USC Math. Finance April 22, Path-dependent Option Valuation under Jump-diffusion Processes. Alan L. Lewis

Size: px
Start display at page:

Download "USC Math. Finance April 22, Path-dependent Option Valuation under Jump-diffusion Processes. Alan L. Lewis"

Transcription

1 USC Math. Finance April 22, 23 Path-dependent Option Valuation under Jump-diffusion Processes Alan L. Lewis These overheads to be posted at (Publications) Topics Why jump-diffusion models? Review of the vanilla Euro-style Valuation A Standard Machine for Path-dependent Options: a. Perpetual American b. Knock-outs (Down-and-out call, etc.) c. One-touch Options (Rebate term) 1

2 Why Jump-Diffusion Models for Options? I. Benchmark model (exponential Brownian motion): Attractive features: limited liability stock prices uncorrelated, level independent returns simple formulas (methods) for option prices (euro,amer) Weak points: Actual stock price distributions have wider tails Lacks volatility clustering (auto-corr. of absolute returns) Lacks stock price jumps Poor fit to real-world option prices (smile/skew) II. Jump-diffusion processes (exponential Lévy processes) - Stationary, independent increment processes - Continuous-time analog of Random Walk - Brownian motion plus Poisson-driven jump process Attractive features: all the attractive benchmark features + large flexible class of models, each with a few parameters wide return tails common (exponential decay, moments) Good fits to expiring options (fear of jumps/crashes?) Weak points: Lacks volatility clustering (auto-corr. of absolute returns) Brownian motion Large number of small jumps 2

3 Stock price Evolution and Examples St = S exp( Xt), (Assumption: this is under the martingale pricing measure Q ) where Xt = ct + σbt + Xt; Jump probability(t) X t nt () = i= 1 λ t y~( p y) (Jump distribution) y i Examples of Jump distributions: (A.1) Merton s 1976 jump-diffusion model with log-normally distributed jumps: p( y) = 1 exp ( y µ J ) / 2δ 2 2πδ 2 2 (A.2) Degenerate Case: Point-jump: p( y) = δ ( y µ ) J Typical SPX Smile Fit: λ 3., µ 25,. δ 1. J 3

4 Figure 1 SPX Options: Implied Volatility vs. Strike on Aug. 16, 22 H1 monthto ExpirationL ConstantVolatility +Jumps Ø 25 2 SPX

5 Vanilla European-style options Solutions in Fourier space are simple Ingredients: 1. The generalized Fourier transform of the payoff function: For the call option: 1 iz izx x + K gz ˆ( ) = e ( e K) dx =, Im z < 1 2 ( z + iz) 2. The characteristic function of the Lévy process: ϕt( z) = e izx pt( x) dx = E [ exp( izxt )] = exp ( TΨ( z) ) where Ψ ( z) is the characteristic exponent. For the Point Jump model: ψ( z) = izω z σ λ {exp( iµ J z) 1} (Entire) 2 3. Finally, the Call Option price is given by : rt iz S Tψ ( z) C( S, K, T) e K e = dz π K, 2 z( z+ i) Im z< 1 The integration is along a line parallel to the real z-axis. 5

6 European-style options (cont.) The solution is very easy to derive and obvious : First, we need the inversion formula for the payoff function: iν + izx g( x) = 1 e gˆ ( zdz ) π, x = log S 2 T, z Payoff strip iν Then, by martingale pricing: rτ iν + rτ i ( ) E[ (log T) ] e z C S = e g S = E ( ST) gˆ ( z) dz 2π iν rτ i e ν + iz izx T = E ( S ) e gˆ ( z) d π z 2 iν rt iν + e iz Tψ ( z = ( S ) e )ˆ g( z) π dz 2 iν, Ok to exchange the integrations (sufficient conditions) if: 1. gx ( ) is Fourier integrable in some Payoff strip bounded for x <. 2. ψ ( z) is regular in some strip S X : α < Im z < β 3. ν = Im z lies in the intersection of these two strips S g and 6

7 A Standard Machine: the Down-and-out Call (or Down-and-out anything ) How we will do it. 1. Write the payoff in terms of its Fourier Transform 2. Write the barrier condition using a representation for 1 { Y>}. 3. Bring an expectation inside an integral. 4. Find a Fluctuation Identity to do the expectation. 5. Done with General Formula! This general procedure works for all the problems I listed at the beginning and probably lots of others. It saves having to learn a lot of the heavy machinery of The Boyarchenko/Levendorskii approach. 6. Then, for your particular model: Try to do as many integrals as possible analytically; (Residue Calculus). 7. Do the remaining integrals numerically. 7

8 Down-and-out Call (or Down-and-out anything ) (cont). 1. Write the payoff in terms of its Fourier Transform Minimum Process: S min T = t T St CDOC ( S, K, H, T) e rt E ( ST K) + = 1 ST > H or, with x = log S, h = log H, and NT = min t T Xt rt x XT f ( x, T) = e E ( e K) + + DOC 1 N > h x T rt = e E dz exp { iz( x+ X )} gˆ ( z) 1 T 2π Im z< 1 T N > h x 8

9 Down-and-out Call (or Down-and-out anything ) (cont) 2. Write the barrier condition using a representation for 1 { Y>}. 1 Y> = Imξ< dξ exp( iξy) 2πξ i, where Y = x h+ N T. This produces: rt fdo( x, T) = e d E dz ξ gˆ( z)exp ( izx+ iξ( x h) ) exp( izxt + iξnt 2π 2πiξ Im z< 1 Imξ< ) 3. Bring an expectation inside an integral. We need a formula for E[ exp( izxt iξ NT )] +. 9

10 4. Find a Fluctuation Identity to do the expectation Some Fluctuation Identities: 1. Factorization identities: (Spitzer, Rogozin, others) where q = φq q+ ψ( z) + q ( z) φ ( z), φ φ + qt q ( ) = [ exp( τ ( q) )] = izm t z E izm q e E e dt qt iznt q ( z) = E[ exp( iznτ ( q) )] = q e E e dt τ ( q) is an independent (exponentially distributed) random stopping time. Not computationally effective. But, this one is: φ q ( ξ) = exp dη ξlog [ q + ψ( η) ] ( 2πi ) η( ξ η) { } + + (Im ξ) < Imη< σ 1

11 4. Find a Fluctuation Identity to do the expectation Some Fluctuation Identities: 2. Here s the one we really need: + T T q q qt q e E[ exp ( izx + iξn )] dt = φ ( z) φ ( ξ + z) By Laplace Inversion: dq qt + E[ exp ( izxt + iξnt )] = e φq ( z) φq ( ξ + z) 2 πiq Req> r 11

12 5. Done with General Formula! Here it is: dq qt fdo ( x, T) = e FDO ( x, q ), 2 πi Req> r where for the call option payoff, it reads F DOC C ( x, q) rt Ke = q dξ dz exp { iz( h k) + iξ( x h) } + φq ( z) φq ( ξ) 2πi 2π ( z ξ) z( z+ i) C 1 2 Integration contours: C : Imλ 1 < Imξ < 1, C2 : Im α 1 ( q) < Im z< 1 and Imξ < Im z 12

13 6. Then, for your particular model: Try to do as many integrals as possible analytically; (Residue Calculus). 7. Do the remaining integrals numerically. Example 1: Suppose your model has No negative jumps. (This means the Barrier is crossed continuously). When there are no negative jumps, the Laplace transform of the down-and-out call option is given by: ( x > h) F ( xq, ) = F ( xq, ) exp { iγ ( q)( x h) } F ( hq, ), DOC NNJ E E where FE ( xqis, ) the Laplace transform of the European (no barrier) call option: rt FE ( xq, ) = dz Ke exp { izx ( k) } π zz ( + i)( q+ ψ( z)) 2. Im α1 ( q) < Im z< 1 (This one could be proved directly from the PIDE). 13

14 6. Then, for your particular model: Try to do as many integrals as possible analytically; (Residue Calculus). 7. Do the remaining integrals numerically. Example 2: Suppose your model has a Negative Point Jump. Then, you have to investigate the roots (zeros) of q + ψ( z) =, where 1 q+ ψ( z) = q izω + z 2 σ 2 λ ( exp( iµ J z) ) 2 1 F It turns out there are (almost certainly) an infinity of these in the complex z-plane. Then, I have a (conjectured) result using these roots: DOC x rt N ie γ exp { i( γi α)( x )} ( x, q) = 1 h + lim α( α+ i) ψ'( α) Nγ ψ'( γi ) i = 1 α is the single lower half-plane root. (I m α < ) γ are the infinity of upper half-plane roots. (Im γ > ) i i 14

15 A plot of f '( z)/ f( z ) where f ( z) = r+ ψ( z) for the Merton jump-diffusion 15

16 Figure 2. The location of some roots of r+ ψ( z ) = for the point jump model. 16

AMS Spring Western Sectional Meeting April 4, 2004 (USC campus) Two-sided barrier problems with jump-diffusions Alan L. Lewis

AMS Spring Western Sectional Meeting April 4, 2004 (USC campus) Two-sided barrier problems with jump-diffusions Alan L. Lewis AMS Spring Western Sectional Meeting April 4, 2004 (USC campus) Two-sided barrier problems with jump-diffusions Alan L. Lewis No preprint yet, but overheads to be posted at www.optioncity.net (Publications)

More information

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance Saddlepoint Approximation Methods for Pricing Financial Options on Discrete Realized Variance Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology Hong Kong * This is

More information

Fast Pricing and Calculation of Sensitivities of OTM European Options Under Lévy Processes

Fast Pricing and Calculation of Sensitivities of OTM European Options Under Lévy Processes Fast Pricing and Calculation of Sensitivities of OTM European Options Under Lévy Processes Sergei Levendorskĭi Jiayao Xie Department of Mathematics University of Leicester Toronto, June 24, 2010 Levendorskĭi

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005 Valuation of Volatility Derivatives Jim Gatheral Global Derivatives & Risk Management 005 Paris May 4, 005 he opinions expressed in this presentation are those of the author alone, and do not necessarily

More information

Normal Inverse Gaussian (NIG) Process

Normal Inverse Gaussian (NIG) Process With Applications in Mathematical Finance The Mathematical and Computational Finance Laboratory - Lunch at the Lab March 26, 2009 1 Limitations of Gaussian Driven Processes Background and Definition IG

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU CBOE Conference on Derivatives and Volatility, Chicago, Nov. 10, 2017 Peter Carr (NYU) Volatility Smiles and Yield Frowns 11/10/2017 1 / 33 Interest Rates

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Pricing Bermudan options in Lévy process models

Pricing Bermudan options in Lévy process models 1 1 Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign Joint with Xiong Lin Bachelier Finance Society 6th Congress 6/24/2010 American options in Lévy models

More information

Lecture 1: Lévy processes

Lecture 1: Lévy processes Lecture 1: Lévy processes A. E. Kyprianou Department of Mathematical Sciences, University of Bath 1/ 22 Lévy processes 2/ 22 Lévy processes A process X = {X t : t 0} defined on a probability space (Ω,

More information

SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1. By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD

SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1. By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD The Annals of Applied Probability 1999, Vol. 9, No. 2, 493 53 SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1 By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD The use of saddlepoint

More information

A Continuity Correction under Jump-Diffusion Models with Applications in Finance

A Continuity Correction under Jump-Diffusion Models with Applications in Finance A Continuity Correction under Jump-Diffusion Models with Applications in Finance Cheng-Der Fuh 1, Sheng-Feng Luo 2 and Ju-Fang Yen 3 1 Institute of Statistical Science, Academia Sinica, and Graduate Institute

More information

Barrier options. In options only come into being if S t reaches B for some 0 t T, at which point they become an ordinary option.

Barrier options. In options only come into being if S t reaches B for some 0 t T, at which point they become an ordinary option. Barrier options A typical barrier option contract changes if the asset hits a specified level, the barrier. Barrier options are therefore path-dependent. Out options expire worthless if S t reaches the

More information

Welcome to a series of articles on topics in mathematical. Alan Lewis ALGORITHMS Asian Connections

Welcome to a series of articles on topics in mathematical. Alan Lewis ALGORITHMS Asian Connections Wilm7.qxd 7/6/ :35 PM Page 57 Alan Lewis ALGORITHMS Asian Connections Welcome to a series of articles on topics in mathematical finance, mostly about algorithms for valuing derivative securities. I m interested

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Brownian Motion Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 Summer 2011 1 / 33 Purposes of Today s Lecture Describe

More information

Unified Credit-Equity Modeling

Unified Credit-Equity Modeling Unified Credit-Equity Modeling Rafael Mendoza-Arriaga Based on joint research with: Vadim Linetsky and Peter Carr The University of Texas at Austin McCombs School of Business (IROM) Recent Advancements

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL FABIO MERCURIO BANCA IMI, MILAN http://www.fabiomercurio.it 1 Stylized facts Traders use the Black-Scholes formula to price plain-vanilla options. An

More information

Short-time asymptotics for ATM option prices under tempered stable processes

Short-time asymptotics for ATM option prices under tempered stable processes Short-time asymptotics for ATM option prices under tempered stable processes José E. Figueroa-López 1 1 Department of Statistics Purdue University Probability Seminar Purdue University Oct. 30, 2012 Joint

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU IFS, Chengdu, China, July 30, 2018 Peter Carr (NYU) Volatility Smiles and Yield Frowns 7/30/2018 1 / 35 Interest Rates and Volatility Practitioners and

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

THE WIENER-HOPF FACTORIZATION AS A GENERAL METHOD FOR VALUATION OF AMERICAN AND BARRIER OPTIONS

THE WIENER-HOPF FACTORIZATION AS A GENERAL METHOD FOR VALUATION OF AMERICAN AND BARRIER OPTIONS THE WIENER-HOPF FACTORIZATION AS A GENERAL METHOD FOR VALUATION OF AMERICAN AND BARRIER OPTIONS SERGEI LEVENDORSKIǏ Department of Economics, The University of Texas at Austin, 1 University Station C31,

More information

Quadratic hedging in affine stochastic volatility models

Quadratic hedging in affine stochastic volatility models Quadratic hedging in affine stochastic volatility models Jan Kallsen TU München Pittsburgh, February 20, 2006 (based on joint work with F. Hubalek, L. Krawczyk, A. Pauwels) 1 Hedging problem S t = S 0

More information

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans An Chen University of Ulm joint with Filip Uzelac (University of Bonn) Seminar at SWUFE,

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Pricing Variance Swaps on Time-Changed Lévy Processes

Pricing Variance Swaps on Time-Changed Lévy Processes Pricing Variance Swaps on Time-Changed Lévy Processes ICBI Global Derivatives Volatility and Correlation Summit April 27, 2009 Peter Carr Bloomberg/ NYU Courant pcarr4@bloomberg.com Joint with Roger Lee

More information

Two-dimensional COS method

Two-dimensional COS method Two-dimensional COS method Marjon Ruijter Winterschool Lunteren 22 January 2013 1/29 Introduction PhD student since October 2010 Prof.dr.ir. C.W. Oosterlee). CWI national research center for mathematics

More information

Hints on Some of the Exercises

Hints on Some of the Exercises Hints on Some of the Exercises of the book R. Seydel: Tools for Computational Finance. Springer, 00/004/006/009/01. Preparatory Remarks: Some of the hints suggest ideas that may simplify solving the exercises

More information

Skewness in Lévy Markets

Skewness in Lévy Markets Skewness in Lévy Markets Ernesto Mordecki Universidad de la República, Montevideo, Uruguay Lecture IV. PASI - Guanajuato - June 2010 1 1 Joint work with José Fajardo Barbachan Outline Aim of the talk Understand

More information

Hilbert transform approach for pricing Bermudan options in Lévy models

Hilbert transform approach for pricing Bermudan options in Lévy models Hilbert transform approach for pricing Bermudan options in Lévy models 1 1 Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign Joint with Xiong Lin Spectral

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Modeling the Implied Volatility Surface. Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003

Modeling the Implied Volatility Surface. Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003 Modeling the Implied Volatility Surface Jim Gatheral Global Derivatives and Risk Management 2003 Barcelona May 22, 2003 This presentation represents only the personal opinions of the author and not those

More information

PATH DEPENDENT OPTIONS ON ASSETS WITH JUMPS AND A NEW APPROACH TO CREDIT DEFAULT SPREADS ALEXANDER LIPTON FX PRODUCT DEVELOPMENT

PATH DEPENDENT OPTIONS ON ASSETS WITH JUMPS AND A NEW APPROACH TO CREDIT DEFAULT SPREADS ALEXANDER LIPTON FX PRODUCT DEVELOPMENT PATH DEPENDENT OPTIONS ON ASSETS WITH JUMPS AND A NEW APPROACH TO CREDIT DEFAULT SPREADS BY ALEXANDER LIPTON FX PRODUCT DEVELOPMENT DEUTSCHE BANK AG, NEW YORK 5TH COLUMBIA-JAFFE CONFERENCE NEW YORK, APRIL

More information

Partial differential approach for continuous models. Closed form pricing formulas for discretely monitored models

Partial differential approach for continuous models. Closed form pricing formulas for discretely monitored models Advanced Topics in Derivative Pricing Models Topic 3 - Derivatives with averaging style payoffs 3.1 Pricing models of Asian options Partial differential approach for continuous models Closed form pricing

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Haindorf, 7 Februar 2008 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Haindorf, 7 Februar

More information

Monte Carlo Simulation of Stochastic Processes

Monte Carlo Simulation of Stochastic Processes Monte Carlo Simulation of Stochastic Processes Last update: January 10th, 2004. In this section is presented the steps to perform the simulation of the main stochastic processes used in real options applications,

More information

Pricing of some exotic options with N IG-Lévy input

Pricing of some exotic options with N IG-Lévy input Pricing of some exotic options with N IG-Lévy input Sebastian Rasmus, Søren Asmussen 2 and Magnus Wiktorsson Center for Mathematical Sciences, University of Lund, Box 8, 22 00 Lund, Sweden {rasmus,magnusw}@maths.lth.se

More information

Power Style Contracts Under Asymmetric Lévy Processes

Power Style Contracts Under Asymmetric Lévy Processes MPRA Munich Personal RePEc Archive Power Style Contracts Under Asymmetric Lévy Processes José Fajardo FGV/EBAPE 31 May 2016 Online at https://mpra.ub.uni-muenchen.de/71813/ MPRA Paper No. 71813, posted

More information

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG MATH 476/567 ACTUARIAL RISK THEORY FALL 206 PROFESSOR WANG Homework 5 (max. points = 00) Due at the beginning of class on Tuesday, November 8, 206 You are encouraged to work on these problems in groups

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models Large Deviations and Stochastic Volatility with Jumps: TU Berlin with A. Jaquier and A. Mijatović (Imperial College London) SIAM conference on Financial Mathematics, Minneapolis, MN July 10, 2012 Implied

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

arxiv: v2 [q-fin.pr] 23 Nov 2017

arxiv: v2 [q-fin.pr] 23 Nov 2017 VALUATION OF EQUITY WARRANTS FOR UNCERTAIN FINANCIAL MARKET FOAD SHOKROLLAHI arxiv:17118356v2 [q-finpr] 23 Nov 217 Department of Mathematics and Statistics, University of Vaasa, PO Box 7, FIN-6511 Vaasa,

More information

Exact Sampling of Jump-Diffusion Processes

Exact Sampling of Jump-Diffusion Processes 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

Option Pricing for a Stochastic-Volatility Jump-Diffusion Model

Option Pricing for a Stochastic-Volatility Jump-Diffusion Model Option Pricing for a Stochastic-Volatility Jump-Diffusion Model Guoqing Yan and Floyd B. Hanson Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago Conference

More information

Financial Engineering. Craig Pirrong Spring, 2006

Financial Engineering. Craig Pirrong Spring, 2006 Financial Engineering Craig Pirrong Spring, 2006 March 8, 2006 1 Levy Processes Geometric Brownian Motion is very tractible, and captures some salient features of speculative price dynamics, but it is

More information

Stochastic volatility modeling in energy markets

Stochastic volatility modeling in energy markets Stochastic volatility modeling in energy markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Joint work with Linda Vos, CMA Energy Finance Seminar, Essen 18

More information

Applications of Lévy processes

Applications of Lévy processes Applications of Lévy processes Graduate lecture 29 January 2004 Matthias Winkel Departmental lecturer (Institute of Actuaries and Aon lecturer in Statistics) 6. Poisson point processes in fluctuation theory

More information

1 Rare event simulation and importance sampling

1 Rare event simulation and importance sampling Copyright c 2007 by Karl Sigman 1 Rare event simulation and importance sampling Suppose we wish to use Monte Carlo simulation to estimate a probability p = P (A) when the event A is rare (e.g., when p

More information

Option Pricing for a Stochastic-Volatility Jump-Diffusion Model with Log-Uniform Jump-Amplitudes

Option Pricing for a Stochastic-Volatility Jump-Diffusion Model with Log-Uniform Jump-Amplitudes Option Pricing for a Stochastic-Volatility Jump-Diffusion Model with Log-Uniform Jump-Amplitudes Floyd B. Hanson and Guoqing Yan Department of Mathematics, Statistics, and Computer Science University of

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

Linear-Rational Term-Structure Models

Linear-Rational Term-Structure Models Linear-Rational Term-Structure Models Anders Trolle (joint with Damir Filipović and Martin Larsson) Ecole Polytechnique Fédérale de Lausanne Swiss Finance Institute AMaMeF and Swissquote Conference, September

More information

Efficient valuation of exotic derivatives in Lévy models

Efficient valuation of exotic derivatives in Lévy models Efficient valuation of exotic derivatives in models Ernst Eberlein and Antonis Papapantoleon Department of Mathematical Stochastics and Center for Data Analysis and Modeling (FDM) University of Freiburg

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Pricing and hedging in incomplete markets

Pricing and hedging in incomplete markets Pricing and hedging in incomplete markets Chapter 10 From Chapter 9: Pricing Rules: Market complete+nonarbitrage= Asset prices The idea is based on perfect hedge: H = V 0 + T 0 φ t ds t + T 0 φ 0 t ds

More information

Pricing Dynamic Guaranteed Funds Under a Double Exponential. Jump Diffusion Process. Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay

Pricing Dynamic Guaranteed Funds Under a Double Exponential. Jump Diffusion Process. Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay Pricing Dynamic Guaranteed Funds Under a Double Exponential Jump Diffusion Process Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay ABSTRACT This paper complements the extant literature to evaluate the

More information

Stochastic Volatility and Jump Modeling in Finance

Stochastic Volatility and Jump Modeling in Finance Stochastic Volatility and Jump Modeling in Finance HPCFinance 1st kick-off meeting Elisa Nicolato Aarhus University Department of Economics and Business January 21, 2013 Elisa Nicolato (Aarhus University

More information

The Lognormal Interest Rate Model and Eurodollar Futures

The Lognormal Interest Rate Model and Eurodollar Futures GLOBAL RESEARCH ANALYTICS The Lognormal Interest Rate Model and Eurodollar Futures CITICORP SECURITIES,INC. 399 Park Avenue New York, NY 143 Keith Weintraub Director, Analytics 1-559-97 Michael Hogan Ex

More information

Asian options and meropmorphic Lévy processes

Asian options and meropmorphic Lévy processes Asian options and meropmorphic Lévy processes July 9 13, 2013 Outline Introduction Existing pricing approaches and the exponential functional I q Methodology overview Meromorphic Lévy processes Theoretical

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL. Stephen Chin and Daniel Dufresne. Centre for Actuarial Studies

A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL. Stephen Chin and Daniel Dufresne. Centre for Actuarial Studies A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL Stephen Chin and Daniel Dufresne Centre for Actuarial Studies University of Melbourne Paper: http://mercury.ecom.unimelb.edu.au/site/actwww/wps2009/no181.pdf

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Using Lévy Processes to Model Return Innovations

Using Lévy Processes to Model Return Innovations Using Lévy Processes to Model Return Innovations Liuren Wu Zicklin School of Business, Baruch College Option Pricing Liuren Wu (Baruch) Lévy Processes Option Pricing 1 / 32 Outline 1 Lévy processes 2 Lévy

More information

REFINED WING ASYMPTOTICS FOR THE MERTON AND KOU JUMP DIFFUSION MODELS

REFINED WING ASYMPTOTICS FOR THE MERTON AND KOU JUMP DIFFUSION MODELS ADVANCES IN MATHEMATICS OF FINANCE BANACH CENTER PUBLICATIONS, VOLUME 04 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 05 REFINED WING ASYMPTOTICS FOR THE MERTON AND KOU JUMP DIFFUSION MODELS

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Bandit Problems with Lévy Payoff Processes

Bandit Problems with Lévy Payoff Processes Bandit Problems with Lévy Payoff Processes Eilon Solan Tel Aviv University Joint with Asaf Cohen Multi-Arm Bandits A single player sequential decision making problem. Time is continuous or discrete. The

More information

Weak Reflection Principle and Static Hedging of Barrier Options

Weak Reflection Principle and Static Hedging of Barrier Options Weak Reflection Principle and Static Hedging of Barrier Options Sergey Nadtochiy Department of Mathematics University of Michigan Apr 2013 Fields Quantitative Finance Seminar Fields Institute, Toronto

More information

Testing for non-correlation between price and volatility jumps and ramifications

Testing for non-correlation between price and volatility jumps and ramifications Testing for non-correlation between price and volatility jumps and ramifications Claudia Klüppelberg Technische Universität München cklu@ma.tum.de www-m4.ma.tum.de Joint work with Jean Jacod, Gernot Müller,

More information

Universität Regensburg Mathematik

Universität Regensburg Mathematik Universität Regensburg Mathematik Modeling financial markets with extreme risk Tobias Kusche Preprint Nr. 04/2008 Modeling financial markets with extreme risk Dr. Tobias Kusche 11. January 2008 1 Introduction

More information

Closed-form Solutions of Relativistic Black-Scholes Equations

Closed-form Solutions of Relativistic Black-Scholes Equations Closed-form Solutions of elativistic Black-Scholes Equations Yanlin Qu 1, and andall. ojas arxiv:1711.0419v1 [q-fin.mf] 1 Nov 017 1 School of Mathematical Science University of Science and Technology of

More information

Modelling the electricity markets

Modelling the electricity markets Modelling the electricity markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Collaborators: J. Kallsen and T. Meyer-Brandis Stochastics in Turbulence and Finance

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

A new approach to LIBOR modeling

A new approach to LIBOR modeling A new approach to LIBOR modeling Antonis Papapantoleon FAM TU Vienna Based on joint work with Martin Keller-Ressel and Josef Teichmann Istanbul Workshop on Mathematical Finance Istanbul, Turkey, 18 May

More information

The Derivation and Discussion of Standard Black-Scholes Formula

The Derivation and Discussion of Standard Black-Scholes Formula The Derivation and Discussion of Standard Black-Scholes Formula Yiqian Lu October 25, 2013 In this article, we will introduce the concept of Arbitrage Pricing Theory and consequently deduce the standard

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Numerical Solution of Stochastic Differential Equations with Jumps in Finance Numerical Solution of Stochastic Differential Equations with Jumps in Finance Eckhard Platen School of Finance and Economics and School of Mathematical Sciences University of Technology, Sydney Kloeden,

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

Sato Processes in Finance

Sato Processes in Finance Sato Processes in Finance Dilip B. Madan Robert H. Smith School of Business Slovenia Summer School August 22-25 2011 Lbuljana, Slovenia OUTLINE 1. The impossibility of Lévy processes for the surface of

More information

Numerical valuation for option pricing under jump-diffusion models by finite differences

Numerical valuation for option pricing under jump-diffusion models by finite differences Numerical valuation for option pricing under jump-diffusion models by finite differences YongHoon Kwon Younhee Lee Department of Mathematics Pohang University of Science and Technology June 23, 2010 Table

More information

Calculation of Volatility in a Jump-Diffusion Model

Calculation of Volatility in a Jump-Diffusion Model Calculation of Volatility in a Jump-Diffusion Model Javier F. Navas 1 This Draft: October 7, 003 Forthcoming: The Journal of Derivatives JEL Classification: G13 Keywords: jump-diffusion process, option

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

A Hybrid Importance Sampling Algorithm for VaR

A Hybrid Importance Sampling Algorithm for VaR A Hybrid Importance Sampling Algorithm for VaR No Author Given No Institute Given Abstract. Value at Risk (VaR) provides a number that measures the risk of a financial portfolio under significant loss.

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

Probability in Options Pricing

Probability in Options Pricing Probability in Options Pricing Mark Cohen and Luke Skon Kenyon College cohenmj@kenyon.edu December 14, 2012 Mark Cohen and Luke Skon (Kenyon college) Probability Presentation December 14, 2012 1 / 16 What

More information

American Barrier Option Pricing Formulae for Uncertain Stock Model

American Barrier Option Pricing Formulae for Uncertain Stock Model American Barrier Option Pricing Formulae for Uncertain Stock Model Rong Gao School of Economics and Management, Heei University of Technology, Tianjin 341, China gaor14@tsinghua.org.cn Astract Uncertain

More information

Gamma. The finite-difference formula for gamma is

Gamma. The finite-difference formula for gamma is Gamma The finite-difference formula for gamma is [ P (S + ɛ) 2 P (S) + P (S ɛ) e rτ E ɛ 2 ]. For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas

More information

Martingale representation theorem

Martingale representation theorem Martingale representation theorem Ω = C[, T ], F T = smallest σ-field with respect to which B s are all measurable, s T, P the Wiener measure, B t = Brownian motion M t square integrable martingale with

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information