Weghted Rate of Return Tme-Weghted Rate of Return Income Rate of Return Prncpal Rate of Return Daly Returns MPT Statstcs 5- Measurng Rates of Return

More information

4.4 Doob s inequalities

4.4 Doob s inequalities 34 CHAPTER 4. MARTINGALES 4.4 Doob s nequaltes The frst nterestng consequences of the optonal stoppng theorems are Doob s nequaltes. If M n s a martngale, denote M n =max applen M. Theorem 4.8 If M n s

More information

Economic Design of Short-Run CSP-1 Plan Under Linear Inspection Cost

Economic Design of Short-Run CSP-1 Plan Under Linear Inspection Cost Tamkang Journal of Scence and Engneerng, Vol. 9, No 1, pp. 19 23 (2006) 19 Economc Desgn of Short-Run CSP-1 Plan Under Lnear Inspecton Cost Chung-Ho Chen 1 * and Chao-Yu Chou 2 1 Department of Industral

More information

Data Mining Linear and Logistic Regression

Data Mining Linear and Logistic Regression 07/02/207 Data Mnng Lnear and Logstc Regresson Mchael L of 26 Regresson In statstcal modellng, regresson analyss s a statstcal process for estmatng the relatonshps among varables. Regresson models are

More information

Jeffrey Ely. October 7, This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Jeffrey Ely. October 7, This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. October 7, 2012 Ths work s lcensed under the Creatve Commons Attrbuton-NonCommercal-ShareAlke 3.0 Lcense. Recap We saw last tme that any standard of socal welfare s problematc n a precse sense. If we want

More information

Dr. A. Sudhakaraiah* V. Rama Latha E.Gnana Deepika

Dr. A. Sudhakaraiah* V. Rama Latha E.Gnana Deepika Internatonal Journal Of Scentfc & Engneerng Research, Volume, Issue 6, June-0 ISSN - Splt Domnatng Set of an Interval Graph Usng an Algorthm. Dr. A. Sudhakaraah* V. Rama Latha E.Gnana Deepka Abstract :

More information

Competitive Rumor Spread in Social Networks

Competitive Rumor Spread in Social Networks Compettve Rumor Spread n Socal Networks Yongwhan Lm Operatons Research Center, Massachusetts Insttute of Technology yongwhan@mt.edu Asuman Ozdaglar EECS, Massachusetts Insttute of Technology asuman@mt.edu

More information

Applications of Myerson s Lemma

Applications of Myerson s Lemma Applcatons of Myerson s Lemma Professor Greenwald 28-2-7 We apply Myerson s lemma to solve the sngle-good aucton, and the generalzaton n whch there are k dentcal copes of the good. Our objectve s welfare

More information

Principles of Finance

Principles of Finance Prncples of Fnance Grzegorz Trojanowsk Lecture 6: Captal Asset Prcng Model Prncples of Fnance - Lecture 6 1 Lecture 6 materal Requred readng: Elton et al., Chapters 13, 14, and 15 Supplementary readng:

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analyss of Varance and Desgn of Experments-II MODULE VI LECTURE - 4 SPLIT-PLOT AND STRIP-PLOT DESIGNS Dr. Shalabh Department of Mathematcs & Statstcs Indan Insttute of Technology Kanpur An example to motvate

More information

CLOSED-FORM LIKELIHOOD EXPANSIONS FOR MULTIVARIATE DIFFUSIONS. BY YACINE AÏT-SAHALIA 1 Princeton University

CLOSED-FORM LIKELIHOOD EXPANSIONS FOR MULTIVARIATE DIFFUSIONS. BY YACINE AÏT-SAHALIA 1 Princeton University The Annals of Statstcs 2008, Vol. 36, No. 2, 906 937 DOI: 10.1214/009053607000000622 Insttute of Mathematcal Statstcs, 2008 CLOSED-FORM LIKELIHOOD EPANSIONS FOR MULTIVARIATE DIFFUSIONS B ACINE AÏT-SAHALIA

More information

Lecture Note 2 Time Value of Money

Lecture Note 2 Time Value of Money Seg250 Management Prncples for Engneerng Managers Lecture ote 2 Tme Value of Money Department of Systems Engneerng and Engneerng Management The Chnese Unversty of Hong Kong Interest: The Cost of Money

More information

Pivot Points for CQG - Overview

Pivot Points for CQG - Overview Pvot Ponts for CQG - Overvew By Bran Bell Introducton Pvot ponts are a well-known technque used by floor traders to calculate ntraday support and resstance levels. Ths technque has been around for decades,

More information

Homework 9: due Monday, 27 October, 2008

Homework 9: due Monday, 27 October, 2008 PROBLEM ONE Homework 9: due Monday, 7 October, 008. (Exercses from the book, 6 th edton, 6.6, -3.) Determne the number of dstnct orderngs of the letters gven: (a) GUIDE (b) SCHOOL (c) SALESPERSONS. (Exercses

More information

Single-Item Auctions. CS 234r: Markets for Networks and Crowds Lecture 4 Auctions, Mechanisms, and Welfare Maximization

Single-Item Auctions. CS 234r: Markets for Networks and Crowds Lecture 4 Auctions, Mechanisms, and Welfare Maximization CS 234r: Markets for Networks and Crowds Lecture 4 Auctons, Mechansms, and Welfare Maxmzaton Sngle-Item Auctons Suppose we have one or more tems to sell and a pool of potental buyers. How should we decde

More information

Simple Regression Theory II 2010 Samuel L. Baker

Simple Regression Theory II 2010 Samuel L. Baker SIMPLE REGRESSIO THEORY II Smple Regresson Theory II 00 Samuel L. Baker Assessng how good the regresson equaton s lkely to be Assgnment A gets nto drawng nferences about how close the regresson lne mght

More information

Fall 2017 Social Sciences 7418 University of Wisconsin-Madison Problem Set 3 Answers

Fall 2017 Social Sciences 7418 University of Wisconsin-Madison Problem Set 3 Answers ublc Affars 854 enze D. Chnn Fall 07 Socal Scences 748 Unversty of Wsconsn-adson roblem Set 3 Answers Due n Lecture on Wednesday, November st. " Box n" your answers to the algebrac questons.. Fscal polcy

More information

Mathematical Thinking Exam 1 09 October 2017

Mathematical Thinking Exam 1 09 October 2017 Mathematcal Thnkng Exam 1 09 October 2017 Name: Instructons: Be sure to read each problem s drectons. Wrte clearly durng the exam and fully erase or mark out anythng you do not want graded. You may use

More information

Numerical Analysis ECIV 3306 Chapter 6

Numerical Analysis ECIV 3306 Chapter 6 The Islamc Unversty o Gaza Faculty o Engneerng Cvl Engneerng Department Numercal Analyss ECIV 3306 Chapter 6 Open Methods & System o Non-lnear Eqs Assocate Pro. Mazen Abualtaye Cvl Engneerng Department,

More information

A DUAL EXTERIOR POINT SIMPLEX TYPE ALGORITHM FOR THE MINIMUM COST NETWORK FLOW PROBLEM

A DUAL EXTERIOR POINT SIMPLEX TYPE ALGORITHM FOR THE MINIMUM COST NETWORK FLOW PROBLEM Yugoslav Journal of Operatons Research Vol 19 (2009), Number 1, 157-170 DOI:10.2298/YUJOR0901157G A DUAL EXTERIOR POINT SIMPLEX TYPE ALGORITHM FOR THE MINIMUM COST NETWORK FLOW PROBLEM George GERANIS Konstantnos

More information

Still Simpler Way of Introducing Interior-Point method for Linear Programming

Still Simpler Way of Introducing Interior-Point method for Linear Programming Stll Smpler Way of Introducng Interor-Pont method for Lnear Programmng Sanjeev Saxena Dept. of Computer Scence and Engneerng, Indan Insttute of Technology, Kanpur, INDIA-08 06 October 9, 05 Abstract Lnear

More information

Mechanisms for Efficient Allocation in Divisible Capacity Networks

Mechanisms for Efficient Allocation in Divisible Capacity Networks Mechansms for Effcent Allocaton n Dvsble Capacty Networks Antons Dmaks, Rahul Jan and Jean Walrand EECS Department Unversty of Calforna, Berkeley {dmaks,ran,wlr}@eecs.berkeley.edu Abstract We propose a

More information

Ch Rival Pure private goods (most retail goods) Non-Rival Impure public goods (internet service)

Ch Rival Pure private goods (most retail goods) Non-Rival Impure public goods (internet service) h 7 1 Publc Goods o Rval goods: a good s rval f ts consumpton by one person precludes ts consumpton by another o Excludable goods: a good s excludable f you can reasonably prevent a person from consumng

More information

Chapter 3 Student Lecture Notes 3-1

Chapter 3 Student Lecture Notes 3-1 Chapter 3 Student Lecture otes 3-1 Busness Statstcs: A Decson-Makng Approach 6 th Edton Chapter 3 Descrbng Data Usng umercal Measures 005 Prentce-Hall, Inc. Chap 3-1 Chapter Goals After completng ths chapter,

More information

Financial mathematics

Financial mathematics Fnancal mathematcs Jean-Luc Bouchot jean-luc.bouchot@drexel.edu February 19, 2013 Warnng Ths s a work n progress. I can not ensure t to be mstake free at the moment. It s also lackng some nformaton. But

More information

Discounted Cash Flow (DCF) Analysis: What s Wrong With It And How To Fix It

Discounted Cash Flow (DCF) Analysis: What s Wrong With It And How To Fix It Dscounted Cash Flow (DCF Analyss: What s Wrong Wth It And How To Fx It Arturo Cfuentes (* CREM Facultad de Economa y Negocos Unversdad de Chle June 2014 (* Jont effort wth Francsco Hawas; Depto. de Ingenera

More information

Linear Combinations of Random Variables and Sampling (100 points)

Linear Combinations of Random Variables and Sampling (100 points) Economcs 30330: Statstcs for Economcs Problem Set 6 Unversty of Notre Dame Instructor: Julo Garín Sprng 2012 Lnear Combnatons of Random Varables and Samplng 100 ponts 1. Four-part problem. Go get some

More information

Multifactor Term Structure Models

Multifactor Term Structure Models 1 Multfactor Term Structure Models A. Lmtatons of One-Factor Models 1. Returns on bonds of all maturtes are perfectly correlated. 2. Term structure (and prces of every other dervatves) are unquely determned

More information

/ Computational Genomics. Normalization

/ Computational Genomics. Normalization 0-80 /02-70 Computatonal Genomcs Normalzaton Gene Expresson Analyss Model Computatonal nformaton fuson Bologcal regulatory networks Pattern Recognton Data Analyss clusterng, classfcaton normalzaton, mss.

More information

Note on Cubic Spline Valuation Methodology

Note on Cubic Spline Valuation Methodology Note on Cubc Splne Valuaton Methodology Regd. Offce: The Internatonal, 2 nd Floor THE CUBIC SPLINE METHODOLOGY A model for yeld curve takes traded yelds for avalable tenors as nput and generates the curve

More information

Chapter - IV. Total and Middle Fuzzy Graph

Chapter - IV. Total and Middle Fuzzy Graph Chapter - IV otal and Mddle Fuzzy Graph CHAPER - IV OAL AND MIDDLE FUZZY GRAPH In ths chapter for the gven fuzzy graph G:(σ, µ), subdvson fuzzy graph sd(g) : ( σ sd, µ sd ), square fuzzy graph S 2 ( G)

More information

iii) pay F P 0,T = S 0 e δt when stock has dividend yield δ.

iii) pay F P 0,T = S 0 e δt when stock has dividend yield δ. Fnal s Wed May 7, 12:50-2:50 You are allowed 15 sheets of notes and a calculator The fnal s cumulatve, so you should know everythng on the frst 4 revews Ths materal not on those revews 184) Suppose S t

More information

Dependent jump processes with coupled Lévy measures

Dependent jump processes with coupled Lévy measures Dependent jump processes wth coupled Lévy measures Naoufel El-Bachr ICMA Centre, Unversty of Readng May 6, 2008 ICMA Centre Dscusson Papers n Fnance DP2008-3 Copyrght 2008 El-Bachr. All rghts reserved.

More information

IND E 250 Final Exam Solutions June 8, Section A. Multiple choice and simple computation. [5 points each] (Version A)

IND E 250 Final Exam Solutions June 8, Section A. Multiple choice and simple computation. [5 points each] (Version A) IND E 20 Fnal Exam Solutons June 8, 2006 Secton A. Multple choce and smple computaton. [ ponts each] (Verson A) (-) Four ndependent projects, each wth rsk free cash flows, have the followng B/C ratos:

More information

Jean-Paul Murara, Västeras, 26-April Mälardalen University, Sweden. Pricing EO under 2-dim. B S PDE by. using the Crank-Nicolson Method

Jean-Paul Murara, Västeras, 26-April Mälardalen University, Sweden. Pricing EO under 2-dim. B S PDE by. using the Crank-Nicolson Method Prcng EO under Mälardalen Unversty, Sweden Västeras, 26-Aprl-2017 1 / 15 Outlne 1 2 3 2 / 15 Optons - contracts that gve to the holder the rght but not the oblgaton to buy/sell an asset sometmes n the

More information

Collective Motion from Consensus with Cartesian Coordinate Coupling - Part II: Double-integrator Dynamics

Collective Motion from Consensus with Cartesian Coordinate Coupling - Part II: Double-integrator Dynamics Proceedngs of the 47th IEEE Conference on Decson Control Cancun Mexco Dec. 9-8 TuB. Collectve Moton from Consensus wth Cartesan Coordnate Couplng - Part II: Double-ntegrator Dynamcs We Ren Abstract Ths

More information

Major: All Engineering Majors. Authors: Autar Kaw, Jai Paul

Major: All Engineering Majors. Authors: Autar Kaw, Jai Paul Secant Method Major: All Engneerng Majors Authors: Autar Kaw, Ja Paul http://numercalmethods.eng.us.edu Transormng Numercal Methods Educaton or STEM Undergraduates /0/00 http://numercalmethods.eng.us.edu

More information

Actuarial Science: Financial Mathematics

Actuarial Science: Financial Mathematics STAT 485 Actuaral Scence: Fnancal Mathematcs 1.1.1 Effectve Rates of Interest Defnton Defnton lender. An nterest s money earned by deposted funds. An nterest rate s the rate at whch nterest s pad to the

More information

arxiv: v1 [math-ph] 19 Oct 2007

arxiv: v1 [math-ph] 19 Oct 2007 Monomal ntegrals on the classcal groups T. Gorn and G. V. López Departamento de Físca, Unversdad de Guadalajara Blvd. Marcelno García Barragan y Calzada Olímpca 44840 Guadalajara, Jalsco, Méxco February,

More information

INTRODUCTION TO MACROECONOMICS FOR THE SHORT RUN (CHAPTER 1) WHY STUDY BUSINESS CYCLES? The intellectual challenge: Why is economic growth irregular?

INTRODUCTION TO MACROECONOMICS FOR THE SHORT RUN (CHAPTER 1) WHY STUDY BUSINESS CYCLES? The intellectual challenge: Why is economic growth irregular? INTRODUCTION TO MACROECONOMICS FOR THE SHORT RUN (CHATER 1) WHY STUDY BUSINESS CYCLES? The ntellectual challenge: Why s economc groth rregular? The socal challenge: Recessons and depressons cause elfare

More information

COMPARISON OF THE ANALYTICAL AND NUMERICAL SOLUTION OF A ONE-DIMENSIONAL NON-STATIONARY COOLING PROBLEM. László Könözsy 1, Mátyás Benke 2

COMPARISON OF THE ANALYTICAL AND NUMERICAL SOLUTION OF A ONE-DIMENSIONAL NON-STATIONARY COOLING PROBLEM. László Könözsy 1, Mátyás Benke 2 COMPARISON OF THE ANALYTICAL AND NUMERICAL SOLUTION OF A ONE-DIMENSIONAL NON-STATIONARY COOLING PROBLEM László Könözsy 1, Mátyás Benke Ph.D. Student 1, Unversty Student Unversty of Mskolc, Department of

More information