Topics in Computational Sustainability CS 325 Spring 2016

Size: px
Start display at page:

Download "Topics in Computational Sustainability CS 325 Spring 2016"

Transcription

1 Topics in Computational Sustainability CS 325 Spring 2016 Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew s tutorials: Comments and corrections gratefully received. Making Choices: Sequential Decision Making

2 Stochastic programming? decision Probabilistic model wet a b dry c {a(pa),b(pb),c(pc)} maximizes expected utility minimizes expected cost

3 Problem Setup Conserved parcels "! "#$%# Available parcels Current territories Potential territories Given limited budget, what parcels should I conserve to maximize the expected number of occupied territories in 50 years?

4 Metapopulation = Cascade i j k l m i j k l m i j k l m i j k l m i j k l m Metapopulation model can be viewed as a cascade in the layered graph representing territories over time Target nodes: territories at final time step Patches

5 Management Actions Conserving parcels adds nodes to the network to create new pathways for the cascade Initial network Parcel 1 Parcel 2

6 Management Actions Conserving parcels adds nodes to the network to create new pathways for the cascade Initial network Parcel 1 Parcel 2

7 Management Actions Conserving parcels adds nodes to the network to create new pathways for the cascade Initial network Parcel 1 Parcel 2

8 Cascade Optimization Problem Given: Patch network Initially occupied territories Colonization and extinction probabilities Management actions Already-conserved parcels List of available parcels and their costs Time horizon T Budget B Find set of parcels with total cost at most B that maximizes the expected number of occupied territories at time T. Can we make our decision adaptively?

9 Sequential decision making We have a systems that changes state over time Can (partially) control the system state transitions by taking actions Problem gives an objective that specifies which states (or state sequences) are more/less preferred Problem: At each time step select an action to optimize the overall (long-term) objective Produce most preferred sequences of states 9

10 Discounted Rewards/Costs An assistant professor gets paid, say, 20K per year. How much, in total, will the A.P. earn in their life? = Infinity $ $ What s wrong with this argument?

11 Discounted Rewards A reward (payment) in the future is not worth quite as much as a reward now. Because of chance of obliteration Because of inflation Example: Being promised $10,000 next year is worth only 90% as much as receiving $10,000 right now. Assuming payment n years in future is worth only (0.9) n of payment now, what is the AP s Future Discounted Sum of Rewards?

12 Infinite Sum Assuming a discount rate of 0.9, how much does the assistant professor get in total? = ( ) x = x x = 20/(.1) = 200

13 Discount Factors People in economics and probabilistic decisionmaking do this all the time. The Discounted sum of future rewards using discount factor g is (reward now) + g (reward in 1 time step) + g 2 (reward in 2 time steps) + g 3 (reward in 3 time steps) + : : (infinite sum)

14 Markov System: the Academic Life 0.6 A. Assistant Prof B. Assoc. Prof T. Tenured Prof Define: S. On the Street D. Dead 0 J A = Expected discounted future rewards starting in state A J B = Expected discounted future rewards starting in state B J T = T J S = S J D = D How do we compute J A, J B, J T, J S, J D? 0.3

15 Working Backwards 0.6 A. Assistant Prof.: B. Associate Prof.: S. Out on the 0 Street: 10 D. Dead: T. Tenured Prof.: Discount factor 0.9

16 Reincarnation? 0.6 A. Assistant Prof.: B. Associate Prof.: 60 S. Out on the Street: 10 D. Dead: T. Tenured Prof.: 100 Discount factor

17 System of Equations L(A) = (.6 L(A) +.2 L(B) +.2 L(S)) L(B) = (.6 L(B) +.2 L(S) +.2 L(T)) L(S) = (.7 L(S) +.3 L(D)) L(T) = (.7 L(T) +.3 L(D)) L(D) = (.5 L(D) +.5 L(A))

18 Solving a Markov System with Matrix Inversion Upside: You get an exact answer Downside: If you have 100,000 states you re solving a 100,000 by 100,000 system of equations.

19 Value Iteration: another way to solve a Markov System Define J 1 (S i ) = Expected discounted sum of rewards over the next 1 time step. J 2 (S i ) = Expected discounted sum rewards during next 2 steps J 3 (S i ) = Expected discounted sum rewards during next 3 steps : J k (S i ) = Expected discounted sum rewards during next k steps J 1 (S i ) = (what?) J 2 (S i ) = J k+1 (S i ) = (what?) (what?)

20 Value Iteration: another way to solve a Markov System Define J 1 (S i ) = Expected discounted sum of rewards over the next 1 time step. J 2 (S i ) = Expected discounted sum rewards during next 2 steps J 3 (S i ) = Expected discounted sum rewards during next 3 steps : J k (S i ) = Expected discounted sum rewards during next k steps N = Number of states J 1 (S i ) = r i (what?) J 2 (S i ) = : J k+1 (S i ) = (what?) (what?) r i r i g g N j 1 N j 1 p ij p ij J J 1 ( s k j ( s ) j )

21 Let s do Value Iteration SUN +4 WIND 0 HAIL.::.:.:: -8 g = 0.5 k J k (SUN) J k (WIND) J k (HAIL)

22 Let s do Value Iteration SUN +4 WIND 0 HAIL.::.:.:: -8 g = 0.5 k J k (SUN) J k (WIND) J k (HAIL)

23 Value Iteration for solving Markov Systems Compute J 1 (S i ) for each i Compute J 2 (S i ) for each i : Compute J k (S i ) for each i As k J k (S i ) J*(S i ) When to stop? When Max J k+1 (S i ) J k (S i ) i < ξ This is faster than matrix inversion (N 3 style) if the transition matrix is sparse What if we have a way to interact with the Markov system?

24 A Markov Decision Process You run a startup company. In every state you must choose between Saving money (S) or Advertising (A). 1 S Poor & Unknown +0 Rich & Unknown +10 A S Poor & Famous +0 S Rich & Famous A g = 0.9 1

25 Markov Decision Processes An MDP has A set of states {s 1 S N } A set of actions {a 1 a M } A set of rewards {r 1 r N } (one for each state) A transition probability function P k ij Prob Next k P ij j This i and I useaction On each step: 0. Call current state S i 1. Receive reward r i 2. Choose action {a 1 a M } 3. If you choose action a k you ll move to state S j with probability 4. All future rewards are discounted by g k What s a solution to an MDP? A sequence of actions?

26 Policy Number 2: Policy Number 1: A Policy A policy is a mapping from states to actions. 1 Examples S STATE ACTION PU PF RU RF S A S A PU 0 RU +10 PF 0 RF A 1 STATE ACTION PU PF RU RF A A A A PU 0 RU 10 How many possible policies in our example? Which of the above two policies is best? How do you compute the optimal policy? A A PF 0 RF 10 A A 1 1

27 Interesting Fact For every M.D.P. there exists an optimal policy. It s a policy such that for every possible start state there is no better option than to follow the policy.

28 Computing the Optimal Policy Idea One: Run through all possible policies. Select the best. What s the problem??

29 Optimal Value Function Define J*(S i ) = Expected Discounted Future Rewards, starting from state S i, assuming we use the optimal policy S /3 1 1/3 1/3 1 S 2 +3 S 3 +2 B 0 Question: What is an optimal policy for that MDP? (assume g = 0.9) What is J*(S 1 )? What is J*(S 2 )? What is J*(S 3 )? 1

30 Define Computing the Optimal Value Function with Value Iteration J k (S i ) = Maximum possible expected sum of discounted rewards I can get if I start at state S i and I live for k time steps. Note that J 1 (S i ) = r i

31 Let s compute J k (S i ) for our example k J k (PU) J k (PF) J k (RU) J k (RF)

32 k J k (PU) J k (PF) J k (RU) J k (RF)

33 Bellman s Equation N n 1 a n J S max i ri g Pij J S j a j 1 Value Iteration for solving MDPs Compute J 1 (S i ) for all i Compute J 2 (S i ) for all i : Compute J n (S i ) for all i..until converged convergedwhen max J i Also known as Dynamic Programming n 1 n S J S i i

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Outline Sequential Decision Processes Markov chains Highlight Markov property Discounted rewards Value iteration Markov

More information

Markov Decision Processes. CS 486/686: Introduction to Artificial Intelligence

Markov Decision Processes. CS 486/686: Introduction to Artificial Intelligence Markov Decision Processes CS 486/686: Introduction to Artificial Intelligence 1 Outline Markov Chains Discounted Rewards Markov Decision Processes (MDP) - Value Iteration - Policy Iteration 2 Markov Chains

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

Markov Decision Processes: Making Decision in the Presence of Uncertainty. (some of) R&N R&N

Markov Decision Processes: Making Decision in the Presence of Uncertainty. (some of) R&N R&N Markov Decision Processes: Making Decision in the Presence of Uncertainty (some of) R&N 16.1-16.6 R&N 17.1-17.4 Different Aspects of Machine Learning Supervised learning Classification - concept learning

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 9: MDPs 9/22/2011 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 2 Grid World The agent lives in

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDPs 2/16/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Announcements

More information

Markov Decision Process

Markov Decision Process Markov Decision Process Human-aware Robotics 2018/02/13 Chapter 17.3 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/mdp-ii.pdf

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Markov Decision Processes II Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Markov Decision Processes (MDPs) Luke Zettlemoyer Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore 1 Announcements PS2 online now Due

More information

Decision Theory: Value Iteration

Decision Theory: Value Iteration Decision Theory: Value Iteration CPSC 322 Decision Theory 4 Textbook 9.5 Decision Theory: Value Iteration CPSC 322 Decision Theory 4, Slide 1 Lecture Overview 1 Recap 2 Policies 3 Value Iteration Decision

More information

Complex Decisions. Sequential Decision Making

Complex Decisions. Sequential Decision Making Sequential Decision Making Outline Sequential decision problems Value iteration Policy iteration POMDPs (basic concepts) Slides partially based on the Book "Reinforcement Learning: an introduction" by

More information

MDPs: Bellman Equations, Value Iteration

MDPs: Bellman Equations, Value Iteration MDPs: Bellman Equations, Value Iteration Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) Adapted from slides kindly shared by Stuart Russell Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 1 Appreciations

More information

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010

91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 91.420/543: Artificial Intelligence UMass Lowell CS Fall 2010 Lecture 17 & 18: Markov Decision Processes Oct 12 13, 2010 A subset of Lecture 9 slides from Dan Klein UC Berkeley Many slides over the course

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline C 188: Artificial Intelligence Markov Decision Processes (MDPs) Pieter Abbeel UC Berkeley ome slides adapted from Dan Klein 1 Outline Markov Decision Processes (MDPs) Formalism Value iteration In essence

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non-Deterministic Search 1 Example: Grid World A maze-like problem The agent lives

More information

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1 Making Decisions CS 3793 Artificial Intelligence Making Decisions 1 Planning under uncertainty should address: The world is nondeterministic. Actions are not certain to succeed. Many events are outside

More information

17 MAKING COMPLEX DECISIONS

17 MAKING COMPLEX DECISIONS 267 17 MAKING COMPLEX DECISIONS The agent s utility now depends on a sequence of decisions In the following 4 3grid environment the agent makes a decision to move (U, R, D, L) at each time step When the

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Markov Decision Processes (MDP)! Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore 1 Outline

More information

Making Complex Decisions

Making Complex Decisions Ch. 17 p.1/29 Making Complex Decisions Chapter 17 Ch. 17 p.2/29 Outline Sequential decision problems Value iteration algorithm Policy iteration algorithm Ch. 17 p.3/29 A simple environment 3 +1 p=0.8 2

More information

CS885 Reinforcement Learning Lecture 3b: May 9, 2018

CS885 Reinforcement Learning Lecture 3b: May 9, 2018 CS885 Reinforcement Learning Lecture 3b: May 9, 2018 Intro to Reinforcement Learning [SutBar] Sec. 5.1-5.3, 6.1-6.3, 6.5, [Sze] Sec. 3.1, 4.3, [SigBuf] Sec. 2.1-2.5, [RusNor] Sec. 21.1-21.3, CS885 Spring

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non Deterministic Search Example: Grid World A maze like problem The agent lives in

More information

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig]

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig] Basic Framework [This lecture adapted from Sutton & Barto and Russell & Norvig] About this class Markov Decision Processes The Bellman Equation Dynamic Programming for finding value functions and optimal

More information

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018 Lecture 2: Making Good Sequences of Decisions Given a Model of World CS234: RL Emma Brunskill Winter 218 Human in the loop exoskeleton work from Steve Collins lab Class Structure Last Time: Introduction

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Long-Term Values in MDPs, Corecursively

Long-Term Values in MDPs, Corecursively Long-Term Values in MDPs, Corecursively Applied Category Theory, 15-16 March 2018, NIST Helle Hvid Hansen Delft University of Technology Helle Hvid Hansen (TU Delft) MDPs, Corecursively NIST, 15/Mar/2018

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 9 Sep, 28, 2016 Slide 1 CPSC 422, Lecture 9 An MDP Approach to Multi-Category Patient Scheduling in a Diagnostic Facility Adapted from: Matthew

More information

TDT4171 Artificial Intelligence Methods

TDT4171 Artificial Intelligence Methods TDT47 Artificial Intelligence Methods Lecture 7 Making Complex Decisions Norwegian University of Science and Technology Helge Langseth IT-VEST 0 helgel@idi.ntnu.no TDT47 Artificial Intelligence Methods

More information

AM 121: Intro to Optimization Models and Methods

AM 121: Intro to Optimization Models and Methods AM 121: Intro to Optimization Models and Methods Lecture 18: Markov Decision Processes Yiling Chen and David Parkes Lesson Plan Markov decision processes Policies and Value functions Solving: average reward,

More information

Probabilistic Robotics: Probabilistic Planning and MDPs

Probabilistic Robotics: Probabilistic Planning and MDPs Probabilistic Robotics: Probabilistic Planning and MDPs Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike Montemerlo,

More information

CPS 270: Artificial Intelligence Markov decision processes, POMDPs

CPS 270: Artificial Intelligence  Markov decision processes, POMDPs CPS 270: Artificial Intelligence http://www.cs.duke.edu/courses/fall08/cps270/ Markov decision processes, POMDPs Instructor: Vincent Conitzer Warmup: a Markov process with rewards We derive some reward

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the reward function Must (learn to) act so as to maximize expected rewards Grid World The agent

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

CS221 / Spring 2018 / Sadigh. Lecture 7: MDPs I

CS221 / Spring 2018 / Sadigh. Lecture 7: MDPs I CS221 / Spring 2018 / Sadigh Lecture 7: MDPs I cs221.stanford.edu/q Question How would you get to Mountain View on Friday night in the least amount of time? bike drive Caltrain Uber/Lyft fly CS221 / Spring

More information

MDPs and Value Iteration 2/20/17

MDPs and Value Iteration 2/20/17 MDPs and Value Iteration 2/20/17 Recall: State Space Search Problems A set of discrete states A distinguished start state A set of actions available to the agent in each state An action function that,

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

Lecture 7: MDPs I. Question. Course plan. So far: search problems. Uncertainty in the real world

Lecture 7: MDPs I. Question. Course plan. So far: search problems. Uncertainty in the real world Lecture 7: MDPs I cs221.stanford.edu/q Question How would you get to Mountain View on Friday night in the least amount of time? bike drive Caltrain Uber/Lyft fly CS221 / Spring 2018 / Sadigh CS221 / Spring

More information

Optimization Methods. Lecture 16: Dynamic Programming

Optimization Methods. Lecture 16: Dynamic Programming 15.093 Optimization Methods Lecture 16: Dynamic Programming 1 Outline 1. The knapsack problem Slide 1. The traveling salesman problem 3. The general DP framework 4. Bellman equation 5. Optimal inventory

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions Optimality and Approximation Finite MDP: {S, A, R, p, γ}

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Stochastic domains Image: Berkeley CS188 course notes (downloaded Summer

More information

Lecture 12: MDP1. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 12: MDP1. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 12: MDP1 Victor R. Lesser CMPSCI 683 Fall 2010 Biased Random GSAT - WalkSat Notice no random restart 2 Today s lecture Search where there is Uncertainty in Operator Outcome --Sequential Decision

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

Example: Grid World. CS 188: Artificial Intelligence Markov Decision Processes II. Recap: MDPs. Optimal Quantities

Example: Grid World. CS 188: Artificial Intelligence Markov Decision Processes II. Recap: MDPs. Optimal Quantities CS 188: Artificial Intelligence Markov Deciion Procee II Intructor: Dan Klein and Pieter Abbeel --- Univerity of California, Berkeley [Thee lide were created by Dan Klein and Pieter Abbeel for CS188 Intro

More information

Q1. [?? pts] Search Traces

Q1. [?? pts] Search Traces CS 188 Spring 2010 Introduction to Artificial Intelligence Midterm Exam Solutions Q1. [?? pts] Search Traces Each of the trees (G1 through G5) was generated by searching the graph (below, left) with a

More information

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming Dynamic Programming: An overview These notes summarize some key properties of the Dynamic Programming principle to optimize a function or cost that depends on an interval or stages. This plays a key role

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Dynamic programming Christos Dimitrakakis Intelligent Autonomous Systems, IvI, University of Amsterdam, The Netherlands March 18, 2008 Introduction Some examples Dynamic programming

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Markov Decision Models Manfred Huber 2015 1 Markov Decision Process Models Markov models represent the behavior of a random process, including its internal state and the externally

More information

Overview: Representation Techniques

Overview: Representation Techniques 1 Overview: Representation Techniques Week 6 Representations for classical planning problems deterministic environment; complete information Week 7 Logic programs for problem representations including

More information

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern Monte-Carlo Planning: Introduction and Bandit Basics Alan Fern 1 Large Worlds We have considered basic model-based planning algorithms Model-based planning: assumes MDP model is available Methods we learned

More information

COS402- Artificial Intelligence Fall Lecture 17: MDP: Value Iteration and Policy Iteration

COS402- Artificial Intelligence Fall Lecture 17: MDP: Value Iteration and Policy Iteration COS402- Artificial Intelligence Fall 2015 Lecture 17: MDP: Value Iteration and Policy Iteration Outline The Bellman equation and Bellman update Contraction Value iteration Policy iteration The Bellman

More information

Lecture 8: Decision-making under uncertainty: Part 1

Lecture 8: Decision-making under uncertainty: Part 1 princeton univ. F 14 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under uncertainty: Part 1 Lecturer: Sanjeev Arora Scribe: This lecture is an introduction to decision theory, which gives

More information

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T.

Mengdi Wang. July 3rd, Laboratory for Information and Decision Systems, M.I.T. Practice July 3rd, 2012 Laboratory for Information and Decision Systems, M.I.T. 1 2 Infinite-Horizon DP Minimize over policies the objective cost function J π (x 0 ) = lim N E w k,k=0,1,... DP π = {µ 0,µ

More information

POMDPs: Partially Observable Markov Decision Processes Advanced AI

POMDPs: Partially Observable Markov Decision Processes Advanced AI POMDPs: Partially Observable Markov Decision Processes Advanced AI Wolfram Burgard Types of Planning Problems Classical Planning State observable Action Model Deterministic, accurate MDPs observable stochastic

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Ryan P. Adams COS 324 Elements of Machine Learning Princeton University We now turn to a new aspect of machine learning, in which agents take actions and become active in their

More information

Introduction to Dynamic Programming

Introduction to Dynamic Programming Introduction to Dynamic Programming http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Mengdi Wang s and Prof. Dimitri Bertsekas lecture notes Outline 2/65 1

More information

Lecture 1: Lucas Model and Asset Pricing

Lecture 1: Lucas Model and Asset Pricing Lecture 1: Lucas Model and Asset Pricing Economics 714, Spring 2018 1 Asset Pricing 1.1 Lucas (1978) Asset Pricing Model We assume that there are a large number of identical agents, modeled as a representative

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

Lecture 7: Decision-making under uncertainty: Part 1

Lecture 7: Decision-making under uncertainty: Part 1 princeton univ. F 16 cos 521: Advanced Algorithm Design Lecture 7: Decision-making under uncertainty: Part 1 Lecturer: Sanjeev Arora Scribe: Sanjeev Arora This lecture is an introduction to decision theory,

More information

CS 6300 Artificial Intelligence Spring 2018

CS 6300 Artificial Intelligence Spring 2018 Expectimax Search CS 6300 Artificial Intelligence Spring 2018 Tucker Hermans thermans@cs.utah.edu Many slides courtesy of Pieter Abbeel and Dan Klein Expectimax Search Trees What if we don t know what

More information

Announcements. CS 188: Artificial Intelligence Spring Outline. Reinforcement Learning. Grid Futures. Grid World. Lecture 9: MDPs 2/16/2011

Announcements. CS 188: Artificial Intelligence Spring Outline. Reinforcement Learning. Grid Futures. Grid World. Lecture 9: MDPs 2/16/2011 CS 188: Artificial Intelligence Spring 2011 Lecture 9: MDP 2/16/2011 Announcement Midterm: Tueday March 15, 5-8pm P2: Due Friday 4:59pm W3: Minimax, expectimax and MDP---out tonight, due Monday February

More information

2D5362 Machine Learning

2D5362 Machine Learning 2D5362 Machine Learning Reinforcement Learning MIT GALib Available at http://lancet.mit.edu/ga/ download galib245.tar.gz gunzip galib245.tar.gz tar xvf galib245.tar cd galib245 make or access my files

More information

UNIT 5 DECISION MAKING

UNIT 5 DECISION MAKING UNIT 5 DECISION MAKING This unit: UNDER UNCERTAINTY Discusses the techniques to deal with uncertainties 1 INTRODUCTION Few decisions in construction industry are made with certainty. Need to look at: The

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532l Lecture 10 Stochastic Games and Bayesian Games CPSC 532l Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games 4 Analyzing Bayesian

More information

CS 234 Winter 2019 Assignment 1 Due: January 23 at 11:59 pm

CS 234 Winter 2019 Assignment 1 Due: January 23 at 11:59 pm CS 234 Winter 2019 Assignment 1 Due: January 23 at 11:59 pm For submission instructions please refer to website 1 Optimal Policy for Simple MDP [20 pts] Consider the simple n-state MDP shown in Figure

More information

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks

Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Pakes (1986): Patents as Options: Some Estimates of the Value of Holding European Patent Stocks Spring 2009 Main question: How much are patents worth? Answering this question is important, because it helps

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 247 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action A will have possible outcome states Result

More information

Methods Examination (Macro Part) Spring Please answer all the four questions below. The exam has 100 points.

Methods Examination (Macro Part) Spring Please answer all the four questions below. The exam has 100 points. Methods Examination (Macro Part) Spring 2006 Please answer all the four questions below. The exam has 100 points. 1) Infinite Horizon Economy with Durables, Money, and Taxes (Total 40 points) Consider

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern

Monte-Carlo Planning: Introduction and Bandit Basics. Alan Fern Monte-Carlo Planning: Introduction and Bandit Basics Alan Fern 1 Large Worlds We have considered basic model-based planning algorithms Model-based planning: assumes MDP model is available Methods we learned

More information

EE365: Markov Decision Processes

EE365: Markov Decision Processes EE365: Markov Decision Processes Markov decision processes Markov decision problem Examples 1 Markov decision processes 2 Markov decision processes add input (or action or control) to Markov chain with

More information

CS 461: Machine Learning Lecture 8

CS 461: Machine Learning Lecture 8 CS 461: Machine Learning Lecture 8 Dr. Kiri Wagstaff kiri.wagstaff@calstatela.edu 2/23/08 CS 461, Winter 2008 1 Plan for Today Review Clustering Reinforcement Learning How different from supervised, unsupervised?

More information

Deep RL and Controls Homework 1 Spring 2017

Deep RL and Controls Homework 1 Spring 2017 10-703 Deep RL and Controls Homework 1 Spring 2017 February 1, 2017 Due February 17, 2017 Instructions You have 15 days from the release of the assignment until it is due. Refer to gradescope for the exact

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532L Lecture 10 Stochastic Games and Bayesian Games CPSC 532L Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games Stochastic Games

More information

CS360 Homework 14 Solution

CS360 Homework 14 Solution CS360 Homework 14 Solution Markov Decision Processes 1) Invent a simple Markov decision process (MDP) with the following properties: a) it has a goal state, b) its immediate action costs are all positive,

More information

Final exam solutions

Final exam solutions EE365 Stochastic Control / MS&E251 Stochastic Decision Models Profs. S. Lall, S. Boyd June 5 6 or June 6 7, 2013 Final exam solutions This is a 24 hour take-home final. Please turn it in to one of the

More information

Optimal Dam Management

Optimal Dam Management Optimal Dam Management Michel De Lara et Vincent Leclère July 3, 2012 Contents 1 Problem statement 1 1.1 Dam dynamics.................................. 2 1.2 Intertemporal payoff criterion..........................

More information

Lecture Notes 1

Lecture Notes 1 4.45 Lecture Notes Guido Lorenzoni Fall 2009 A portfolio problem To set the stage, consider a simple nite horizon problem. A risk averse agent can invest in two assets: riskless asset (bond) pays gross

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Elif Özge Özdamar T Reinforcement Learning - Theory and Applications February 14, 2006

Elif Özge Özdamar T Reinforcement Learning - Theory and Applications February 14, 2006 On the convergence of Q-learning Elif Özge Özdamar elif.ozdamar@helsinki.fi T-61.6020 Reinforcement Learning - Theory and Applications February 14, 2006 the covergence of stochastic iterative algorithms

More information

Sequential Coalition Formation for Uncertain Environments

Sequential Coalition Formation for Uncertain Environments Sequential Coalition Formation for Uncertain Environments Hosam Hanna Computer Sciences Department GREYC - University of Caen 14032 Caen - France hanna@info.unicaen.fr Abstract In several applications,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning MDP March May, 2013 MDP MDP: S, A, P, R, γ, µ State can be partially observable: Partially Observable MDPs () Actions can be temporally extended: Semi MDPs (SMDPs) and Hierarchical

More information

Decision Theory: VE for Decision Networks, Sequential Decisions, Optimal Policies for Sequential Decisions

Decision Theory: VE for Decision Networks, Sequential Decisions, Optimal Policies for Sequential Decisions Decision Theory: VE for Decision Networks, Sequential Decisions, Optimal Policies for Sequential Decisions Alan Mackworth UBC CS 322 Decision Theory 3 April 3, 2013 Textbook 9.2.1, 9.3 Announcements (1)

More information

Multi-armed bandit problems

Multi-armed bandit problems Multi-armed bandit problems Stochastic Decision Theory (2WB12) Arnoud den Boer 13 March 2013 Set-up 13 and 14 March: Lectures. 20 and 21 March: Paper presentations (Four groups, 45 min per group). Before

More information

Monte Carlo Methods (Estimators, On-policy/Off-policy Learning)

Monte Carlo Methods (Estimators, On-policy/Off-policy Learning) 1 / 24 Monte Carlo Methods (Estimators, On-policy/Off-policy Learning) Julie Nutini MLRG - Winter Term 2 January 24 th, 2017 2 / 24 Monte Carlo Methods Monte Carlo (MC) methods are learning methods, used

More information

Markov Decision Processes. Lirong Xia

Markov Decision Processes. Lirong Xia Markov Decision Processes Lirong Xia Today ØMarkov decision processes search with uncertain moves and infinite space ØComputing optimal policy value iteration policy iteration 2 Grid World Ø The agent

More information

CS 188 Fall Introduction to Artificial Intelligence Midterm 1. ˆ You have approximately 2 hours and 50 minutes.

CS 188 Fall Introduction to Artificial Intelligence Midterm 1. ˆ You have approximately 2 hours and 50 minutes. CS 188 Fall 2013 Introduction to Artificial Intelligence Midterm 1 ˆ You have approximately 2 hours and 50 minutes. ˆ The exam is closed book, closed notes except your one-page crib sheet. ˆ Please use

More information

Reinforcement Learning 04 - Monte Carlo. Elena, Xi

Reinforcement Learning 04 - Monte Carlo. Elena, Xi Reinforcement Learning 04 - Monte Carlo Elena, Xi Previous lecture 2 Markov Decision Processes Markov decision processes formally describe an environment for reinforcement learning where the environment

More information

Dynamic Programming (DP) Massimo Paolucci University of Genova

Dynamic Programming (DP) Massimo Paolucci University of Genova Dynamic Programming (DP) Massimo Paolucci University of Genova DP cannot be applied to each kind of problem In particular, it is a solution method for problems defined over stages For each stage a subproblem

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Gittins Index: Discounted, Bayesian (hence Markov arms). Reduces to stopping problem for each arm. Interpretation as (scaled)

More information

Optimal energy management and stochastic decomposition

Optimal energy management and stochastic decomposition Optimal energy management and stochastic decomposition F. Pacaud P. Carpentier J.P. Chancelier M. De Lara JuMP-dev workshop, 2018 ENPC ParisTech ENSTA ParisTech Efficacity 1/23 Motivation We consider a

More information

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2

COMP417 Introduction to Robotics and Intelligent Systems. Reinforcement Learning - 2 COMP417 Introduction to Robotics and Intelligent Systems Reinforcement Learning - 2 Speaker: Sandeep Manjanna Acklowledgement: These slides use material from Pieter Abbeel s, Dan Klein s and John Schulman

More information

TIM 206 Lecture Notes: Inventory Theory

TIM 206 Lecture Notes: Inventory Theory TIM 206 Lecture Notes: Inventory Theory Prof. Kevin Ross Scribes: Vidyuth Srivatsaa, Ramya Gopalakrishnan, Mark Storer and Rolando Menchaca Contents 1 Main Ideas 1 2 Basic Model: Economic Order Quantity

More information

16 MAKING SIMPLE DECISIONS

16 MAKING SIMPLE DECISIONS 253 16 MAKING SIMPLE DECISIONS Let us associate each state S with a numeric utility U(S), which expresses the desirability of the state A nondeterministic action a will have possible outcome states Result(a)

More information

Intro to Reinforcement Learning. Part 3: Core Theory

Intro to Reinforcement Learning. Part 3: Core Theory Intro to Reinforcement Learning Part 3: Core Theory Interactive Example: You are the algorithm! Finite Markov decision processes (finite MDPs) dynamics p p p Experience: S 0 A 0 R 1 S 1 A 1 R 2 S 2 A 2

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 15 : DP Examples

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 15 : DP Examples CE 191: Civil and Environmental Engineering Systems Analysis LEC 15 : DP Examples Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 2014 Prof. Moura UC Berkeley

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information